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Abstract The goal of this paper is to describe the quality of different two-sample
bootstrap and permutation tests for comparing variances. It is thereby inter alia shown
that studentized resampling versions of the classical F-ratio test are asymptotically
effective in a general nonparametric setting. This means that there is asymptotic no
loss of power under contiguous alternatives. Moreover it is indicated that these tests
are asymptotically consistent for fixed alternatives.

Keywords Heterogeneous null distributions · Permutation tests · Bootstrap tests ·
Power · Studentized statistics · Two-sample tests
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1 Introduction and motivation

Unlike their bootstrap counterparts, two-sample permutation tests have the advan-
tage that they are of exact level α for the null hypothesis of exchangeability, see,
e.g., Lehmann and Romano (2005). However, some authors avoid their usage even
for comparing means or variances, see, e.g., Hayes (1997, 2000). This is caused by
the fact that the typical nonstudentized permutation tests are of asymptotic level α

only for homogeneous or special heterogeneous null hypotheses, see Romano (1990),
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Boos et al. (1989), Sakaori (2002), and Theorem 2 below. For a wide class of hetero-
geneous null distributions, Janssen (1997, 2005) has shown how to solve this problem
in the case of comparing means by using a studentized version of the test statistic. In
this paper we discuss the behavior of different bootstrap and permutation tests for
comparing variances. Following the programme of Janssen and Pauly (2009), our
main goal is to construct consistent and asymptotically effective tests with respect
to a robust modification of Fisher’s classical F-ratio test. Motivated by an article of
Boos et al. (1989), it will turn out that this can be achieved by studentizing modified
bootstrap and permutation versions of the F-ratio test.

1.1 The model and formulation of the problem

Consider the situation of Fisher’s classical F-ratio test for comparing variances of
two independent and normally distributed random samples. The model is given by
the joint distribution

L(X1, . . . ,Xn1, Y1, . . . , Yn2) = N
(
μ1, σ

2
1

)n1 ⊗ N
(
μ2, σ

2
2

)n2 , (1)

where μi and σ 2
i are unknown for i = 1,2, and n1, n2 ≥ 2. Here X1, . . . ,Xn1 indicate

the random variables of the first sample, and Y1, . . . , Yn2 the random variables of the
second one. They are all defined on a probability space (Ω, A,P ) that runs in the
background.

In the case that we are interested in testing one-sided hypotheses

H0 : {σ 2
1 ≤ σ 2

2

}
versus H1 : {σ 2

1 > σ 2
2

}
, (2)

the optimal level α test is well known, see, for example, Lehmann and Romano
(2005). It is given by ϕn = 1(Fn1−1,n2−1:α,∞)(Fn), where Fn1−1,n2−1:α is the (1 − α)-
quantile of the Fn1−1,n2−1 distribution, and the test statistic is just the ratio of the
empirical variances of the two groups, i.e.,

Fn = Fn(X,Y ) :=
1

n1−1

∑n1
i=1(Xi − Xn1)

2

1
n2−1

∑n2
i=1(Yi − Yn2)

2
=: σ̂ 2

n1
(X)

σ̂ 2
n2

(Y )
. (3)

The problem of this test is that its optimality relies on the underlying normal distrib-
ution and does in general not hold in a semi- or nonparametric setting. This is caused
by a high sensitivity against deviations from the kurtosis of the normal distribution. In
nonparametric settings (like (4) below) it can scilicet be shown that the test ϕn is only
of asymptotic level α if the kurtoses of both sample distributions are equal to 3 (the
kurtosis of the normal distribution), see, e.g., Boos and Brownie (1989). Therefore it
is convenient to carry out the test as a resampling (i.e., bootstrap or permutation) test.
In this paper we investigate the quality of (studentized) resampling versions of the
test ϕn in a general two-sample model. Thereby, the quality of the resampling tests
is discussed in terms of the asymptotic effectiveness criterion introduced by Janssen
and Pauly (2009), see (6) below. Our model is now given by the product distributions

L(X1, . . . ,Xn1 , Y1, . . . , Yn2) = G
n1
1 ⊗ G

n2
2 , (4)
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where G1 and G2 are unknown distribution functions with finite fourth moments. Let
E(X1) = μ1,E(Y1) = μ2, σ 2

1 := Var(X1), σ 2
2 := Var(Y1), and ρ4

1 := E((X1 −μ1)
4),

ρ4
2 := E((Y1 − μ2)

4) denote the means, variances, and centered fourth moments of
the two groups. To avoid trivialities it is throughout assumed that the variances are
positive.

It is worth mentioning that the extended Behrens–Fisher model, which has been
considered by Boos and Brownie (1989), Boos et al. (1989), and Janssen (1997), is
also included. It is given by

Xi = μ1 + σ1Zi for 1 ≤ i ≤ n1,

Yj = μ2 + σ2Zn1+j for 1 ≤ j ≤ n2,

(5)

where Z1, . . . ,Zn, n := n1 + n2, are i.i.d. random variables with E(Z1) = 0,
Var(Z1) = 1, and E(Z4

1) < ∞.
As mentioned above, our aim is to find asymptotic effective bootstrap and permu-

tation tests with respect to a robust modification of the F -ratio test. In our model (4)
we call a sequence of tests ψ∗

n asymptotically effective (with respect to a benchmark
test ψn) if, for σ 2

1 = σ 2
2 ,

E
(|ψn − ψ∗

n |) → 0 (6)

as n → ∞. What are the main advantages of this approach? To answer this question,
suppose that the benchmark ψn is asymptotically exact for (4), i.e., for σ 2

1 = σ 2
2 ,

E(ψn) → α as n → ∞. In this case (6) implicates that ψ∗
n is also asymptotically

exact and reaches the power of the benchmark test asymptotically for contiguous
alternatives. Hence we only have to compute this power for ψn, which is often easier.
Especially under local asymptotic normality, the behavior of contiguous alternatives
is well known, see, e.g., Van der Vaart (1998, Chaps. 6 and 7) for more details. For
further investigations about asymptotic effectiveness, we refer to Janssen and Pauly
(2009).

