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Abstract We provide a review on the empirical likelihood method for regression-
type inference problems. The regression models considered in this review include
parametric, semiparametric, and nonparametric models. Both missing data and cen-
sored data are accommodated.

Keywords Censored data · Empirical likelihood · Missing data · Nonparametric
regression · Parametric regression · Semiparametric regression · Wilks’ theorem

Mathematics Subject Classification (2000) 62-02 · 62E20 · 62F03 · 62G08 ·
62G10 · 62J02 · 62N01

1 Introduction

It has been twenty years since Art Owen published his seminal paper (Owen 1988)
that introduces the notion of empirical likelihood (EL). Since then, there has been
a rich body of literature on the novel idea of formulating versions of nonparametric
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likelihood in various settings of statistical inference. There have been two major re-
views on the empirical likelihood. The first review was given by Hall and La Scala
(1990) in the early years of the EL method, which summarized some key properties
of the method. The second one was the book by the inventor of the methodology
(Owen 2001), which provided a comprehensive overview up to that time.

The body of empirical likelihood literature is increasing rapidly, and it would be a
daunting task to review the entire field in one review paper like this one. We therefore
decided to concentrate our review on regression due to its prominence in statistical in-
ference. The regression models considered in this review cover parametric, nonpara-
metric, and semiparametric regression models. In addition to the case of completely
observed data, we also accommodate missing and censored data in this review.

The EL method (Owen 1988, 1990) owns its broad usage and fast research devel-
opment to a number of important advantages. Generally speaking, it combines the re-
liability of nonparametric methods with the effectiveness of the likelihood approach.
It yields confidence regions that respect the boundaries of the support of the target pa-
rameter. The regions are invariant under transformations and behave often better than
confidence regions based on asymptotic normality when the sample size is small.
Moreover, they are of natural shape and orientation since the regions are obtained by
contouring a log likelihood ratio, and they often do not require the estimation of the
variance, as the studentization is carried out internally via the optimization procedure.
The EL method turns out appealing not only in getting confidence regions, but it also
has its unique attractions in parameter estimation and formulating goodness-of-fit
tests.

2 Parametric regression

Suppose that we observe a sample of independent observations {(XT
i , Yi)

T }ni=1,
where each Yi is regarded as the response of a d-dimensional design (covariate) vari-
able Xi . The preliminary interest here is in the conditional mean function (regression
function) of Yi given Xi . One distinguishes between the design Xi being either fixed
or random. Despite regression is conventionally associated with fixed designs, for
ease of presentation, we will concentrate on random designs. The empirical likeli-
hood analysis for fixed designs can be usually extended by regularizing the random
designs.

Consider first the following parametric regression model:

Yi = m(Xi;β) + εi for i = 1, . . . , n, (1)

where m(x;β) is the known regression function with an unknown p-dimensional
(p < n) parameter β ∈ Rp , and the errors εi are independent random variables such
that E(εi |Xi) = 0 and Var(εi |Xi) = σ 2(Xi) for some function σ(·). Hence, the errors
can be heteroscedastic. We require, like in all empirical likelihood formulations, that
the errors εi have finite conditional variance, which is a minimum condition needed
by the empirical likelihood method to ensure a limiting chi-square distribution for the
empirical likelihood ratio.
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The parametric regression function includes as special cases (i) the linear regres-
sion with m(x;β) = xT β; (ii) the generalized linear model (McCullagh and Nelder,
1983) with m(x;β) = G(xT β) and σ 2(x) = σ 2

0 V {G(xT β)} for a known link func-
tion G, a known variance function V (·), and an unknown constant σ 2

0 > 0. Note that
for these two special cases, p = d .

In the absence of model information on the conditional variance, the least squares
(LS) regression estimator of β is obtained by minimizing the sum of least squares

Sn(β) =:
n∑

i=1

{
Yi − m(Xi;β)

}2
.

The LS estimator of β is β̂ls = arg infβ Sn(β). When the regression function m(x;β)

is smooth enough with respect to β , β̂ls will be a solution of the following estimating
equation:

n∑

i=1

∂m(Xi;β)

∂β

{
Yi − m(Xi;β)

} = 0. (2)

Suppose that β0 is the true parameter value such that it is the unique value to make
E[ ∂m(Xi ;β)

∂β
{Yi − m(Xi;β)}|Xi] = 0. Let p1, . . . , pn be a set of probability weights

allocated to the data. The empirical likelihood (EL) for β , in the spirit of Owen (1988
1991), is

Ln(β) = max
n∏

i=1

pi, (3)

where the maximization is subject to the constraints

n∑

i=1

pi = 1 and (4)

n∑

i=1

pi

∂m(Xi;β)

∂β

{
Yi − m(Xi;β)

} = 0. (5)

The empirical likelihood, as conveyed by (3), is essentially a constrained profile like-
lihood, with a trivial constraint (4) indicating the pi ’s are probability weights. The
constraint (5) is the most important one as it defines the nature of the parameters.
This formulation is similar to the original one given in Owen (1988, 1990) for the
mean parameter, say μ, of Xi . There the second constraint, reflecting the nature of μ,
was given by

∑n
i=1 pi(Xi − μ) = 0.

In getting the empirical likelihood at each candidate parameter value β , the above
optimization problem as given in (3), (4), and (5) has to be solved for the optimal
pi ’s. It may be surprising in first instance that the above optimization problem can
admit a solution as there are n pi ’s to be determined with only p + 1 constraints. As
the objective function Ln(β) is concave, and the constraints are linear in the pi ’s, the
optimization problem does admit unique solutions.
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The algorithm for computing Ln(β) at a candidate β is as follows. If the con-
vex hull of the set of points (depending on β) { ∂m(Xi ;β)

∂β
{Yi − m(Xi;β)}}ni=1 in Rp

contains the origin (zero) in Rp , then the EL optimization problem for Ln(β) ad-
mits a solution. If the zero of Rp is not contained in the convex hull of the points
for the given β , then Ln(β) does not admit a finite solution as some weights pi are
forced to take negative values; see Owen (1988, 1990) for a discussion on this aspect.
Tsao (2004) studied the probability of the EL not admitting a finite solution and the
dependence of this probability on dimensionality.

By introducing the Lagrange multipliers λ0 ∈ R and λ1 ∈ Rp , the constrained op-
timization problem (3)–(5) can be translated into an unconstrained one with objective
function

T (p, λ0, λ1) =
n∑

i=1

log(pi) + λ0

(
n∑

i=1

pi − 1

)

+ λT
1

n∑

i=1

pi

∂m(Xi;β)

∂β

{
Yi − m(Xi;β)

}
, (6)

where p = (p1, . . . , pn)
T . Differentiating T (p, λ0, λ1) with respect to each pi and

setting the derivative to zero, it can be shown after some algebra that λ0 = −n, and
by defining λ = −nλ1, we find that the optimal pi ’s are given by

pi = 1

n

1

1 + λT ∂m(Xi ;β)
∂β

{Yi − m(Xi;β)} ,

where, from the structural constraint (5), λ satisfies

n∑

i=1

∂m(Xi ;β)
∂β

{Yi − m(Xi;β)}
1 + λT ∂m(Xi ;β)

∂β
{Yi − m(Xi;β)} = 0. (7)

Substituting the optimal weights into the empirical likelihood in (3), we get

Ln(β) =
n∏

i=1

1

n

1

1 + λT ∂m(Xi ;β)
∂β

{Yi − m(Xi;β)} ,

and the log empirical likelihood is

�n(β) =: log
{
Ln(β)

}

= −
n∑

i=1

log

{
1 + λT ∂m(Xi;β)

∂β

{
Yi − m(Xi;β)

}} − n log(n). (8)

The computing intensive nature of the empirical likelihood is clear from the above
discussions. Indeed, to evaluate the EL at a β , one needs to solve the nonlinear equa-
tion (7) for the λ which depends on β . An alternative computational approach, as
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given in Owen (1990), is to translate the optimization problem (3)–(5) with respect
to the EL weights {pi}ni=1 to its dual problem with respect to λ.

