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Abstract Many recent survival studies propose modeling data with a cure fraction,
i.e., data in which part of the population is not susceptible to the event of interest.
This event may occur more than once for the same individual (recurrent event). We
then have a scenario of recurrent event data in the presence of a cure fraction, which
may appear in various areas such as oncology, finance, industries, among others. This
paper proposes a multiple time scale survival model to analyze recurrent events using
a cure fraction. The objective is analyzing the efficiency of certain interventions so
that the studied event will not happen again in terms of covariates and censoring. All
estimates were obtained using a sampling-based approach, which allows information
to be input beforehand with lower computational effort. Simulations were done based
on a clinical scenario in order to observe some frequentist properties of the estimation
procedure in the presence of small and moderate sample sizes. An application of a
well-known set of real mammary tumor data is provided.

Keywords Cure fraction modeling · Berkson–Gage model · Recurrent events ·
Bayesian approach

Mathematics Subject Classification (2000) 62N99

1 Introduction

Models which consider that part of the population may not become susceptible to
a certain event of interest have been widely developed recently. These models are
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called cure fraction models or long-term survival models and were firstly proposed
by Boag (1949) and Berkson and Gage (1952). Evidence that a cure fraction exists in
the studied population may be given by a large percentage of censoring in the data,
as in traditional survival studies, individuals that do not present the event of interest
until a certain moment are censored (Goldman 1984), ignoring the possibility that the
individual is not present in the event of interest.

In many cases, the event of interest may occur more than once with the same in-
dividual. Survival data with recurrent events exist in many areas, such as oncology
studies with a cancerous tumor reappearing, geological studies with the recurrence
of a seismic shock, or in industrial studies with recurrent failures in a component.
Cox (1972) recurrent event modeling considers the total time of study and the time
between occurrences. A Poisson process representation is considered by Lawless
(2003), which models the total time of study. Lawless and Thiagarajah (1996) con-
sidered modulated renewal and Poisson processes, which accommodate the two time
scales, focusing on estimation for a specific model. McDonald and Rosina (2001) and
Yu (2008) consider mixed models to analyze situations in which the recurrence of the
event and the possibility of cure can be observed. Yu (2008) analyzes the possibility
of curing patients with colorectal cancer after certain surgical intervention.

In this paper, we propose a multiple time scale survival model (MSS) combined
with the Berkson and Gage (1952) framework for modeling recurrent event data with
a cure fraction. The main idea is to extend the modeling presented in Louzada-Neto
and Cobre (2010) and Cobre and Louzada-Neto (2009), allowing us to discover if
the efficiency of certain intervention may lead to a possible cure, in terms of the
covariates and censoring, which is impossible by considering the former modeling.
The proposed model accommodates several models from the literature including the
Poisson, renewal, and count models as special cases. The idea is to combine the two
time scales, total time and interval time (intervals between successive events), and the
event counts in a hybrid model and to decide their appropriateness according to the
data. In the model version with covariates, we assume a proportional baseline func-
tion. We envisage applications in which a moderate or large number of individuals
are observed and the number of events per individual may be quite small.

The paper is organized as follows. The proposed model is described in Sect. 2. The
inferential procedure, model assessment, and simulation results based on a clinical
study are presented in Sect. 3. A real data analysis on a mammary tumor data set is
presented in Sect. 4. Final comments in Sect. 5 conclude the paper.

2 Model formulation

In traditional survival studies, individuals who do not present the event of interest
until a certain time are considered censored. Therefore, censorship can mean that the
individual was no longer susceptible to the event of interest. Thus, it seems appro-
priate to consider a model which includes heterogeneous characteristics, such as two
distribution mixture models. In this modeling, one distribution represents the fail-
ure or survival times of individuals, which are susceptible to a certain event (at risk
individuals, AR), while the other distribution represents the survival times of the indi-
viduals, which are not susceptible to the event (out of risk individuals, OR), with this



A multiple time scale survival model with a cure fraction 357

latter distribution allowing for infinite survival times (Maller and Zhou 1996). The
term “long duration” refers to the individuals who are not susceptible to the event
of interest. In the medical area, it is common to use the term “cured” to refer to the
population who is no longer at risk. To simplify the language, we will use the term
cured.