In the following Sect. 2 we will first construct a studentized version ϕn,stud of the
F-ratio test that is asymptotically exact for σ 2

1 = σ 2
2 in the model (4). This test will

serve as our benchmark test. Since ϕn,stud performs poorly for small sample sizes
(see Sect. 4), we will discuss the asymptotic effectiveness of different bootstrap and
permutation versions with respect to ϕn,stud in a next step. In this context Boos et al.
(1989, Example (I)) have pointed out that the classical bootstrap and permutation
procedures can in general not be applied for general nonparametric models like (4).
This is caused by a wrong limit distribution of the resampling version of the test
statistic. However, the problem can be solved by modifying the resampling procedure
in the following way:

1. On the one hand, we do not resample (with or without replacement) from the
pooled sample X1, . . . ,Xn1 , Y1, . . . , Yn2 but rather from the centered pooled sam-
ple X1 − Xn1 , . . . ,Xn1 − Xn1 , Y1 − Yn2 , . . . , Yn2 − Yn2 .

2. On the other hand, we use a studentized version of the test statistic.

We will see that both modifications are needed to construct valid resampling tests.
Thereby the first modification effects the conditional convergence in distribution of
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the permuted test statistic to a normal distribution under the whole model (4). Since
this limit distribution has in general a wrong variance, we correct it with the help of an
appropriate studentization Vn, see Sect. 2 for the definition of Vn. The two resulting
(asymptotic effective) resampling tests are then given by

ϕ∗
n,stud =

{
1
0

if T̃n :=
(

n1n2

n

)1/2

· log(Fn)1{V 2
n >0}

Vn

>

≤c∗
n,stud(α),

where we set T̃n = 0 if the numerator is 0. Here n = n1 + n2 holds, and c∗
n,stud(α)

denotes the conditional (1 − α)-quantile of the modified bootstrap or permutation
distribution of T̃n, see Sect. 2 below. All proofs are presented in Sect. 3. Remark
that the corresponding two-sided problem H̃0 = {σ 2

1 = σ 2
2 } versus {σ 2

1 �= σ 2
2 } can be

treated in an analogous manner by analyzing the behavior of the sum of two one-sided
tests of level α/2.

The above-mentioned first modification (resampling the centered pooled sample
instead of the pooled sample) goes back to Boos et al. (1989). The second modifica-
tion (using a studentized version of the test statistic for variance correction) has first
been used by Neuhaus (1993) for permutation tests in the context of random censor-
ing problems. As mentioned above, it has also been applied by Janssen (1997) for
comparing means in the extended Behrens–Fisher model.

The problem of constructing distribution-free and asymptotically correct tests for
comparing variances has already been discussed by several authors. Especially the ar-
ticles of Boos and Brownie (1989) and Boos et al. (1989) can be seen as a motivation
for the current paper. Boos and Brownie (1989) discuss the construction of boot-
strap tests for equality of variances in the extended Behrens–Fisher model (5) (even
for k-sample problems, k ≥ 2). Boos et al. (1989) have, amongst others, analyzed
the asymptotic bootstrap and permutation distribution of the transformed F-ratio test
statistic

√
n1n2/n log(Fn) to construct asymptotically correct bootstrap and permu-

tation tests ϕbs
n and ϕ

per
n for H0 in the model (5). These tests will be analyzed in more

detail in the following sections. The related problem of testing equality of covari-
ance matrices via resampling methods has, for example, been studied by Zhang and
Boos (1993) and Zhu et al. (2002). For more detailed discussions about procedures
for comparing variances and covariances, we refer to the survey article of Boos and
Brownie (2004) and the references therein.

In addition to the mathematical justification, the literature contains a lot of sim-
ulation studies that suggest the usage of bootstrap and permutation procedures. For
example, the articles of Boos et al. (1989), Boos and Brownie (2004), Janssen (1997),
Janssen and Pauls (2003b), the monographs of Manly (1997), Good (2005), and Edg-
ington and Onghena (2007), and the references therein contain numerical justification
for different situations. In addition, you can find a simulation study at the end of the
paper that compares the performance of ϕn,stud, the studentized bootstrap and permu-
tation tests ϕ∗

n,stud, and the tests ϕbs
n and ϕ

per
n proposed by Boos et al. (1989). It will

turn out that the studentized resampling tests are more competitive than the others.
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2 The studentized F-ratio test and its resampling versions

As mentioned above, the classical F-ratio test ϕn is in general not asymptotically ex-
act for the model (4). To avoid this hitch (and to find an adequate benchmark test),
we will first construct a studentized version of ϕn that is distribution free and asymp-
totically exact. In doing so, we first have to analyze the asymptotic distribution of Fn.
Since the limit law of Fn is degenerate, we have to transform it first. This is done by
a logarithmic transformation. The result is stated in the following proposition. There
and throughout this paper, we will assume that the asymptotic ratios of the first and
second groups limn→∞ n1/n =: p and q := 1 − p exist with p ∈ (0,1).