The dual problem to (3)–(5) involves minimizing the objective function

Q(λ) =: −
n∑

i=1

log

{
1 + λT ∂m(Xi;β)

∂β

{
Yi − m(Xi;β)

}}
,

which is the first term in the empirical likelihood ratio in (8), subject to

1 + λT ∂m(Xi;β)

∂β

{
Yi − m(Xi;β)

} ≥ 1/n for each i = 1, . . . , n. (9)

The constraint (9) comes from 0 ≤ pi ≤ 1 for each i, whereas the gradient of Q(λ) is
the function on the left-hand side of (7). Let

D =
{
λ : 1 + λT ∂m(Xi;β)

∂β

{
Yi − m(Xi;β)

} ≥ 1/n for each i = 1, . . . , n

}
.

Then, the dual problem becomes the problem of minimizing Q(λ) over the set D.
It can be verified that D is convex, closed, and compact. Hence, there is a unique
minimum within D. As suggested in Owen (1990), the set D can be removed by
modifying the log(x) function in Q(λ) by a log∗(x) such that log∗(x) = log(x) for
x ≥ 1/n and log∗(x) = −n2x2/2 + 2nx − 3/2 − log(n) for x < 1/n, which is the
quadratic function that matches log(x) and its first two derivatives at x = 1/n.

We note that the profile likelihood
∏n

i=1 pi achieves its maximum n−n when all
the weights pi equal n−1 for i = 1, . . . , n. Thus, if there exists a β , say β̂ , which
solves (7) with λ = 0, namely

n∑

i=1

∂m(Xi;β)

∂β

{
Yi − m(Xi;β)

} = 0, (10)

then the EL attains its maximum Ln(β̂) = n−n at β̂ . In the parametric regression we
are considering, the number of parameters and the number of equations in (10) are
the same. Hence, (10) has a solution β̂ with probability approaching one in large
samples. There are inference situations where the number of estimating equations is
larger than the number of parameters (strictly speaking, dimension of the parameter
space), for instance, the Generalized Method of Moments in econometrics (Hansen
1982). Here, more model information is accounted for by imposing more moment
restrictions, leading to more estimating equations than the number of parameters in
the model. In statistics, they appear in the form of extra model information. In these
so-called over-identified situations, the maximum EL, still using the notation Ln(β̂),
may be different from n−n. See Qin and Lawless (1994) for a discussion on this issue.

Following the convention of the standard parametric likelihood, we can define
from (8) the log EL ratio

rn(β) = −2 log
{
Ln(β)/Ln(β̂)

} = 2
n∑

i=1

log

{
1 + λT ∂m(Xi;β)

∂β

(
Yi − m(Xi;β)

)}
.

(11)
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Wilks’ theorem (Wilks 1938) is a key property of the parametric likelihood ratio. If
we replace the EL Ln(β) by the corresponding parametric likelihood, say Lpn(β),
and use rpn(β) to denote the parametric likelihood ratio, according to Wilks’ theo-
rem, under certain regularity conditions,

rpn(β0)
d→ χ2

p as n → ∞. (12)

This property is maintained by the EL, as is demonstrated in Owen (1990) for the
mean parameter, Owen (1991) for linear regression, and many other situations (Qin
and Lawless 1994; Molanes-López et al. 2009). In the context of parametric regres-
sion,

rn(β0)
d→ χ2

p as n → ∞. (13)

This can be viewed as a nonparametric version of Wilks’ theorem, and it is quite
remarkable for the empirical likelihood to achieve such a property under a nonpara-
metric setting with much less parametric distributional assumptions. We call this ana-
logue of sharing the Wilks’ theorem the first-order analogue between the parametric
and the empirical likelihood.

To appreciate why the nonparametric version of Wilks’ theorem is valid, we would
like to present a few steps of derivation that offer some insights into the nonparametric
likelihood. Typically, the first step in a study on EL is considering an expansion for
λ defined in (7) at β0, the true value of β , and determining its order of magnitude. It
can be shown that for the current parametric regression,

λ = Op

(
n−1/2). (14)

Such a rate for λ is obtained in the original papers of Owen (1988, 1990) for the mean
parameter (which can be treated as a trivial case of regression without covariates), in
Owen (1991) for linear regression, and in Qin and Lawless (1994) and Molanes-
López et al. (2009) for the more general case of estimating equations.

With (14), (7) can be inverted (see DiCiccio et al. 1989, for more details). To sim-
plify the notation, define Zni = ∂m(Xi ;β0)

∂β0
{Yi − m(Xi;β0)}. Then, (7) can be inverted

as

n−1
n∑

i=1

Zni

(
1 − λT Zni

) + n−1
n∑

i=1

Zni

λT ZniZ
T
niλ

1 + λT Zni

= 0.

The last term on the left-hand side (LHS) is Op(n−1), which is negligible relative to
the first term on the LHS. Therefore,

λ = S−1
n n−1

n∑

i=1

Zni + op

(
n−1/2),

where Sn = n−1 ∑n
i=1 ZniZ

T
ni . Applying a Taylor expansion of log(·) around 1 and

substituting this one-term expansion into the EL ratio rn(β0) in (11), we have for
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some γi between 1 and 1 + λT Zni (i = 1, . . . , n),

rn(β0) = 2
n∑

i=1

log
(
1 + λT Zni

)

= 2
n∑

i=1

{
λT Zni − 1

2

(
λT Zni

)2 + 1

3

(λT Zni)
3

(1 + γi)3

}

= 2λT
n∑

i=1

Zni − λT
n∑

i=1

ZniZ
T
niλ + Op

(
n−1/2)

=
(

n−1
n∑

i=1

Zni

)T

S−1
n

(
n−1

n∑

i=1

Zni

)
+ op(1), (15)

which leads to Wilks’ theorem as Sn
p→ Σ(β0) =: E{ZniZ

T
ni} and

n−1/2
n∑

i=1

Zni
d→ N

(
0,Σ(β0)

)
as n → ∞.

As commonly practiced in parametric likelihood, the above nonparametric version
of Wilks’ theorem can be used to construct likelihood ratio confidence regions for β0.
An EL confidence region with a nominal level of confidence 1 − α is

I1−α = {
β : rn(β) ≤ χ2

p,1−α

}
,

where χ2
p,1−α is the (1 − α)-quantile of the χ2

p distribution. Wilks’ theorem in (13)
ensures that

P {β0 ∈ I1−α} → 1 − α as n → ∞.

This construction mirrors the conventional likelihood ratio confidence regions except
that the EL ratio is employed here instead of the parametric likelihood ratio.

Note that (15) also shows that the EL method is (first-order) asymptotically equiv-
alent to the normal approximation method. However, the normal method requires the
estimation of the variance Σ(β0), whereas the EL method does not require any ex-
plicit variance estimation. This is because the studentization is carried out internally
via the optimization procedure.

In addition to the first-order analogue between the parametric and the empiri-
cal likelihood, there is a second-order analogue between them in the form of the
Bartlett correction. Bartlett correction is an elegant second-order property of the para-
metric likelihood ratios, which was conjectured and proposed in Bartlett (1937). It
was formally established and studied in a series of papers including Lawley (1956),
Hayakawa (1977), Barndorff-Nielsen and Cox (1984), and Barndorff-Nielsen and
Hall (1988).