The mixture models were firstly approached by Boag (1949) and by Berkson and
Gage (1952). Both pieces of research consider that the individual belongs or not to
the group at risk with a certain probability. In terms of the survival function, we can
write the mixture model as:

Spop(t) = ρ + (1 − ρ)S(t), (1)

where S(t) is a proper survival function, i.e., limt→∞ S(t) = 0, and ρ is the prob-
ability of an individual not belonging to the group at risk. Consequently, we have
limt→∞ Spop(t) = ρ, and therefore the survival function (not conditional) is im-
proper, and its limit corresponds to the individuals’ proportion OR.

In the literature, there are various proposals for the survival time distribution of an
individual AR. The Weibull family was approached by Farewell (1982), Ghitany and
Maller (1992), Ghitany et al. (1994), Ng et al. (2004). Peng et al. (1998) propose the
use of the generalized F distribution. In the case of a recurrent event, we can men-
tion the nonhomogeneous Poisson process and renewal the pure process that depends
on the total time of study (Lawless 2003, p. 532). The renewal process (Prentice et
al. 1981) models the interval time between the various occurrences and the last oc-
currence. The semi-Markov process considers each occurrence as being a stratum
whereby the individual remains in that stratum until the next occurrence or censoring
happens (Prentice et al. 1981). Another class of models is the renewal Poisson process
(Cox 1972) and the hybrid scale models (Louzada-Neto 2004, 2008; Louzada-Neto
and Cobre 2010), which incorporate two time scales, total time and interval times.
Cobre and Louzada-Neto (2009) develop a sampling based approach for a hybrid
scale intensity model. Semi-parametric models were approached by Kuk and Chen
(1992), Sy and Taylor (2000), and Yu (2008).

We propose an MSS model to describe the survival time distribution of the indi-
viduals AR, which combines the two time scales, total time and interval time, and the
event counts.

2.1 Multiple time scale survival model

In the MSS, the total time modeling considers that the risk for the occurrence of each
event begins at the same time. Interval time modeling, however, is appropriate for sit-
uations where the risk for the next event does not begin until after the previous event
has occurred. The event counts can influence the risk of the event. The parameters
of the model reflect the relative risk of the next event from the time of the previous
event.

The data on the ith individual consists of the total number, mi , of events (lifetimes)
observed over the time period (0, τi] and the ordered epochs of the mi lifetimes at
times 0 ≤ ti1 < ti2 < · · · < timi

≤ τi . Then, we firstly define a partial survival function
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given by

Sj (tij |·) = exp

{
−

∫ tij

tij−1

hj (u|·) du

}
, (2)

where hj is an intensity function defined on [tij−1, tij ). Then the overall survival
function is given by

S(tmi
|·) = exp

{
−

mi∑
j=1

∫ tij

tij−1

hj (u|·) du

}
. (3)

We propose a multiple time scale survival model (MSS) which considers both in-
terval and total times, and also the number of events for each individual by assuming
that

hj (tij |·) = q1(xij ; θ1)q2(tij ; θ2)q3(j ; θ3)g
(
αT zi

)
, (4)

where q1(·), q2(·), and q3(·) are positive functions denoting the parametric functions
on the interval time, tij denotes the total time from the origin, xij = tij − tij−1 is the
backward recurrence time, j denotes the event counts with respectively unknown pa-
rameter vectors θ1, θ2, and θ3, zi is the covariates vector, g(·) is a known positive
function that equals one when its argument is zero, and α is a vector of unknown re-
gression parameters. The covariates are assumed to be fixed and therefore not affected
by the event process.

Model (3) with (4) covers a wide spectrum of survival models, but comprehen-
sive classes of model can be obtained as particular cases with a reduced number of
parameters. For instance, (3) reduces to a general nonhomogeneous Poisson process
model, in its parametric version, if q1(·) = q3(·) = 1. For q2(·) = q3(·) = 1, we ob-
tain a renewal process model. A hybrid Poisson/renewal intensity model is obtained
if q3(·) = 1.