Proposition 1 Let an := ( n1·n2
n

)1/2 and suppose that (4) holds with σ 2
1 = σ 2

2 . In this
case we have the convergence in distribution, as n → ∞,

Tn := an log(Fn)
D−→Z with P Z = N

(
0, qβ

(1)
2 + pβ

(2)
2 − 1

)
, (7)

where β
(i)
2 := ρ4

i /σ 4
i , i = 1,2, denote the kurtoses of the two groups.

Since the limit variance ξ2
q,p := qβ

(1)
2 + pβ

(2)
2 − 1 is in general not known, we need

a consistent estimator for it. We will see that Vn given by

V 2
n := Ṽ 2

n

(a2
n(

1
n1

σ̂ 2
n1

+ 1
n2

σ̂ 2
n2

))2
(8)

is a good choice. Here Ṽ 2
n is defined as

Ṽ 2
n := a2

n

(
1

n1
ρ̂4

1 + 1

n2
ρ̂4

2

)
−

(
a2
n

(
1

n1
σ̂ 2

n1
+ 1

n2
σ̂ 2

n2

))2

, (9)

where ρ̂4
1 := 1

n1

∑n1
i=1(Xi −Xn1)

4 and ρ̂4
2 := 1

n2

∑n2
i=1(Yi −Yn2)

4 are consistent esti-

mators for the centered fourth moments ρ4
1 and ρ4

2 , respectively. Our desired bench-
mark test for H0 is now given by

ϕn,stud := 1(u1−α,∞)

(
Tn

Vn

1{V 2
n >0}

)
, (10)

where u1−α denotes the (1−α)-quantile of the standard normal distribution. Its prop-
erties are summarized in the following proposition.

Proposition 2 Suppose that the conditions of Proposition 1 are fulfilled and that we
have ξ2

q,p > 0. Then we have the convergences

Tn,stud := an

log(Fn)

Vn

1{V 2
n >0}

D−→Z̃ with P Z̃ = N(0,1) (11)

and E(ϕn,stud) → α as n → ∞, i.e., ϕn,stud is asymptotically exact.
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In addition, we have that ϕn,stud is consistent, i.e., E(ϕn,stud) → 1{σ 2
1 >σ 2

2 } for un-

equal variances σ 2
1 �= σ 2

2 .

Remark that the condition ξ2
q,p > 0 is needed to get a nondegenerate limit distribu-

tion. It is fulfilled iff at least one of the kurtoses β
(1)
2 and β

(2)
2 is greater than zero.

In the next step we will analyze bootstrap and permutation versions of ϕn.
Since Boos et al. (1989) have already found asymptotically exact resampling tests
for the extended Behrens–Fisher model (5), we start with the behavior of their
tests in our model (4). Therefore we denote the centered pooled sample by Z :=
(Zn,1, . . . ,Zn,n) := (X1 −Xn1 , . . . ,Xn1 −Xn1 , Y1 −Yn2 , . . . , Yn2 −Yn2) and assume
that τ : (Ω̃, Ã, P̃ ) → Sn is a uniformly distributed random variable on the symmetric
group Sn (the set of all permutations of (1, . . . , n)). For constructing a permutation
test, we have to assume that τ and X1, . . . ,Xn1 , Y1, . . . , Yn2 are independent ran-
dom variables on the joint probability space (Ω × Ω̃, A ⊗ Ã,P ⊗ P̃ ). Boos et al.’s
permutation version of the F-ratio test ϕn is now given by

ϕ
per
n =

⎧
⎨

⎩

1
γn

0
for Tn

>

=
<

c
per
n (α), (12)

where c
per
n (α) = c

per
n (α,ω) is the (1 − α)-quantile of the conditional permuta-

tion distribution L(Tn((Zn,τ(i))i≤n)|Z)(ω, ·). Remark that permuting the centered
pooled sample has the disadvantage that the permutation test looses the exactness
for the smaller null hypothesis of exchangeability. It will turn out that the ran-
domization γn does not play an important role in our (asymptotic) investigations.
Hence we can set γn = 0. In contrast to ϕ

per
n , their bootstrap version of ϕn is

given by ϕbs
n = 1(cbs

n (α),∞)(Tn), where now cbs
n (α) is the (1 − α)-quantile of the

conditional bootstrap distribution L(Tn((Z
∗
n,i)i≤n)|Z)(ω, ·). Here the bootstrap ar-

ray Z∗
n,1, . . . ,Z

∗
n,n is rowwise i.i.d. (given Z) with conditional distribution function

H(x|Z) := 1
n

∑n
i=1 1(−∞,x](Zn,i). The limit behavior of the conditional bootstrap

and permutation distributions given the data is discussed in the following theorem.
Here d denotes a distance for probability measures on the real line M1(R, B) that
metrizes weak convergence, e.g., the Levy distance. As usual, we denote by L(T |X)

the conditional distribution of T given X.