Let wi = Σ(β0)
−1/2Zni = (w1

i , . . . ,w
p
i )T and for jl ∈ {1, . . . , p}, l = 1, . . . , k,

define α j1···jk = E(w
j1
i · · ·wjk

i ) for a kth multivariate cross moments of wi . By as-
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suming the existence of higher-order moments of Zni , it may be shown via devel-
oping Edgeworth expansions that the distribution of the empirical likelihood ratio
admits the following expansion:

P
{
rn(β0) ≤ χ2

p,1−α

} = 1 − α − a χ2
p,1−αgp

(
χ2

p,1−α

)
n−1 + O

(
n−3/2), (16)

where gp is the density of the χ2
p distribution, and

a = p−1

(
1

2

p∑

j,m=1

αjjmm − 1

3

p∑

j,k,m=1

αjkmαjkm

)
. (17)

This means that for the parametric regression, both parametric and empirical like-
lihood ratio confidence regions I1−α have coverage error of order n−1. Part of the
coverage error is due to the fact that the mean of rn(β0) does not agree with p, the
mean of χ2

p , that is, E{rn(β0)} �= p, but rather

E
{
rn(β0)

} = p
(
1 + an−1) + O

(
n−2),

where a has been given above.
The idea of the Bartlett correction is to adjust the EL ratio rn(β0) to r∗

n(β0) =
rn(β0)/(1 + an−1) so that E{r∗

n(β0)} = p + O(n−2). And amazingly this simple
adjustment to the mean leads to improvement in (16) by one order of magnitude
(DiCiccio et al. 1991; Chen 1993; and Chen and Cui 2007) so that

P
{
r∗
n(β0) ≤ χ2

p,1−α

} = 1 − α + O
(
n−2). (18)

3 Nonparametric regression

Consider in this section the nonparametric regression model

Yi = m(Xi) + εi, (19)

where the regression function m(x) = E(Yi |Xi = x) is nonparametric, and Xi is d-
dimensional. We assume that the regression can be heteroscedastic in that σ 2(x) =
Var(Yi |Xi = x), the conditional variance of Yi given Xi = x, may depend on x.

The kernel smoothing method is a popular method for estimating m(x) non-
parametrically. See Härdle (1990) and Fan and Gijbels (1996) for comprehensive
overviews. Other nonparametric methods for estimating m(x) include splines, or-
thogonal series, and wavelets methods. The simplest kernel regression estimator for
m(x) is the following Nadaraya–Watson estimator:

m̂(x) =
∑n

i=1 Kh(x − Xi)Yi∑n
i=1 Kh(x − Xi)

, (20)
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where Kh(t) = K(t/h)/hd , K is a d-dimensional kernel function, and h is a band-
width. The above kernel estimator can be obtained by minimizing the following lo-
cally weighted sum of least squares:

n∑

i=1

Kh(x − Xi)
{
Yi − m(x)

}2

with respect to m(x). It is effectively the solution of the following estimating equa-
tion:

n∑

i=1

Kh(x − Xi)
{
Yi − m(x)

} = 0. (21)

Under the nonparametric regression model, the unknown “parameter” is the re-
gression function m(x) itself. The empirical likelihood for m(x) at a fixed x can be
formulated in a fashion similar to the parametric regression setting considered in the
previous section. Alternatively, since the empirical likelihood is being applied to the
weighted average

∑n
i=1 Kh(x − Xi)m(x), it is also similar to the EL of a mean.

Let p1, . . . , pn be probability weights adding to one. The empirical likelihood
evaluated at θ(x), a candidate value of m(x), is

Ln

{
θ(x)

} = max
n∏

i=1

pi, (22)

where the maximization is subject to
∑n

i=1 pi = 1 and

n∑

i=1

piKh(x − Xi)
{
Yi − θ(x)

} = 0. (23)

By comparing this formulation of the EL with that for the parametric regression,
we see that the two formulations are largely similar except that (23) is used as the
structural constraint instead of (5). This comparison does highlight the role played by
the structural constraint in the EL formulation. Indeed, different structural constraints
give rise to EL for different “parameters” (quantity of interest), just like different den-
sities give rise to different parametric likelihoods. In general, the empirical likelihood
is formulated based on the parameters of interest via the structural constraints, and
the parametric likelihood is fully based on a parametric model.

The algorithm for solving the above optimization problem (22)–(23) is similar
to the EL algorithm for the parametric regression given under (4) and (5), except
that it may be viewed easier as the “parameter” is one-dimensional if we ignore the
issue of bandwidth selection for nonparametric regression. By introducing Lagrange
multipliers like we did in (6) in the previous section, we have that the optimal EL
weights for the above optimization problem at θ(x) are given by

pi = 1

n

1

1 + λ(x)Kh(x − Xi){Yi − θ(x)} ,
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where λ(x) is a univariate Lagrange multiplier that satisfies

n∑

i=1

Kh(x − Xi){Yi − θ(x)}
1 + λ(x)Kh(x − Xi){Yi − θ(x)} = 0. (24)

Substituting the optimal weights into the empirical likelihood in (22), the empirical
likelihood evaluated at θ(x) is

Ln

{
θ(x)

} =
n∏

i=1

1

n

1

1 + λ(x)Kh(x − Xi){Yi − θ(x)} ,

and the log empirical likelihood is

�n

{
θ(x)

} =: log
{
Ln

{
θ(x)

}}

= −
n∑

i=1

log
[
1 + λ(x)Kh(x − Xi)

{
Yi − θ(x)

}] − n log(n). (25)

The overall EL is maximized at pi = n−1, which corresponds to θ(x) being the
Nadaraya–Watson estimator m̂(x) in (20). Hence, we can define the log EL ratio
at θ(x) as

rn
{
θ(x)

} = −2 log
[
Ln

{
θ(x)

}
/n−n

]

= 2
n∑

i=1

log
[
1 + λ(x)Kh(x − Xi)

{
Yi − θ(x)

}]
. (26)

The above EL is not actually for m(x), the true underlying function value at x,
but rather for E{m̂(x)}. This can be actually detected by the form of the structural
constraint (23). It is well known in kernel estimation that m̂(x) is not an unbiased
estimator of m(x), as is the case for almost all nonparametric estimators. For the
Nadaraya–Watson estimator,

E
{
m̂(x)

} = m(x) + b(x) + o
(
h2),

where b(x) = 1
2h2{m′′(x) + 2m′(x)f ′(x)/f (x)} is the leading bias of the kernel es-

timator, and f is the density of Xi . Then, the EL is actually evaluated at a θ(x),
that is a candidate value of m(x) + b(x) instead of m(x). There are two strategies to
reduce the effect of the bias (Hall 1991). One is to undersmooth with a bandwidth
h = o(n−1/(4+d)), the optimal order of bandwidth that minimizes the mean squared
error of estimation with a second-order kernel (d is the dimension of X). Another
is to explicitly estimate the bias and then to subtract it from the kernel estimate. We
consider the first approach of undersmoothing here for reasons of simplicity.

When undersmoothing so that n2/(4+d)h2 → 0, Wilks’ theorem is valid for the EL
under the current nonparametric regression in that

rn
{
m(x)

} d→ χ2
1 as n → ∞.