In this paper we shall examine the fully parametric approach by consider-
ing a particular flexible parameterization of (4), where q1(x; θ1) = q1(x;γ ) =
γ xγ−1, q2(t; θ2) = q2(t;φ) = (1+φt), q3(j ; θ3) = q3(j ;ψ) = ψj−1, and g(αT z) =
exp(αT z). From (2), (3), and (4), the partial survival function and overall survival
function of our MSS model are given respectively by

S(tij |·) = exp

{
−ψj−1x

γ

ij

(
1 + φtij−1 + φγ

xij

γ + 1

)
eαT zi

}
(5)

and

S(tmi
|·) = exp

{
−

mi∑
j=1

ψj−1x
γ

ij

(
1 + φtij−1 + φγ

xij

γ + 1

)
eαT zi

}
, (6)

where φ, γ , and ψ are positive parameters, α is the parameter vector associated to
observed covariates zi , ti1, . . . , timi

are the occurrence times of the studied event for
the ith individual, xij = tij − tij−1 is the interval time between successive events with
ti0 = 0, and αT zi = α1z1 + · · · + αKzK has no intercept term.
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An advantage of this parameterization is its relatively easy interpretation. While
the parameters γ and φ denote the specific effect of each time scale (total and interval
times, respectively) in the survival, the parameter ψ denotes the effect of the number
of events in the formulation. Moreover, the renewal component, q1(·), is driven by a
Weibull-type model, while the Poisson component, q2(·), works as a time-dependent
Poisson process part. The event count function, q3(·), penalizes large numbers of
events. An exponentially proportional covariate effect g(·) completes the formulation.
Apart from α, the three parameters γ,φ,ψ represent departures from the Poisson
intensity model.

The proposed model incorporates some existing models as particular cases in the
survival literature. The MSS model with φ = 0 and γ = 1 reduces to a counting
process (Cox 1972). For φ = 0 and ψ = 1, we have an ordinary Weibull renewal
model for the interval times (see, e.g., Yannaros 1994). If γ = 1 and ψ = 1, we
obtain a nonhomogeneous Poisson intensity process. For φ = 0, the MSS reduces
to an ordinary Weibull model with a counting parameter, then called an ordinary
Weibull and counting model (see, e.g., McShane et al. 2008). Fixing ψ = 1, we obtain
the renewal Poisson process (Prentice et al. 1981; Lawless and Thiagarajah 1996). If
only γ = 1, we obtain a nonhomogeneous Poisson process with a counting parameter,
which we called nonhomogeneous Poisson and counting processes (see, e.g., Massey
et al. 1996).

2.2 MSS model with long time survivors

Following Berkson and Gage (1952), from (1) and (6) the MSS model with long time
survivors is given by

Spop(t |λ∗, ρ) = ρ + (1 − ρ)S(t |λ∗), (7)

where λ∗ = (φ, γ,ψ,α). It is important to point out that if ρ = 0, then Spop(t |λ∗, ρ) =
S(t |λ∗), i.e., of course, (7) includes the usual MSS model. We can incorporate the
covariates from both groups in which the population is divided, AR and OR. Follow-
ing Farewell (1982), we described the proportion OR in terms of the covariates via a
logistic function,

ρi = exp(βT zi)

1 + exp(βT zi)
, (8)

and the covariates of the proportion AR are considered in the survival function
S(t |λ∗). Taking this into account, the cure probability is different for each individual,
varying from 0 to 1. Then the improper survival function and the improper density
function for the ith individual are given, respectively, by

Spop(ti |λ) = ρi + (1 − ρi)S(ti |λ∗) (9)

and

fpop(ti |λ) = f (ti |λ∗)(1 − ρi), (10)

where λ = (λ∗,β) is the parameter vector of interest, S(ti |λ∗) is the time occurrence
of the event survival function, f (ti |λ∗) is the density function, and ρi denotes the
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cure probability for each individual. In our modeling, S(ti |λ∗) is given by (1), and
f (ti |λ∗) = − d

dt
S(t |λ∗)|ti .

3 Inference

For inference, we adopt a full Bayesian approach. The likelihood function, prior dis-
tributions for the parameters in the model, details of the Markov chain Monte Carlo
(MCMC) algorithm and the model comparison are described below.