Theorem 1 Under the conditions of Proposition 1, we have the following conditional
weak convergences in P -probability as n → ∞:

d
(

L
(
Tn

(
(Z∗

n,i)i≤n

)|Z)
,N

(
0, ξ2

p,q

)) P−→ 0, (13)

d
(

L
(
Tn

(
(Zn,τ(i))i≤n

)|Z)
,N

(
0, ξ2

p,q

)) P−→ 0, (14)

where the limit variance is given by ξ2
p,q := pβ

(1)
2 + qβ

(2)
2 − 1.
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Remark 1

1. In the classical case (resampling from the pooled sample) the convergences (13)
and (14) hold for μ1 = μ2, see the proof of Theorem 1 below and the example
for (5) in Boos et al. (1989).

2. Suppose that (4) holds. Then the above theorem shows that the resampling tests
ϕ

per
n and ϕbs

n are in general not even of asymptotic level α and therefore neither ap-
plicable nor asymptotically effective. The only exceptions are the cases of (asymp-
totically) equal sample sizes p = q = 1/2 or equal kurtoses β

(1)
2 = β

(2)
2 (which is

fulfilled under (5)), see Boos et al. (1989) for further discussions.
3. The proof of (13) and (14) (under more restrictive moment conditions) has already

been shown in Boos et al. (1989).

The crux of the above problem is that the resampling procedure interchanges p

and q in the limit variance. To overcome this hitch we have chosen V 2
n , see (8), in

good foresight in such a way that its resampling version also interchanges p and q

in the limit. The corresponding studentized bootstrap and permutation tests are now
given by

ϕbs
n,stud =

{
1
0

if Tn,stud = Tn

Vn

1{V 2
n >0}

>

≤cbs
n,stud(α) (15)

and ϕ
per
n,stud := 1(c

per
n,stud(α),∞)(Tn,stud). Here cbs

n,stud(α) and c
per
n,stud(α) denote the (1−α)-

quantiles of the conditional bootstrap and permutation distributions of Tn,stud given
the data.

Theorem 2 Under the conditions of Proposition 2, we have the following conditional
weak convergences in P -probability as n → ∞:

d
(

L
(
Tn,stud

(
(Z∗

n,i)i≤n

)|Z)
,N(0,1)

) P−→ 0, (16)

d
(

L(Tn,stud((Zn,τ(i))i≤n)|Z),N(0,1)
) P−→ 0. (17)

Moreover the studentized resampling tests ϕbs
n,stud and ϕ

per
n,stud are asymptotically ef-

fective with respect to ϕn,stud.

The next theorem describes the behavior of the power functions under fixed and local
alternatives.

Theorem 3 Suppose that our model (4) holds. Then the studentized resampling tests
ϕbs

n,stud and ϕ
per
n,stud are consistent for unequal variances σ 2

1 �= σ 2
2 .

Furthermore, for cn > −an, cn → c ∈ R, and local alternatives σ 2
1 =√

1 + cn/anσ
2
2 , the limit of the power functions of ϕn,stud and ϕ

per
n,stud is given by

limn→∞ E(ϕn,stud) = limn→∞ E(ϕ
per
n,stud) = Φ(c/ξq,p − u1−α).



170 M. Pauly

3 The proofs

It will turn out that the following lemma is quite helpful for the proofs of the above
theorems. As in the above sections, we will again assume that n1/n → p = 1 −
q ∈ (0,1) as n → ∞ and that τ is a uniformly distributed random variable on the
symmetric group Sn.

Lemma 1 Let Xn,1, . . . ,Xn,n be a triangular array of real-valued random variables
that is independent from τ . Denote its rowwise mean by Xn. If the convergences in
probability

max
1≤i≤n

|Xn,i |√
n

P−→0 and
1

n

n∑

i=1

(Xn,i − Xn)
2 P−→σ̂ 2 (18)

hold as n → ∞, then we have the conditional convergence

d

(

L
(

1√
n1

n1∑

i=1

(Xn,τ(i) − Xn)|Xn,1, . . . ,Xn,n

)

,N
(
0, qσ̂ 2)

)
P−→0. (19)

Proof We want to apply Theorem 2.1 of Janssen (2005) for the weights Wn,i :=
cn,τ(i),1 ≤ i ≤ n, where cn,i := √

n/(n1n2)1{1,...,n1}(i),1 ≤ i ≤ n. Therefore we
have to check whether our weights fulfill the conditions of his theorem. Because

of Wn = cn =
√

n1
nn2

, we obtain

max
i≤n

∣∣Wn,i − Wn

∣∣ = max

{

cn,

√
n1n

n2

(
1

n1
− 1

n

)}

→ 0

as n → ∞. In addition, we have the convergence
∑n

i=1(Wn,i − Wn)
2 = n2c

2
n +

n1
n2
nn1

→ p + q = 1 as n → ∞. Hence it remains to show that

√
n(Wn,1 − Wn)

D−→ 1√
pq

1A −
√

p

q
,

where A ∈ Ã is a set with P̃ (A) = p. This can be obtained by Slutzky’s Lemma and
the convergences P̃ (

√
nWn,1 = 0) = n2

n
→ q and P̃ (

√
nWn,1 = n√

n1n2
) = n1

n
→ p.

Applying Theorem 2.1 of Janssen (2005) yields

d

(

L
(√

n

n2n1

n1∑

i=1

(
Xn,τ(i) − Xn

)|Xn,1, . . . ,Xn,n

)

,N
(
0, σ̂ 2)

)
P−→0 (20)

as n → ∞. This implies (19). �

Remark, that in the case p ∈ {0,1}, a similar version of Lemma 1 can be proven
by applying the methods of Del Barrio et al. (2009).
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Proposition 1 follows from results in Boos et al. (1989, Proposition on p. 331).
However, since we want to apply some of the following proof steps in other situations
(see Remark 2 and the proof of Theorem 1 below), we prove the result in a different
way.