A review on empirical likelihood methods for regression 425

This means that an empirical likelihood confidence interval with nominal coverage
equal to 1 − α, denoted as I1−α,el , is given by

I1−α,el = {
θ(x) : rn

{
θ(x)

} ≤ χ2
1,1−α

}
. (27)

A special feature of the empirical likelihood confidence interval is that no explicit
variance estimator is required in its construction as the studentization is carried out
internally via the optimization procedure.

Define ωi = Kh(x − Xi){Yi − m(x)} and, for positive integers j ,

ω̄j = n−1
n∑

i=1

ω
j
i , μj = E(ω̄j ) and Rj (K) =

∫
Kj(u)du.

We note here that the bias in the kernel smoothing makes μ1 = O(h2), while in the
parametric regression case μ1 = 0.

It is shown in Chen and Qin (2003) that the coverage probability of I1−α,el admits
the following Edgeworth expansion:

P
{
m(x) ∈ I1−α,el

}

= 1 − α −
{
nhdμ2

1μ
−1
2 +

(
1

2
μ−2

2 μ4 − 1

3
μ−3

2 μ2
3

)(
nhd

)−1
}
z1− α

2
φ(z1− α

2
)

+ O
{
nhd+6 + h4 + (

nhd
)−1

h2 + (
nhd

)−2}
, (28)

where φ and z1− α
2

are the density and the (1 − α
2 )-quantile of a standard normal

random variable.
The above expansion is nonstandard in that the leading coverage error consists

of two terms. The first term, nhdμ1μ
−1
2 , of order nhd+4 is due to the bias in the

kernel smoothing. The second term of order (nhd)−1 is largely similar to the leading
coverage error for parametric regression in (16). We note that in the second term, the
effective sample size in the nonparametric estimation near x is nhd instead of n, the
effective sample size in the parametric regression.

The next question is if the Bartlett correction is still valid under the nonparametric
regression. The answer is yes. It may be shown that

E
[
rn

{
m(x)

}] = 1 + (
nhd

)−1
γ + o

{
nhd+4 + (

nhd
)−1}

,

where

γ = μ−1
2

(
nhdμ1

)2 + 1

2
μ−2

2 μ4 − 1

3
μ−3

2 μ2
3. (29)

Note that γ appears in the leading coverage error term in (28). Based on (28) and

choosing h = O(n− 1
d+2 ), we have, with cα = χ2

1,1−α ,

P
[
rn

{
m(x)

} ≤ cα

{
1 + γ

(
nhd

)−1}]

= P
[
χ2

1 ≤ cα

{
1 + γ

(
nhd

)−1}]
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− (
nhd

)−1
γ c1/2

α

{
1 + γ

(
nhd

)−1}1/2
φ
[
c−1/2
α

{
1 + γ

(
nhd

)−1}1/2}]

+ O
{(

nhd
)−2}

= P
(
χ2

1 ≤ cα

) + (
nhd

)−1
γ z1− α

2
φ(z1− α

2
) − (

nhd
)−1

γ z1− α
2
φ(z1− α

2
)

+ O
{(

nhd
)−2}

= 1 − α + O
(
n− 4

d+2
)
. (30)

Therefore, the empirical likelihood is Bartlett correctable in the current context of
nonparametric regression. In practice, the Bartlett factor γ has to be estimated, say by
a consistent γ̂ . Chen and Qin (2003) gave more details on practical implementation;
see also Chen (1996) for an implementation in the case of density estimation.

4 Semiparametric regression

We next consider the empirical likelihood method in the context of semiparametric
regression.

4.1 Partial linear regression model

Let us first consider the partial linear model, defined as follows:

Yi = βT Xi + g(Zi) + εi for i = 1, . . . , n, (31)

where the response Yi and the explanatory variable Zi are one-dimensional, β and Xi

are p-dimensional (p ≥ 1), and g(·) is a continuous but unknown nuisance function.
It is assumed that the error εi satisfies E(εi |Xi,Zi) = 0 and Var(εi |Xi,Zi) = σ 2.

Our goal is to construct confidence regions or test hypotheses concerning the vec-
tor β0 of true regression coefficients. For this, we first need to estimate the unknown
function g. Define for fixed β ,

ĝβ(z) =
n∑

i=1

Kh(z − Zi)∑n
j=1 Kh(z − Zj )

(
Yi − βT Xi

)
,

where Kh(u) = K(u/h)/h, h = hn is a smoothing parameter, and K is a (one-
dimensional) kernel function (probability density function). Instead of the above local
constant estimator, we could also use, e.g., local polynomial estimators. The idea is
now to mimic the empirical likelihood method developed for parametric regression,
but considering Y − ĝβ(Z) as the new (artificial) response. This leads to the following
likelihood ratio function:

Rn(β) = max
n∏

i=1

(npi),
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where the maximum is taken over all n-tuples (p1, . . . , pn) that satisfy

pi ≥ 0 (i = 1, . . . , n),

n∑

i=1

pi = 1,

n∑

i=1

pi

{
Xi + ∂ĝβ(Zi)

∂β

}(
Yi − βT Xi − ĝβ(Zi)

) = 0.

Note that the latter constraint is equivalent to

n∑

i=1

piX̃i

(
Ỹi − βT X̃i

) = 0,

where

X̃i = Xi −
n∑

j=1

Kh(Zi − Zj )∑n
k=1 Kh(Zi − Zk)

Xj and Ỹi = Yi −
n∑

j=1

Kh(Zi − Zj )∑n
k=1 Kh(Zi − Zk)

Yj

are estimators of Xi − E(X|Z = Zi) and Yi − E(Y |Z = Zi), respectively. Wang
and Jing (2003) showed that under certain regularity conditions, the following result
holds:

rn(β0) = −2 logRn(β0)
d→ χ2

p.

This result shows that asymptotically, the estimation of the unknown function g has
no influence on the asymptotic limit, as we get exactly the same limit as in the para-
metric case, i.e., as in the case where the function g would be known. This result is
important, as it shows that we can obtain empirical likelihood confidence regions for
β0 without estimating any variance.

When the interest lies in testing the validity of the whole partial linear model by
means of an EL approach (instead of testing only the value of the parameter vector
β0), one can use the method developed by Chen and Van Keilegom (2009) and Van
Keilegom et al. (2008). In the former paper the authors developed a general smooth-
ing based EL approach to test the validity of any semiparametric model, whereas the
latter paper considers the same testing problem, but by using an EL approach based
on marked empirical processes, which is quite different in nature from the former
approach. See also Sect. 7 for more details.

4.2 Single-index regression model

Let us now consider the case of single-index models. Suppose that the relation be-
tween the (one-dimensional) response Yi and the p-dimensional vector Xi of ex-
planatory variables is given by

Yi = g
(
βT Xi

) + εi, (32)

where g is an unknown but smooth nuisance function, and the error εi satisfies
E(εi |Xi) = 0 and Var(εi |Xi) = σ 2. Let β0 be the true parameter vector. In order
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to identify the model, we suppose that ‖β‖ = 1, where ‖ · ‖ denotes the Euclid-
ean norm. For any β = (β1, . . . , βp)T satisfying ‖β‖ = 1 and any 1 ≤ r ≤ p, let
β(r) = (β1, . . . , βr−1, βr+1, . . . , βp)T , and supposing that βr > 0, we can write β =
(β1, . . . , βr−1, (1 − ‖β(r)‖2)1/2, βr+1, . . . , βp)T . Now, let Jβ(r) be the p × (p − 1)

Jacobian matrix given by

Jβ(r) = ∂β

∂β(r)
= (γ1, . . . , γp)T

with γs (s �= r) the unit vector with sth component equal to one, and γr = −(1 −
‖β(r)‖2)−1/2β(r). Now, it can be easily seen that E[ξi(β

(r)
0 )] = 0 (i = 1, . . . , n),

where

ξi

(
β(r)

) = [
Yi − g

(
βT Xi

)]
g′(βT Xi

)
J T

β(r)Xi.