3.1 Likelihood function

Considering that n individuals were observed, the data set consists of three vectors
t = ({t1}, {t2}, . . . , {tn}), δ = (δ1, . . . , δn), and z = ({z1}, . . . , {zn}), where, for the ith
individual, {ti} is the set of occurrence times of the event of interest for individual i,
δi denotes the censoring indicator that equals zero if the individual is right-censored
and one otherwise, and {zi} is the covariates set. Let D = (t,z, δ) be the observed
data set, the contribution of each individual to the likelihood, Li(λ|D), is given by
the density function if the individual presents the event of interest and by the survival
function if the individual is censored. Then, we have

Li(λ|D) = fpop(tmi
|λ,D)δi Spop(tmi

|λ,D)1−δi , (11)

which enables us to conclude that the likelihood function considering all observed
individuals is given by

L(λ|D) =
n∏

i=1

fpop(tmi
|λ,D)δi Spop(tmi

|λ,D)1−δi . (12)

3.2 Sampling-based inference

The target distribution for inference is the posterior of the parameters of interest
λ = (φ, γ,ψ,α,β). For this, we need to obtain the marginal posterior densities of
each parameter, which are obtained by integrating the joint posterior density with re-
spect to each parameter. The posterior distribution is proper considering proper prior
distribution (Ibrahim et al. 2001). However, irrespective of the prior distribution cho-
sen, the joint posterior distribution for the proposed model is analytically intractable.
As an alternative, we use Markov chain Monte Carlo methods (MCMC), e.g., the
Gibbs Sampling and Metropolis–Hastings algorithm (see, e.g., Chib and Greenberg
1995).

Although it is not necessary, for simplicity, we assume that the parameters are
independent a priori, and they have prior distribution according to the parametric
space of each one, which means that

π(φ,γ,ψ,β) = fΓ (φ|aφ, bφ)fΓ (γ |aγ , bγ )fΓ (ψ |aψ, bψ)

×
K∏

k=1

fN
(
αk|0, σ 2

αk

)
fN

(
βk|0, σ 2

βk

)
, (13)
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where fΓ (x|a, b) ∝ xa−1e−bx, x > 0, is the density function of a Gamma distri-
bution with shape parameter a > 0 and scale parameter b > 0, with mean a/b and
variance a/b2, and fN (·|0, σ 2) is the density function of a normal distribution with
mean 0 and variance σ 2. Then the posterior distribution is proportional to

π(λ|D) ∝ L(λ|D) × fΓ (φ|aφ, bφ)fΓ (γ |aγ , bγ )fΓ (ψ |aψ, bψ)

×
K∏

k=1

fN
(
αk|0, σ 2

αk

)
fN

(
βk|0, σ 2

βk

)
. (14)

The algorithm needs the complete conditional densities of each parameter which are
presented in Appendix A.

The conditional densities given in Appendix A do not refer to any known dis-
tribution. However, the Metropolis–Hastings algorithm can generate a sample of
φ,γ,ψ,αk , and βk using complete conditional distributions of unknown parame-
ters. The steps are described below. We start with λ(0) = (φ(0), γ (0),ψ(0),α(0),β(0))

and generating φ̃ from the prior π(φ) = fΓ (φ|aφ, bφ) described previously and
u from uniform distribution U(0,1). We then make the following comparison: if
u ≤ min{1,π(φ̃|γ (0),ψ(0), α(0),β(0),D)/π(φ(0)|γ (0)), ψ(0), α(0),β(0),D)}, then
update φ(1) by φ̃. Otherwise stay with φ(0), i.e., φ(1) = φ(0). Next, we make a similar
procedure to obtain γ (1),ψ(1), α

(1)
k , and β

(1)
k , k = 1, . . . ,K , always updating the start

value. We repeat the algorithm steps until a stationary sample can be obtained.
In order to verify the convergence diagnostic of simulated samples, Gelfand and

Smith (1990) suggest graph techniques, Gelman and Rubin (1992), Geweke (1992),
and Cowless and Carlin (1996) propose statistics analysis of a generated sample.
The Gelman–Rubin criterion is implemented in the R systems (R Development Core
Team 2006) and shall be used with Geweke’s graphic analysis here.

3.3 Model comparison

Model selection is a very important issue. The MSS model (6) has various partic-
ular cases, and our interest lies in verifying if a simpler model could be consid-
ered. Therefore, we may test the hypotheses H0 : ψ = 1, H0 : φ = 0, H0 : γ = 1,
H0 : γ = 1,ψ = 1, H0 : φ = 0,ψ = 1, and H0 : φ = 0, γ = 1, which lead to various
particular cases of (6).