Proof of Proposition 1. By the shift and scale invariance of Fn we can assume with-
out loss of generality that μ1 = μ2 = 0 and σ 2

1 = σ 2
2 = 1.

The Taylor expansion of the logarithm shows that

Tn = an

(
log

(
σ̂ 2

n1
(X)

) − log
(
σ̂ 2

n2
(Y )

))

= an

(
σ̂ 2

n1
(X) − σ̂ 2

n2
(Y ) + R2

(
σ̂ 2

n1
(X)

) − R2
(
σ̂ 2

n2
(Y )

))

= an

(
σ̂ 2

n1
(X) − σ̂ 2

n2
(Y )

) + oP (1), (21)

where the remainder R2 fulfills R2(x)
x−1 → 0 as x → 1. To accept the last equality,

remark that Example 3.2 of Van der Vaart (1998), Slutzky’s Lemma, and the SLLN
together imply the convergence in probability

an · R2
(
σ̂ 2

n1
(X)

) =
√

n2

n
· √n1

(
σ̂ 2

n1
(X) − σ 2

1

) · R2(σ̂
2
n1

(X))

(σ̂ 2
n1

(X) − σ 2
1 )

P−→0. (22)

The same holds for the other remainder anR2(σ̂
2
n2

(Y )). Thus the convergence (7) can
be obtained by applying Example 3.2 of Van der Vaart (1998) to (21). �

Proof of Proposition 2. Since V 2
n is a consistent estimator of ξ2

q,p , the conver-
gence (11) follows from Proposition 1 and Slutzky’s Lemma. Moreover this impli-
cates the asymptotic exactness of ϕn,stud. Hence it remains to investigate the behavior
of Tn,stud for fixed variances σ 2

1 �= σ 2
2 . For the denominator, we get the almost sure

convergence

V 2
n −→ qρ4

1 + pρ4
2 − (qσ 2

1 + pσ 2
2 )2

(qσ 2
1 + pσ 2

2 )2
=: ς2

as n → ∞. Since Fn → σ 2
1 /σ 2

2 a.s. and ς > 0, we also have the almost sure conver-
gence

an

log(Fn)

Vn

−→ +∞ · 1{σ 2
1 >σ 2

2 } − ∞ · 1{σ 2
1 <σ 2

2 } (23)

as n → ∞. This shows the consistency of ϕn,stud. �

Proof of Theorem 1. Convergence (13) follows from Theorem 1 and Remark 3 in
Boos et al. (1989). We now prove (14).

Remark first that we can again assume without loss of generality that μ1 = μ2 = 0
and σ 2

1 = σ 2
2 = 1. This is caused by the definition of Zn,i,1 ≤ i ≤ n, and the shift and

scale invariance of Fn. We now set Z
(τ)
n := (Zn,τ(i))i≤n, Z

(τ)
n1 := (Zn,τ(i))i≤n1 and



172 M. Pauly

Z
(τ)
n2 := (Zn,τ(i))n1+1≤i≤n and show foremost that the permuted test statistic Tn(Z

(τ)
n )

fulfills a decomposition as in (21). Therefore consider the equation

√
n1

(
n1 − 1

n1
σ̂ 2

n1

(
Z(τ)

n1

) − 1

)

= √
n1

(
1

n1

n1∑

i=1

Z2
n,τ(i) − 1

n

n∑

j=1

Z2
n,j

)

+ √
n1

(
1

n

n∑

j=1

Z2
n,j − 1

)

− √
n1

(
1

n1

n1∑

j=1

Zn,τ(j)

)2

=: An + Bn − Cn.

We start with the treatment of the first remainder An. Since the fourth moments
exist in both groups, the pooled sample fulfills the Lindeberg condition. This, together
with the WLLN, implies that the array (Z2

n,i)i≤n fulfills conditions (18) of Lemma 1

with σ̂ 2 := pρ4
1 + qρ4

2 − 1.
Thus Lemma 1 shows that

d

(

L
(

1√
n1

n1∑

i=1

(

Z2
n,τ(i) − 1

n

n∑

j=1

Z2
n,j

)∣∣∣∣Z
2
n,1, . . . ,Z

2
n,n

)

,N
(
0, qσ̂ 2)

)
P−→0. (24)

Since An only depends on the squared random variables, the convergence in (24) will
also hold if we condition with respect to Zn,1, . . . ,Zn,n. We can now investigate the
behavior of the second remainder Bn. Straightforward calculations and the WLLN
show that it fulfills

Bn = n1

n

(
1√
n1

n1∑

i=1

(
X2

i − 1
)
)

+ n2

n

(
1√
n2

n2∑

Y=1

(
Y 2

j − 1
)
)

+ oP (1).

Here the first two summands each converge in distribution to a normally distributed
random variable. Hence it remains to investigate the asymptotic behavior of the last
remainder Cn. Here Lemma 1 can be applied to implicate that the conditional distrib-
ution of 1√

n1

∑n1
j=1 Zn,τ(j) converges weakly to a normal distribution (in probability).