Hence, it seems natural to use the ξi(β
(r))’s as building blocks of the empirical like-

lihood ratio. However, since they depend on the unknown functions g and g′, we first
replace them by suitable estimators. Let

ĝ(t;β) =
n∑

i=1

Wni(t;β,h)Yi∑n
j=1 Wnj (t;β,h)

,

ĝ′(t;β) =
n∑

i=1

W̃ni(t;β,h)Yi∑n
j=1 Wnj (t;β,h)

be local linear estimators of g(t) and g′(t), where Wni(t;β,h) = Kh(β
T Xi − t) ×

[Sn2(t;β,h) − (βT Xi − t)Sn1(t;β,h)], W̃ni(t;β,h) = Kh(β
T Xi − t)[(βT Xi − t) ×

Sn0(t;β,h) − Sn1(t;β,h)], and Snk(t;β,h) = n−1 ∑n
i=1(β

T Xi − t)kKh(β
T Xi − t)

(k = 0,1,2). We are now ready to define the empirical likelihood ratio. Define

Rn(β
(r)) = max

n∏

i=1

(npi),

where the maximum is taken over all (p1, . . . , pn) that satisfy

pi ≥ 0 (i = 1, . . . , n),

n∑

i=1

pi = 1,

n∑

i=1

pi ξ̂i

(
β(r)

) = 0,

where

ξ̂i

(
β(r)

) = [
Yi − ĝ

(
βT Xi;β

)]
ĝ′(βT Xi;β

)
J T

β(r)Xi.

Then, Xue and Zhu (2006) showed that under suitable regularity conditions,

−2 logRn

(
β

(r)
0

) d→ w1χ
2
1,1 + · · · + wp−1χ

2
1,p−1

for certain weights w1, . . . ,wp−1, where χ2
1,1, . . . , χ

2
1,p−1 are independent χ2

1 vari-
ables. Hence, Wilks’ theorem is not valid here. Since the weights are unknown, they
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need to be replaced by suitable estimators, before we can apply the above limit to
construct confidence regions for the vector β

(r)
0 .

In order to circumvent this problem, one can also redefine the empirical likelihood
in the following way. Instead of working with the ξ̂i (β

(r))’s, we build the empirical
likelihood with the following adjusted quantities:

η̂i

(
β(r)

) = [
Yi − ĝ

(
βT Xi;β

)]
ĝ′(βT Xi;β

)
J T

β(r)

[
Xi − Ê

(
Xi |βT Xi

)]
,

where

Ê
(
Xi |βT Xi = t

) =
n∑

i=1

Wni(t;β,h)Xi∑n
j=1 Wnj (t;β,h)

.

Now, let R̃n(β
(r)) be the EL ratio obtained by replacing the ξ̂i ’s by η̂i ’s. Then, Zhu

and Xue (2006) showed that Wilks’ theorem holds, i.e.,

−2 log R̃n

(
β

(r)
0

) d→ χ2
p−1.

They also showed a similar result in the case where the model is a so-called partially
linear single-index model, i.e., where the regression function is the sum of a linear
component and a single-index component.

As for the partial linear model, the validity of the single-index model can be tested
by using the tests developed by Chen and Van Keilegom (2009) and Van Keilegom et
al. (2008). The above asymptotic results can also be obtained from Hjort et al. (2009),
who developed generic conditions for the asymptotic theory of any EL ratio, built up
using estimating equations depending on plug-in estimators of unknown nuisance
parameters (see also Sect. 6.3).

5 Regression with missing values

Often in statistical applications, the data collected for a regression analysis, say
{(XT

1 , Y1), . . . , (X
T
n ,Yn)}T , contain missing values. The missing values can be either

in the responses Yi or in the covariates Xi . However, we do not allow any component
of Yi or Xi to be always missing, namely we rule out the case where some compo-
nents of the data are completely latent.

We start with the easier case of missing responses, and then we discuss the missing
covariates.

5.1 Missing responses

Assume the parametric regression model (1), given by Yi = m(Xi;β) + εi , where Yi

is one-dimensional, Xi is d-dimensional, and β is p-dimensional, and assume that
the data (XT

i , Yi)
T (i = 1, . . . , n) are i.i.d. Due to nonresponse or other reasons in the

data collection, Yi is subject to missingness. Here we assume that all Xi ’s are always
observed.
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Let δi be the missing indicator of Yi such that δi = 0 (1) for missing (observed)
Yi . The data we observe can be expressed as

{
(Xi, Yiδi)

}n

i=1.

The Strongly Ignorable Missing at Random mechanism (MAR) (Rubin 1976, and
Rosenbaum and Rubin 1983) is an important notion in missing data analysis. In the
case of missing responses, MAR means that the missingness of Yi is predictable by
the observable covariate Xi so that conditioning on the covariate Xi , the missingness
of Yi is independent of Yi itself. Put in mathematical terms,

P(δi = 1|Yi,Xi) = P(δi = 1|Xi) =: w(Xi). (33)

Here, w is called the missing propensity of Yi . A stronger form of missingness than
MAR is the so-called Missing Completely at Random (MCAR) since the latter im-
plies that the propensity w(x) is a constant function.

When the missingness is MAR but not MCAR, there is a selection bias in the
mechanism that generates the missing values. In this case, simply deleting missing
values will produce biased estimators and misleading inference.

Suppose that we have a parametric model for the missing propensity function
w(x; θ) where θ is a q-dimensional parameter. Without too much abuse of notation,
let f denote a generic probability “density” function. Here “density” should be inter-
preted in a general sense with respect to the probability measure. Under the MAR,
the full likelihood of the observed data is

Ln =
∏

δi=1

f (Xi,Yi, δi = 1)
∏

δi=0

f (Xi, δi = 0)

=
∏

δi=1

f (Xi,Yi)p(δi = 1|Xi,Yi)
∏

δi=0

f (Xi)p(δi = 0|Xi)

=
n∏

i=1

w(Xi; θ)δi
{
1 − w(Xi; θ)

}1−δi
∏

δi=1

f (Xi,Yi)
∏

δi=0

f (Xi). (34)

We have not specified the parameters that define the “densities” of (X,Y ) and X

since doing so is not important for our inference for regression. Let

LB(θ) =
n∏

i=1

w(Xi; θ)δi
{
1 − w(Xi; θ)

}1−δi

be the binary likelihood associated with the missing mechanism. It is reasonable to
assume that the missing propensity parameter θ is not involved in defining the just
mentioned “densities” f . In this case, the likelihood Ln in (34) can be partitioned
into two parts, one purely for θ and the other for the parameters that define the joint
density of (Xi, Yi). Hence, θ can be estimated by maximizing the binary likelihood
LB(θ). Let us denote this estimator by θ̂ , i.e.,

θ̂ = arg maxθLB(θ). (35)
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A simple estimator of β is the so-called complete-case-based estimator. Define the
least square function of β:

LSc(β) =
n∑

i=1

δi

{
Yi − m(Xi;β)

}2
.