In the literature, there are various methodologies which intend to analyze the suit-
ability of a model and to select the best fit among a collection of models. For instance,
among several existing techniques (see, e.g., Paulino et al. 2003, p. 348), we consider
the Bayesian information criterion (BIC) which is defined by −2 log(λ̂r ) + q log(n),
where λ̂r is the maximum likelihood estimate λr under model r , q is the number of
parameters estimated under r model, and n is the sample size. The best model corre-
sponds to the lower BIC value. Furthermore, there is the Deviance Information Crite-
rion (DIC), proposed by Spiegelhalter et al. (2002). The DIC is an approximation of
the Bayes factor, and its objective is to incorporate the complexity of the model into
the selection criterion. Define DICr (λr ) = −2 ln(f (D|λr )/h(D)), where h(D) is a
function of the data, with parameter vector λr , which does not interfere in the choice
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of the model. As a suitable measure of the model is proposed, the posterior mean of
DICr (λr ), and, associated to the model complexity, a penalized factor is proposed,
pDICr , given by pDICr = E(λr |D)[DICr (λr )] − DICr [E(λr |D)(λr )]. Finally, the DIC is
given by

DICr = E(λr |D)

[
DICr (λr )

] + pDICr = 2E(λr |D)

[
DICr (λi )

] − DICr

[
E(λr |D)(λr )

]
.

(15)
The better model corresponds to a lower DIC.

In our case, the mean values needed for the DIC calculation are not obtained
in an analytical form. However, we can obtain numerical values using computa-
tional methods such as MCMC, in which, to obtain the mean E(λr |D)[DICr (λr )],
it is enough to obtain a sample λ

(∗)
r = {λ(1)

r , . . . ,λ
(L)
r } of the posterior, and then,

with this, we have E(λr |D)[DICr (λr )] ≈ (1/L)
∑L

l=1 DICr (λ
(l)
r ). Similarly, we have

E(λr |D)[λr ] ≈ (1/L)
∑L

l=1 λ
(l)
r .

3.4 Coverage probability

Simulation studies were carried out with the objective of analyzing the frequentist
properties of the estimation procedure based on resamples. To examine the frequen-
tist properties, we constructed the credible intervals for all the parameters and cal-
culated their coverage probabilities (CP). The parameter values were chosen based
on a clinical experiment, in which the effectiveness of a treatment is analyzed using
a control group and a treatment one. The vector parameter to be estimated is given
by λ = (φ, γ,ψ,β). We consider two different sets of parameter values: (i) φ = 0.6,
γ = 1.2, ψ = 0.4, and β = −0.3, and (ii) φ = 1.3, γ = 0.8, ψ = 0.7, and β = −1.5,
with 40% of censoring. In order to differentiate the control group from the treatment
group, we used a binary covariate z, so that z is equal to −1 or 1, respectively. The
Gamma distribution Γ (0.9,0.3), with mean 3 and variance 10, is considered as the
prior distribution of φ,γ , and ψ . A normal distribution with mean 0 and variance
100 is considered for β . Overall, sixteen setups were considered, defined according
to the two different sets of parameter values, four different sample sizes (n = 30, 50,
70, and 100) and two different numbers of events per individual (mi = m = 3 and
mi = m = 5, i = 1, . . . , n). For each setup, 1,000 artificial data sets were generated.
We considered two chains of 55,000 iterations. The first 5,000 were ignored to avoid
the influence of the first values. The remaining ones were selected using thinning
by 50 to avoid a series correlation. The R systems (R Development Core Team 2006)
was used in the whole study. The convergence of the chains were monitored using the
method proposed by Gelman and Rubin (1992) and the graphic analysis proposed by
Geweke (1992).

In order to obtain the CP of the credible intervals, for all samples, we calculated
the parameters 95% credible intervals and observed if they contained the true param-
eter values. The empirical CP results for different sets of parameter values, different
sample sizes, and different numbers of recurrence are summarized in Table 1. It can
be concluded that the empirical coverage probabilities are closer to 95% level for a
larger sample size, but small and moderate numbers of recurrence do not harm the
empirical coverage probabilities. These results are similar for both sets of parameter
values.
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4 Mammary tumor data

In this section, the methodology is illustrated in a well-known real data set. We con-
sider the data from Table 1 of Gail et al. (1980), which presents the times to develop
mammary tumors for 48 rats in a carcinogenicity experiment. Initially, a conductive
for a mammary cancer carcinogenic compound was injected into all rats. Afterward,
the rats were induced to remain tumor free during the first 60 days. Then, twenty-
three rats were assigned randomly to a treatment group, and the remaining 25 to a
control group, and they were observed for 122 more days. The rats were observed
constantly to check the appearance of tumors. The times of recurrence of tumors
make up the data set. We considered that an individual is cured if it does not have
tumor recurrence after 70 days of observation. Then we have almost 40% and 12% of
censoring in the treatment group and control group, respectively. These percentages
of censoring reveal the possible existence of a cure fraction.