Thus Slutzky’s Lemma yields Cn = o
P⊗P̃

(1). Altogether, this shows that

anR2
(
σ̂ 2

n1

)(
Z(τ)

n1

) =
√

n2

n

√
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(
σ̂ 2

n1

(
Z(τ)
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) − 1
) R2(σ̂

2
n1

)(Z
(τ)
n1 )

(σ̂ 2
n1

(Z
(τ)
n1 ) − 1)

P⊗P̃−→ 0.

Thus by Slutzky’s Lemma we get a decomposition of the permutation version of the
test statistic as in (21):

Tn

(
Z(τ)

n

) = an

(
σ̂ 2

n1

(
Z(τ)

n1

) − σ̂ 2
n2

(
Z(τ)

n2

)) + o
P⊗P̃

(1)

= an

(
1

n1

n1∑

i=1

Z2
n,τ(i) − 1

n2

n∑

i=n1+1

Z2
n,τ(i)

)

+ o
P⊗P̃

(1).
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We can now rewrite the last line with the help of the regression coefficients of
the two-sample problem en,i := an(n

−1
1 1{1,...,n1}(i) − n−1

2 1{n1+1,...,n}(i)). More pre-
cisely, we have an log(Fn(Zn,τ(i))i≤n) = ∑n

i=1 en,iZ
2
n,τ(i) +o

P⊗P̃
(1). As in the proof

of Lemma 1, we can now apply Theorem 2.1 of Janssen (2005) for the weights
Wn,i := en,τ(i), 1 ≤ i ≤ n. Together with Slutzky’s Lemma, this deduces the con-
clusion (14). �

Remark 2 In the case L(X1) = L(Y1) the proof can be simplified by applying
Lemma 2 of Janssen and Pauly (2009) directly to (21).

Proof of Theorem 2 By construction of the random array Zn,i , without loss of gen-
erality, we can again assume that μ1 = μ2 = 0. We start with the proof of (17). By
Theorem 1 we only need to show that, for σ 2

1 = σ 2
2 ,

V 2
n

(
Z(τ)

n

) P⊗P̃−→ pβ
(1)
2 + qβ

(2)
2 − 1 (25)

as n → ∞. Therefore consider the decomposition

Ṽ 2
n

(
Z(τ)

n

) = n2

n
ρ̂4

1

(
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n1

) + n1

n
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2

(
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) −
(
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n
σ̂ 2

n1

(
Z(τ)

n1

) + n1

n
σ̂ 2

n2

(
Z(τ)

n2

))2

. (26)

We start with the treatment of the first two summands. In the proof of Theorem 1 we
have already seen that 1

n1

∑n1
j=1 Zn,τ(j) → 0 in P ⊗ P̃ -probability as n → ∞. Thus

one can suspect that

ρ̂4
1

(
Z(τ)

n1

) = 1

n1

n1∑

i=1

Z4
n,τ(i) + o

P⊗P̃
(1).

This can indeed be proven by the same arguments that are used in the follow-
ing to analyze the limit behavior of 1

n1

∑n1
i=1 Z4

n,τ(i). Hence we can rewrite the

first two summands of (26) as
∑n

i=1 dn,iZ
4
n,τ(i) + o

P⊗P̃
(1). Here we have used

the same regression coefficients as Janssen (1997), dn,i := n2/(n1n)1{1,...,n1}(i) +
n1/(n2n)1{n1+1,...,n}(i)). Since ndn := ∑n

i=1 dn,i = 1, we obtain the almost sure con-
vergence

E

(
n∑

i=1

dn,iZ
4
n,τ(i)|Z

)

=
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n

1
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1
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Z4
n,k

)

−→ pρ4
1 + qρ4

2 (27)

as n → ∞. Suppose for the moment that the eighth moments E(X8
1) + E(Y 8

1 ) < ∞
are finite in both groups. Then the convergence

∑n
i=1(dn,i − dn)

2 → 0 as n → ∞,
the WLLN, and Theorem 3 in the monograph of Hájek et al. (1999, p. 61f) together
imply the almost sure convergence

Var

(
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i=1

dn,iZ
4
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=
n∑
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(dn,k − dn)
2 1
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Z4
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→ 0
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as n → ∞. This yields the convergence in P ⊗ P̃ -probability

n∑

i=1

dn,iZ
4
n,τ(i)

P⊗P̃−→ pρ4
1 + qρ4

2 (28)

as n → ∞. Since our model (4) does not postulate the finiteness of eight moments, we
must consider the trimmed random variables X

(1)
i,k := Zn,i1[−k,k](Zn,i) and X

(2)
i,k :=

Zn,i − X
(1)
i,k for 1 ≤ i ≤ n and k ∈ N. Set Xn1+i := Yi for 1 ≤ i ≤ n2. Since |Xn1 | +

|Yn2 | → 0 a.s., the inequalities 1[−k+ε,k−ε](Xi) ≤ 1[−k,k](Zn,i) ≤ 1[−k−ε,k+ε](Xi)

hold for every ε > 0 on sets An with P(An) → 1. Thus arithmetics similar to the one
used for getting (28) imply, for fixed k ∈ N and n → ∞ (since μ1 = μ2 = 0),

n∑

i=1

dn,i

(
X

(1)
τ (i),k

)4 P⊗P̃−→ ρ4
k := pE

(
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(
Y 4
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)
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Moreover we have, as k → ∞,
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Thus an application of the Markov inequality, together with Theorem 4.2. of Billings-
ley (1968), shows that
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Because of σ̂ 2
n1