Minimizing LSc(β) leads to a complete-case-based LS estimator β̂c which is the
solution of

n∑

i=1

δi

∂m(Xi;β)

∂β

{
Yi − m(Xi;β)

} = 0. (36)

The empirical likelihood for β can be constructed analogously to the formulation
from (4) to (5) without missing values. Specifically, the EL for β is

Lnc(β) = max
n∏

i=1

pi (37)

subject to

n∑

i=1

piδi = 1 and (38)

n∑

i=1

piδi

∂m(Xi;β)

∂β

{
Yi − m(Xi;β)

} = 0. (39)

Let rnc(β) = −2 log{Lnc(β)/n−n} be the log EL ratio. It can be shown that both
Wilks’ theorem and the Bartlett correction are valid in this case of missing values.

Another approach for constructing EL in the case of missing values is based on
the notion of imputation. Given the consistent estimator β̂c , we impute a missing Yi

by Y ∗
i = m(Xi; β̂c). The EL for β can be formed by

LnI (β) = max
n∏

i=1

pi (40)

subject to
∑n

i=1 pi = 1 and

n∑

i=1

pi

∂m(Xi;β)

∂β

[{
Yi − m(Xi;β)

}
δi + {

Y ∗
i − m(Xi;β)

}
(1 − δi)

] = 0. (41)

The above EL formulation can be extended to other parameters. For instance, if
our interest is on inference for the marginal mean of Y , say μy = E(Y), Wang and
Rao (2002) proposed the following EL for μy :

Ln(μy) = max
n∏

i=1

pi (42)
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subject to
∑

pi = 1 and

n∑

i=1

pi

{
Yiδi + Y ∗

i (1 − δi) − μy

} = 0.

Due to using the imputed values, the EL ratio statistic may not admit Wilks’ theorem.
When the regression function is nonparametric as specified in (19) instead of para-

metric, both the complete-case-based method and the imputation method outlined
above for parametric regression can be extended to nonparametric regression.

The complete-case-based empirical likelihood evaluated at θ(x), a candidate value
of m(x), is

Lnc

{
θ(x)

} = max
n∏

i=1

pi

subject to
∑n

i=1 pi = 1 and

n∑

i=1

piδiKh(x − Xi)
{
Yi − θ(x)

} = 0. (43)

The nonparametric imputation of a missing Yi can be achieved by Y ∗
i = m̂c(x),

where

m̂c(x) =
∑n

i=1 δiKh(x − Xi)Yi∑n
i=1 δiKh(x − Xi)

.

An imputation-based EL for m(x) is

LnI

{
m(x)

} = max
n∏

i=1

pi

subject to
∑n

i=1 pi = 1 and

n∑

i=1

piKh(x − Xi)
[{

Yi − θ(x)
}
δi + {

Y ∗
i − θ(x)

}
(1 − δi)

]= 0.

It can be shown that the complete-case-based EL for m(x) will still enjoy Wilks’
theorem and the Bartlett correction. However, the imputation-based EL may not be
so due to the fact that the imputed Y ∗

i does not have the same distribution as the
original Yi . Despite this, the imputed EL confidence regions will be smaller than
those based on the complete-case EL ratio, which is not surprising since the latter
regions are not using all the information available in the data.

5.2 Missing covariates

A more challenging type of missing values is missing covariates where the covariate
Xi is subject to missingness.



A review on empirical likelihood methods for regression 433

Let XT
i = (X

(1)T
i ,X

(2)T
i ) be a partition of Xi , where X

(l)
i is of dimension dl (l =

1,2), and d = d1 + d2. Without loss of generality, we assume that X
(1)
i is subject to

missingness, whereas X
(2)
i and Yi are always observable.

Redefine δi = 1 (0) if X
(1)
i is observed (missing). The MAR mechanism becomes

P(δi = 1|Xi,Yi) = P
(
δi = 1|X(2)

i , Yi

) =: w2
(
X

(2)
i , Yi

)
.

For parametric regression, the complete-case estimation that ignores missing val-
ues is attained by minimizing

n∑

i=1

δi

{
Yi − m(Xi;β)

}2

with respect to β , which is the same as (36). And, both the estimator for β and
the EL formulation are the same as those given in (37)–(39). This means that
Wilks’ theorem and the Bartlett correction will be maintained for the EL in this
case.

However, unlike the missing response case, the parametric imputation approach
is not straightforward to be implemented as the parametric regression does not spec-
ify the conditional distribution of X

(1)
i given (X

(2)
i , Yi). If we assume a paramet-

ric model for the missing propensity, say w2(X
(2)
i , Yi; θ), a more efficient formula-

tion can be achieved by inversely weighting the complete cases. Here, the efficiency
means the size of the confidence regions. In this case, the weighted least square func-
tion is

n∑

i=1

δiw
−1
2

(
X

(2)
i , Yi; θ̂

){
Yi − m(Xi;β)

}2
,

where θ̂ is the binary likelihood estimator which can be constructed in a similar
fashion to (35), and provided that w2 is uniformly bounded away from 0.

The EL for β is

Ln2(β) = max
n∏

i=1

pi

subject to
∑n

i=1 pi = 1 and

n∑

i=1

piδiw
−1
2

(
X

(2)
i , Yi; θ̂

)∂m(Xi;β)

∂β

{
Yi − m(Xi;β)

} = 0.

The use of θ̂ can alter the standard asymptotic properties of the EL. To appreciate
this point, let

Zi(β, θ̂) = δiw
−1
2

(
X

(2)
i , Yi; θ̂

)∂m(Xi;β)

∂β

{
Yi − m(Xi;β)

}
.
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Then, according to the EL algorithm as outlined earlier, the log EL ratio equals

rn2(β) = −2 log
{
Ln(β)/n−n

} = 2
n∑

i=1

log
{
1 + λT Zi(β, θ̂)

}
,

where λ satisfies

n−1
n∑

i=1

Zi(β, θ̂)

1 + λT Zi(β, θ̂)
= 0. (44)

By carrying out expansions for λ first and then substituting these expansions into
rn2(β), we have

rn2(β0) = nZ̄T
n (β0, θ̂ )S−1

n (β0, θ̂ )Z̄n(β0, θ̂ ) + op(1),

where Z̄n(β0, θ̂ ) = n−1 ∑n
i=1 Zi(β0, θ̂ ) and Sn(β0, θ̂ ) = n−1 ∑n

i=1 Zi(β0, θ̂ ) ×
ZT

i (β0, θ̂ ). As θ̂ is
√

n-consistent to θ0, Sn(β0, θ̂ )
p→ Σ(β0, θ0) =: E{Zi(β0, θ0) ×

ZT
i (β0, θ0)}. If Z̄n(β0, θ̂ ) were asymptotically normal with mean zero and vari-

ance Σ(β0, θ0), then the log EL ratio would be asymptotically chi-squared, and
hence Wilks’ theorem would be valid. However, due to the use of the estimator θ̂ ,
Z̄n(β0, θ̂ ) is asymptotically normal with mean zero but a variance that is different
from Σ(β0, θ0). Hence, the log EL ratio no longer satisfies Wilks’ theorem; rather
it will be distributed as

∑p

l=1 clχ
2
1,l , where χ2

1,l (l = 1, . . . , p) are i.i.d. χ2
1 random

variables, and c1, . . . , cp are constants. As the first-order Wilks theorem is no longer
available, there is no point of talking about the second-order Bartlett property. A gen-
eral discussion on the first-order behavior of the EL ratio with plugged-in nuisance
parameter estimators is available in Hjort et al. (2009).

5.3 Nonparametric imputation

For missing covariates, the imputation method can be employed as proposed in Wang
and Chen (2009), based on a nonparametric kernel estimate of the conditional distri-
bution of X

(1)
i given (X

(2)
i , Yi). To simplify our notation, we write (X

(2)
i , Yi) as Zi ,

which is dz =: (d2 +1)-dimensional, and it is an always observable component of the
data.