The MSS model with a cure fraction fitted the data in the sampling-based ap-
proach. We assumed that the covariate which denotes the group indicator is directly
linked to the cure fraction, βT zi = β0 + β1zi , where zi is a centralized covariate, so
that zi = −1 if the ith individual is in the control group and zi = 1, otherwise. We
considered as prior distributions: φ ∼ Γ (1,0.01), γ ∼ Γ (1,0.01), ψ ∼ Γ (1,0.01)

with E(φ) = E(γ ) = E(ψ) = 1,000 and Var(φ) = Var(γ ) = Var(ψ) = 100,000;
β0 ∼ N (0,100) and β1 ∼ N (0,100) with E(β0) = E(β1) = 0 and Var(β0) =
Var(β1) = 100. The hyperparameter values were chosen ensuring noninformative-
ness. Two chains of 100,000 iterations were considered. The first 20,000 were ignored
to avoid the influence of the first values. The remaining ones were selected using
thinning by 40 to avoid a series correlation. Implementation was made in OpenBugs
(Spiegelhalter et al. 1999), and the codes can be obtained on request by emailing the
authors. The chain convergence was monitored using Gelman–Rubin statistic (Gel-
man and Rubin 1992). Table 2 shows the posterior means and the corresponding 95%
credible intervals (in parentheses) of the parameters. Table 3 shows the values of
BIC and DIC criterion values. The results provide positive evidence for the complete
model, showing the importance of taking into account the event counts, and the two
time scales in the analysis. Figures 1 and 2 in Appendix B show the history of the

Table 1 Coverage probabilities of the credible intervals for different samples sizes and different numbers
of recurrent events per individual, m = 3 (left) and m = 5 (right)

Sample size 30 50 70 100

φ = 0.6 0.819/0.823 0.849/0.850 0.852/0.864 0.890/0.912

γ = 1.2 0.864/0.848 0.855/0.871 0.841/0.876 0.849/0.865

ψ = 0.4 0.913/0.917 0.909/0.922 0.932/0.960 0.948/0.962

β = −0.3 0.945/0.966 0.983/0.972 0.990/0.986 0.995/0.991

φ = 1.3 0.823/0.845 0.875/0.892 0.856/0.878 0.870/0.894

γ = 0.8 0.852/0.868 0.874/0.889 0.861/0.885 0.859/0.877

ψ = 0.7 0.906/0.919 0.915/0.938 0.946/0.954 0.914/0.967

β = −1.5 0.917/0.941 0.992/0.953 0.997/0.994 0.994/0.999
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Table 2 Posterior means and corresponding 95% credible intervals (in parenthesis)

Model Parameter

γ φ ψ β0 β1

MSS 1.552

(1.245,1.897)

0.566

(0.015,2.172)

1.387

(1.254,1.527)

−2.550

(−5.967,−0.423)

2.996

(0.359,6.094)

Ordinary Weibull

and counting model

1.510

(1.198,1.869)

0 1.404

(1.266,1.547)

−2.725

(−6.257,−0.493)

2.892

(0.138,5.974)

Renewal Poisson

process

0.988

(0.775,1.248)

1.545

(0.104,4,301)

1 −2.048

(−4.873,−0.071)

3.297

(1.339,6.177)

Nonhomogeneous

Poisson

and counting process

1 0.266

(0.007,0.971)

1.195

(1.124,1.263)

−2.089

(−5.159,−0.130)

3.303

(1.417,6.354)

Counting process 1 0 1.211

(1.142,1.274)

−2.196

(−5.139,−0.236)

3.319

(1.348,6.288)

Ordinary Weibull

model
0.853

(0.695,1.038)

0 1 −2.323

(−5.322,−0.351)

3.177

(1.068,6.228)

Nonhomogeneous

Poisson process

1 1.515

(0.207,3.299)

1 −2.092

(−5.075,−0.092)

3.305

(1.337,6.258)