((Zn,i)i) = n1
n1−1 ( 1
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n,i), the P ⊗ P̃ -convergence of
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((Zn,τ(i))i≤n) + n1
n

σ̂ 2
n2

((Zn,τ(i))i≤n) to pσ 2
1 + qσ 2

2 = σ 2
1 = σ 2

2 can be obtained
in the same manner, see Janssen (1997) for the special case of the extended Behrens–
Fisher model. This shows (25) and thus (17) by Slutzky’s Lemma. The asymptotic
effectiveness of ϕ

per
n,stud now follows by applying Lemma 1 of Janssen and Pauls

(2003a), see also Janssen and Pauly (2009, Lemma 1).
For proving the result (16), remark that (26) and (27) can be obtained for the

bootstrap versions in the same way. Only the calculation of the conditional variance
differs a little bit from the permutation case. Here we have
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Since we have again
∑n

k=1 d 2
n,k → 0 as n → ∞, the remaining proof steps can be

established as above. �

Proof of Theorem 3. Suppose first that the variances σ 2
1 �= σ 2

2 are fixed. In this
case the proof of Theorem 2 above shows the following convergences in P ⊗ P̃ -
probability:

V 2
n

(
(Zn,τ(i))i≤n

) P⊗P̃−→ pρ4
1 + qρ4

2 − (pσ 2
1 + qσ 2

2 )2

(pσ 2
1 + qσ 2

2 )2
=: ς̃2

and

log
(
Fn

(
(Zn,τ(i))i≤n

)) P⊗P̃−→ log

(
pσ 2

1 + qσ 2
2

pσ 2
1 + qσ 2

2

)
= log(1) = 0

as n → ∞. Since the same holds for the bootstrap versions, the consistency of ϕbs
n,stud

and ϕ
per
n,stud follows from (23).

We now consider the local alternatives σ 2
1 = σ 2

1,n = √
1 + c/an · σ 2

2 . By simi-
lar arithmetics (involving the Lindeberg–Feller Theorem) to the one used for the
proof of Proposition 1, we get that Tn − an log(σ 2

1 /σ 2
2 ) possesses the representa-

tion (21). Together with the fact that an log(σ 2
1 /σ 2

2 ) → c, we get the convergence

in distribution Tn
D−→Z + c ∼ N(c, ξ2

q,p) as n → ∞. Since 1 + c/an → 1, the

limit of V 2
n remains unchanged. Hence we have the convergence in distribution

Tn,stud
D−→Z̃ + c ∼ N(c/ξq,p,1), which shows that E(ϕn,stud) → Φ(c/ξq,p − u1−α).

Since Lemma 1 and Theorem 2.1 in Janssen (2005) can be applied for triangular ar-
rays, we can go through the proof of Theorems 1 and 2 in the current setting to see
that the convergence (17) remains unchanged. This completes the proof. �

4 Simulation study

In this section we carried out a simulation study in order to compare the five different
approaches: the unconditional benchmark test ϕn,stud, the permutation and bootstrap
F-ratio tests ϕ

per
n and ϕbs

n of Boos et al. (1989), and their studentized versions ϕ
per
n,stud

and ϕbs
n,stud. Our hypotheses of interest were H0 : {σ 2

1 ≤ σ 2
2 } versus H1 : {σ 2

1 > σ 2
2 }.

Comparisons were made with respect to type I error probabilities both for homoge-
neous and heterogeneous situations under various sample size assumptions. We also
show a small power comparison, see Table 3. For the type I error control under the
boundary {σ 2

1 = σ 2
2 }, we utilized some common standardized distributions, namely,

the normal (μi = 0, σ 2
i = 1), logistic (μi = 0, σ 2

i = 1), double-exponential with den-
sity f (x) = 1

2 exp(−|x|) (μi = 0, σ 2
i = 1), and exponential (σ 2

i = 1) distributions. As
nominal level, we have taken α = 0.05. All entries of the tables are based on M = 104

Monte Carlo trials with B = 103 resampling replications. The results are presented
below.
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Table 1 Type I error control
comparison between the
benchmark and resampling tests
in case of equal distributions

n1 n2 ϕn,stud ϕ
per
n ϕbs

n ϕ
per
n,stud ϕbs

n,stud

Normal 4 8 0.2190 0.0481 0.0481 0.0504 0.0538

Logistic 0.2361 0.0559 0.0604 0.0521 0.0574

Double-exp. 0.2546 0.0698 0.0769 0.0576 0.0646

Exponential 0.2509 0.1044 0.0963 0.0735 0.0696

Normal 8 16 0.1345 0.0533 0.0547 0.0521 0.0437

Logistic 0.1371 0.0528 0.0574 0.0489 0.0410

Double-exp. 0.1481 0.0589 0.0655 0.0539 0.0454

Exponential 0.1726 0.0887 0.0843 0.0662 0.0619

Normal 16 16 0.0901 0.0475 0.0486 0.0474 0.0437

Logistic 0.1041 0.0550 0.0558 0.0538 0.0471

Double-exp. 0.1052 0.0529 0.0544 0.0517 0.0438

Exponential 0.1240 0.0764 0.0715 0.0612 0.0525

Table 1 illustrates the Monte Carlo estimates of the true level in case of equal
distributions, where the rowwise best value occurs in bold numbers. In this sit-
uation the unstudentized resampling tests ϕ

per
n and ϕbs

n are of asymptotic level
α, see Theorem 1 and Remark 1 above. As mentioned in the introduction, one
of the first eye-catching observations is that our benchmark test ϕn,stud performs
poorly for small sample sizes. Although the error probability converges to the
correct direction with increasing sample sizes, the test is not even applicable for
n1 = n2 = 16.