Let F(x(1)|Zi) be the conditional distribution of X
(1)
i given (X

(2)
i , Yi), and W(·)

be a dz-dimensional kernel function of the qth order satisfying
∫

W(s1, . . . , sdz ) ds1 · · ·dsdz = 1,

∫
sl
iW(s1, . . . , sdz ) ds1 · · ·dsdz = 0 for any i = 1, . . . , dz and 1 ≤ l < q,

and
∫

s
q
i W(s1, . . . , sdz )ds1 · · ·dsdz �= 0. A kernel estimator of F(x(1)|Zi) is

F̂
(
x(1)|Zi

) =
n∑

l=1

δlW(
Zl−Zi

h
)I (X

(1)
l ≤ x(1))

∑n
l=1 δlW(

Zl−Zi

h
)

. (45)
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Here h is the smoothing bandwidth, and I (·) is the d1-dimensional indicator func-
tion. The property of the kernel estimator when there are no missing values is well
understood in the literature, for instance, in Härdle (1990). Its properties in the con-
text of missing values can be established in a standard fashion. For each missing X

(1)
i ,

we impute a missing X
(1)∗
i by randomly generating from the estimated conditional

distribution F̂ (x(1)|Zi). To control the variability due to the conditional distribution
imputation, we make κ independent draws {X(1)∗

iν }κν=1 from F̂ (x(1)|Zi). Specifically,
let

Z̃i(β) = δi

∂m(Xi;β)

∂β

{
Yi − m(Xi;β)

}

+ (1 − δi)κ
−1

κ∑

l=1

∂m(X
(1)∗
il ,X

(2)
i ;β)

∂β

{
Yi − m

(
X

(1)∗
il ,X

(2)
i ;β)}

be the pseudo-estimating function for the regression parameters.
The EL for β with the multiple imputed values for each missing X

(1)
i is now

Ln(β) = max
n∏

i=1

pi

subject to
∑n

i=1 pi = 1 and
∑n

i=1 piZ̃i(β) = 0.

As shown in Wang and Chen (2009), Wilks’ theorem is no longer valid for the
EL ratio. Rather it is a weighted chi-square distribution similar to the case revealed
in Wang and Rao (2002). A version of the bootstrap that reflects the missing value
mechanism can be used to approximate the distribution of the EL ratio, which leads
to likelihood-based confidence regions and hypothesis testing.

6 Regression with censored data

The EL method for censored data has a long history. It goes back to Thomas and
Grunkemeier (1975), who proposed a method for constructing confidence intervals
for survival probabilities when the data are subject to random right censoring, which
directly motivates Owen’s invention of the EL as recalled in Owen (2001). The EL
method is in fact quite attractive for censored data, since its natural competitor, the
normal method, often leads to complicated variance formulas caused by the censoring
mechanism.

We focus here on the case of regression models where the response variable is
subject to random right censoring. In this section we will try to summarize the many
contributions that have been made in this context, making as before the distinction
between parametric, nonparametric, and semiparametric models.

6.1 Parametric regression

Consider the accelerated failure time model Yi = βT Xi + εi , where E(εi |Xi) = 0,
Var(εi |Xi) = σ 2, Yi is the logarithm of the survival time, and β is p-dimensional.
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Instead of observing Yi , we observe Ti = min(Yi,Ci) and Δi = I (Yi ≤ Ci), where
Ci is a censoring variable, assumed to be independent of Yi given the d = (p − 1)-
dimensional vector Xi . The EL method for parametric regression described in Sect. 2
can be extended to censored data by replacing constraint (5), which is obtained from
the normal equations for least squares estimators, by a similar equation for censored
data. Many proposals exist in the literature for extending the least squares approach
to censored data. See, e.g., Heuchenne and Van Keilegom (2007) for an overview
of these proposals. Two popular approaches are the ones proposed by Buckley and
James (1979) and Koul et al. (1981). In Qin and Jing (2001a) and Li and Wang (2003)
the authors replace the normal equation (5) by the equation that lies on the basis of
Koul et al. (1981)’s approach. More recently, Zhou and Li (2008) proposed an EL
method, based on Buckley and James (1979)’s paper. In particular, for any vector
β , let ei(β) = Ti − βT Xi (i = 1, . . . , n), and for any distribution function F , whose
support is given by the set of uncensored ei(β)’s, define the empirical likelihood by

Ln(β,F ) =
n∏

i=1

p
Δi

i

(
1 −

∑

ej (β)≤ei (β)

pj

)1−Δi

,

where pi is the jump size of F at ei(β). Note that for fixed β , this likelihood is
maximized when F equals the Kaplan–Meier estimator F̂β based on (ei(β),Δi) (i =
1, . . . , n). This motivates us to consider the following log EL ratio:

rn(β0) = −2 log
supF Ln(β0,F )

Ln(β̂, F̂
β̂
)

,

where β̂ is the Buckley–James estimator of β0, and where the supremum in the nu-
merator is taken over all distributions F that satisfy the estimating equation of the
Buckley–James estimator (see (4) in Zhou and Li 2008 for more details). An impor-
tant feature of this EL ratio is that it is defined in terms of the likelihood for censored
data, whereas other approaches (including Qin and Jing 2001a and Li and Wang 2003)
use the complete-data likelihood and adjust the constraint under which the numerator
is maximized for the presence of censoring.

It can now be shown that rn(β0) converges in distribution to a χ2
p random variable.

Hence, this result can be used for doing inference for the vector β0 without having
to estimate the variance of the Buckley–James estimator, which is known to be quite
cumbersome. It is easy to see that when no censoring is present, the denominator in
the above expression equals n−n, and the asymptotic result reduces to (13).

In survival analysis one often prefers to consider median regression, as opposed
to mean regression, since survival data are often skewed to the right and the nonpara-
metric estimation of the right tail of the error distribution is inaccurate when the data
are subject to right censoring. Let us therefore consider the above linear regression
model Yi = βT Xi + εi , but assume now that the conditional median of εi given Xi

equals zero. In addition, assume that the censoring variable Ci is independent of the
vector of covariates Xi . For this model, Qin and Tsao (2003) considered the following
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EL ratio, based on the likelihood for complete data:

Rn(β) = max
n∏

i=1

(npi)

subject to pi ≥ 0,
∑n

i=1 pi = 1, and

n∑

i=1

piXi

(
I (Ti − βT Xi ≥ 0)

1 − Ĝ(βT Xi)
− 1

2

)
= 0,

where Ĝ is the Kaplan–Meier estimator of the censoring distribution G. This con-
straint is inspired by the normal-approximation-based method proposed by Ying et
al. (1995). It can now be shown that −2 logRn(β0) converges in distribution to a
weighted sum of independent χ2

1 variables. Note that the weights are caused by the
estimator Ĝ, whereas in the case of Zhou and Li (2008) the censoring distribution
did not have to be estimated, since they work with the likelihood for censored data.
Moreover, Zhou and Li (2008) do not have to make the rather restrictive assumption
that Ci is independent of Xi .

6.2 Nonparametric regression

We now focus on the case where the relation between the response Y and a one-
dimensional continuous covariate X is completely unspecified (except for some
smoothness assumptions), and the censoring variable C is allowed to depend on X in
any (smooth) way. One is interested in doing inference for the conditional distribution
F(y|x) = P(Y ≤ y|X = x).