Table 3 BIC and DIC criterion
values Model BIC DIC

MSS 24.71 9.14

Ordinary Weibull and counting model 26.92 9.26

Renewal Poisson process 54.68 35.98

Nonhomogeneous Poisson counting process 30.47 12.42

Counting process 24.74 15.79

Ordinary Weibull model 51.19 42.27

Nonhomogeneous Poisson process 49.98 36.01

chains and approximate posterior marginal densities, respectively. From Table 3, the
statistical significance of the γ, φ, and ψ parameters imply that it is important to con-
sider the total time, the interval time, and the event counts in the modeling. The group
cure probability is associated with the vector parameter β by the logistic function (8).
Then the β estimation leads to a treatment cure fraction equal to 0.627, while in the
control group this probability is 0.017. That is, individuals in the treatment group
have approximately 63% of chance of not presenting a recurrence of the event of
interest, while individuals in the control group have only approximately 2%. There-
fore, there is clear evidence of the treatment benefit. This result is corroborated by the
statistical significance of the parameter β1, which is considered here for addressing
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the important issue of testing the equality of the cure proportions in the control and
treatment groups.

5 Final comments

Long time survival data appears in various areas, particularly in scenarios where indi-
viduals are subject to the recurrence of an event of interest. The proposed MSS model
with long time survivors allows for two time scales (interval time and total time), the
event counts, and covariates while keeping flexibility to accommodate a cure fraction.
The model provides various particular cases which can be tested straightforwardly.
Parameter estimates are obtained using a sampling-based approach, which allows for
information to be input beforehand with lower computational effort. The results of a
simulation study showed the effectiveness of the parameter estimation approach even
for small and moderate sized samples even in the presence of censoring.

Although the specific parametric forms for q1(·), q2(·), and q3(·) in (6) are ana-
lytically convenient and are appealing because they can be interpreted, they are not
critical for the overall approach. Alternative forms should be considered in order to
study possible model misspecification. Specifying MSS models with a nonpropor-
tional regression structure may have a physical appeal. For instance, we could con-
sider an accelerated failure time model (Cox and Oakes 1984). This would, however,
add extra difficulties to the analysis and requires further work.
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Appendix A: The conditional posteriors for the model parameters are given
below

π(φ|γ,ψ,α,β,D)

∝ φaφ−1e−bφφ

{
n∑

i=1

mi∑
j=1

[
log(1 + φ) −

(
1 + φtij + φ

γ

γ + 1
xij

)
x

γ

ij
ψj−1eαT zi

]}
,

π(γ |φ,ψ,α,β,D) ∝ γ aγ −1 exp

{
−bγ γ +

n∑
i=1

mi∑
j=1

[
logγ + (γ − 1) logxij

−
(

1 + φtij −1 + φ
γ

γ + 1
xij

)
x

γ

ij
ψj−1eαT zi

]}
,

π(ψ |φ,γ,α,β,D) ∝ ψaψ−1 exp

{
−bψψ +

n∑
i=1

mi∑
j=1

[
(j − 1) logψ

−
(

1 + φti,j−1 + φ
γ

γ + 1
xij

)
x

γ

ij
ψj−1eαT zi

]}
,
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π(αk|φ,γ,ψ,α−k,β,D)

∝ exp

{
− 1

2σ 2
αk

(αk − μαk
)2 +

n∑
i=1

mi∑
j=1

[
βT zi −

(
1 + φtij −1

+ φ
γ

γ + 1
xij

)
x

γ

ij
ψj−1eαT zi

]}
, and

π(βk|φ,γ,ψ,α,β−k,D)

∝ exp

{
− 1

2σ 2
βk

(βk − μβk
)2

+
n∑

i=1

mi∑
j=1

[
βT zi −

(
1 + φtij −1 + φ

γ

γ + 1
xij

)
x

γ

ij
ψj−1eαT zi

]}
,

where a and b, indexed by the parameters, are the shape parameters and the scale
parameters of the Gamma density of prior distributions of φ,γ , and ψ ; μβk

and
σβk

are, respectively, the prior means and standard deviation of each βk ; and β−k =
(β0, . . . , βk−1, βk+1, . . . , βk), that is, the parameter vector β without the kth compo-
nent.

Appendix B: Plots of the chain histories and empirical marginal posterior
densities for the mammary tumor data set

Fig. 1 History of the chains
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Fig. 2 Approximated posterior marginal densities
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