As expected, all resampling tests behave better than the benchmark. Moreover,
in almost all situations the studentized tests ϕbs

n,stud and ϕ
per
n,stud have a much better

control of the type I error probability than their unstudentized counterparts. The only
exception is the normal case with equal sample sizes n1 = n2 = 16, where the unstu-
dentized tests seem to be slightly better. Especially in all exponential cases and the
nonnormal cases with unequal sample sizes, the studentized resampling tests perform
much better than their unstudentized counterparts. The studentized resampling tests
differ slightly in their behavior. Except for the exponential case, the permutation test
ϕ

per
n seems to be better for small sample sizes (n1 = 4, n2 = 8 or n1 = 8, n2 = 16).

In all other cases the studentized bootstrap test has a better control of the type I error
probability.

In contrast to Table 1, Table 2 provides a situation where the unstudentized re-
sampling tests do not have the correct asymptotic level α. This is caused by unequal
sample sizes and the different kurtoses of the normal (β2 = 3), the logistic (β2 = 4.2),
the double-exponential (β2 = 6), and the exponential distributions (β2 = 9), see John-
son and Kotz (1970). The simulations fit to our theoretical investigations since the
studentized bootstrap and permutation tests are again better than their unstudentized
counterparts.

Moreover the benchmark test performs even inferior to the above case. It seems
to be that the performance gets worse with increasing differences of the group kur-
toses. This could be explained by a reduced convergence speed of the centered fourth
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Table 2 Type I error control
comparison between the
benchmark and resampling tests
in case of unequal distributions
and sample sizes

n1 n2 ϕn,stud ϕ
per
n ϕbs

n ϕ
per
n,stud ϕbs

n,stud

Norm. vs. Logis. 4 8 0.2406 0.0595 0.0617 0.0574 0.0629

Norm. vs. Dexp. 0.2719 0.0806 0.0845 0.0722 0.0781

Norm vs. Exp. 0.3086 0.1125 0.1200 0.0942 0.1023

Logis. vs. Dexp. 0.2639 0.0747 0.0804 0.0663 0.0725

Norm. vs. Logis. 8 16 0.1567 0.0676 0.0716 0.0640 0.0565

Norm. vs. Dexp. 0.1883 0.0851 0.0891 0.0855 0.0756

Norm vs. Exp. 0.2226 0.1169 0.1224 0.1123 0.0997

Logis. vs. Dexp. 0.1655 0.0729 0.0785 0.0701 0.0591

Table 3 Power comparison
between the studentized
bootstrap and permutation tests
ϕbs
n,stud and ϕ

per
n,stud

σ1 σ2 Norm. Norm. Norm. Norm. Logis.

Norm. Logis. Dexp. Exp. Dexp.

n1 = 4, n2 = 8

Bootstrap 1.2 1 0.0870 0.1025 0.1236 0.1548 0.1121

Permutation 0.0792 0.0935 0.1101 0.1400 0.1020

Bootstrap 1.5 0.1541 0.1750 0.1863 0.2251 0.1804

Permutation 0.1329 0.1519 0.1683 0.2039 0.1612

Bootstrap 2 0.2725 0.2966 0.3045 0.3448 0.4866

Permutation 0.2303 0.2527 0.2672 0.3055 0.4308

n1 = 8, n2 = 16

Bootstrap 1.2 1 0.1122 0.1359 0.1537 0.1924 0.1234

Permutation 0.1304 0.1545 0.1703 0.2132 0.1424

Bootstrap 1.5 0.2788 0.2894 0.3153 0.3411 0.2639

Permutation 0.3118 0.3177 0.3450 0.3694 0.2924

Bootstrap 2 0.5677 0.5596 0.5632 0.5761 0.5004

Permutation 0.6085 0.5993 0.5980 0.6064 0.5402

moment estimators in heterogeneous situations. The same can be observed for the
studentized resampling tests. Again ϕ

per
n,stud has a better control for small sample

sizes than ϕbs
n,stud and ϕbs

n,stud performs better for slightly larger sample sizes n1 = 8,
n2 = 16. However, the values are not acceptable for situations with larger kurtoses
differences (Norm vs. Exp. and Norm vs. Dexp.). Here larger sample sizes are needed
for a better type I error control.

The above observations also explain the power behavior of the two studentized
resampling tests presented in Table 3. Since ϕbs

n,stud seems to be more liberal than

ϕ
per
n,stud, for small sample sizes n1 = 4, n2 = 8, it has higher power in this case. For

slightly larger sample sizes n1 = 8, n2 = 16, the situation is again the other way
around.
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5 Conclusions

Based on our theoretical and simulation results, it is clear that the studentized boot-
strap and permutation tests both fit the bill of a completely nonparametric test. On
the one hand, both tests are consistent and of asymptotic level α for general hetero-
geneous models like (4). This remains unchanged even for unbalanced designs. On
the other hand, both tests possess a good type I error control for small sample sizes
(especially in contrast to the competing tests ϕn,stud, ϕ

per
n , and ϕbs

n ). In spite of these
excellent properties, it should be clear that other tests (like the classical F-ratio test)
perform better if we were in a parametric (e.g., normal) setting.
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