Let (Xi, Ti,Δi)
T (i = 1, . . . , n) be an i.i.d. sample from the joint distribution of

(X,T ,Δ), where T = min(Y,C) and Δ = I (Y ≤ C). Li and Van Keilegom (2002)
considered the construction of EL confidence intervals for the survival probability
S(y|x) = 1 − F(y|x) for fixed x and y. They also considered EL confidence bands
when y runs over an interval. Their method is based on localizing the censored data
likelihood around the value x. In particular, we define the local log likelihood by

logLn

(
S(·|x)

)

= nhn

n∑

i=1

Wi(x;hn)
{
Δi log

[
S(Ti − |x) − S(Ti |x)

] + (1 − Δi) logS(Ti |x)
}
,

= nhn

n∑

i=1

Wi(x;hn)

{
Δi logpi + (1 − Δi) log

(
1 −

∑

Tj ≤Ti

pj

)}
,

where

Wi(x;hn) = Kh(x − Xi)∑n
j=1 Kh(x − Xj)
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are Nadaraya–Watson weights (with kernel K and bandwidth h = hn), and 1−S(·|x)

makes jumps of size pi at the uncensored Ti ’s. In order to construct a confidence band
for S(y|x), we now define the EL ratio

Rn(p, t |x) = sup{Ln(S(·|x)) : S(t |x) = p, S(·|x) ∈ Θ}
sup{Ln(S(·|x)) : S(·|x) ∈ Θ} ,

where Θ is the space of all survival functions supported on (0,∞). Then, Li and Van
Keilegom (2002) showed that for appropriate 0 < y1 < y2 < ∞, the process

−2
f̂ (x)∫

K2(u) du
logRn

(
S(y|x), y|x)

(46)

(y1 ≤ y ≤ y2) converges weakly to the process {B0(u)/
√

u(1 − u)}2, where u =
σ 2(y|x)/(1 + σ 2(y|x)), σ 2(·|x) is the asymptotic variance of the cumulative haz-
ard function of Y given X = x, f̂ (·) is a kernel estimator of the density of X, and
B0 is a Brownian bridge on [0,1]. Also note that for fixed y, the marginals of the
process (46) converge to the marginals of the limiting process, which is a χ2

1 vari-
able. Based on this result, it is now possible to construct confidence intervals and
bands for the distribution S(y|x) (y1 ≤ y ≤ y2). For a similar result for the quantile
function of Y given X, we refer to Li and Van Keilegom (2002).

6.3 Semiparametric regression

An important semiparametric regression model in the context of survival data is with-
out doubt the Cox proportional hazards model. The model is a special case of the
so-called linear transformation model, given by

H(Yi) = −βT Xi + εi, i = 1, . . . , n, (47)

where H is an unknown monotone increasing (nuisance) function, β a p-dimensional
regression parameter vector, and εi the error term with a known continuous distrib-
ution that is independent of the censoring variable Ci and the covariate vector Xi .
Let Λ denote the cumulative hazard function of εi , i.e., P(εi > t) = exp{−Λ(t)}.
If Λ(t) = exp(t), then (47) becomes the proportional hazards model. On the other
hand, if Λ(t) = log{1 + exp(t)}, then it becomes the proportional odds model. Let
(XT

i , Ti,Δi)
T (i = 1, . . . , n) be an i.i.d. sample coming from model (47). Lu and

Liang (2006) showed how inference for the vector β0 can be carried out using an EL
approach. They base the empirical likelihood on the following martingale integral
equation (i = 1, . . . , n):

E

(∫ ∞

0
Xi

[
dNi(t) − Yi(t) dΛ

{
H(t) + βT

0 Xi

}]) = 0, (48)

where Ni(t) = ΔiI (Ti ≤ t) and Yi(t) = I (Ti ≥ t). They showed that the log EL ratio
associated with constraint (48), but with the unknown transformation H replaced by
an appropriate estimator, converges to a weighted sum of p independent χ2

1 variables.
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Other semiparametric models with censored data have been analyzed using EL
methodology. See, e.g., Qin and Jing (2001b) and Wang and Li (2002) for the analysis
of the partial linear model. The EL methodology for all these models can be seen as
a special case of the general method developed by Hjort et al. (2009). For clarity of
presentation, we do not explain their method in full generality, but we focus instead on
a somewhat more narrow class of models, which is sufficiently large for the context
of this paper. Consider a general semiparametric model depending on a response
vector Y , a covariate vector X, a p-dimensional parameter vector β , and a nuisance
function g. The true value of β is denoted by β0. The goal is to do inference for β0
using an EL approach. Suppose that β0 is the unique solution of the following system
of equations in β:

E
[
m(X,Y,β,g)

] = 0, (49)

where m is a p-dimensional function, and suppose that an estimator ĝ of g is avail-
able. For any β and g, and for any i.i.d. sample (XT

i , Y T
i )T having the same distrib-

ution as (XT ,Y T )T , define the EL ratio Rn(β,g) by

Rn(β,g) = max
n∏

i=1

(npi)

subject to pi ≥ 0,
∑n

i=1 pi = 1, and
∑n

i=1 pim(Xi,Yi, β, g) = 0. Consider now the
following four conditions:

P
(
Rn(β0, ĝ) = 0

) → 0 as n → ∞;

n−1/2
n∑

i=1

m(Xi,Yi, β0, ĝ)
d→ N(0,V1);

n−1
n∑

i=1

m(Xi,Yi, β0, ĝ)mT (Xi,Yi, β0, ĝ)
P→ V2;

max
i=1,...,n

∥∥m(Xi,Yi, β0, ĝ)
∥∥ = oP

(
n1/2).

Under these conditions, the limiting distribution of −2 logRn(β0, ĝ) is a weighted
sum of p independent χ2

1 variables, where the weights are the eigenvalues of V −1
2 V1.

When the estimation of these weights is cumbersome, Hjort et al. (2009) propose to
approximate the limiting distribution by using a bootstrap approach, and they give
generic conditions under which this bootstrap is consistent.

7 Goodness-of-fit tests

We have seen that the EL can be used to construct likelihood ratio confidence regions
and hypothesis tests regarding regression parameters. In this section, we will show
that EL is a natural device to formulate goodness-of-fit test statistics regarding the
regression function m(x) = E(Yi |Xi = x), where Xi is d-dimensional.
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We start with testing for a parametric regression model

H0 : m(·) = m(·;β0) for a β0 ∈ B, (50)

where B is a compact set in Rp . Later we will extend it to tests for semiparametric
models.

Naturally, goodness-of-fit tests can be constructed based on a distance between
a nonparametric kernel regression estimator m̂(·) and the parametric regression
m(·; β̂), where β̂ is an estimator of the finite-dimensional parameter β under H0.
Under the null hypothesis H0, this distance would take a smaller value than under the
alternative H1. For instance, the Härdle and Mammen (1993) test statistic is

THM,n = (
nhd

)1/2
∫ {

m̂(x) − m̃(x; β̂)
}2

π(x)dx,

where π(·) is a weight function, m̂ is the kernel regression estimator (20) representing
the model-free regression estimation, and

m̃(x; β̂) =
∑n

i=1 Kh(x − Xi)m(Xi; β̂)∑n
i=1 Kh(x − Xi)

is a kernel-smoothed estimator of the parametric regression function under H0. The
purpose of applying the same kernel smoothing to the estimated parametric regression
is to make the biases in the kernel estimation cancel each other. Asymptotic normality
can be established for THM,n. Härdle and Mammen (1993) propose a wild bootstrap
procedure to profile the finite-sample distribution of the test statistic.

An EL formulation for testing (50) consists of two steps. We first construct the EL
for m(x) at m̃(x; β̂), which is

Ln

{
m̃(x; β̂)

} = max
n∏

i=1

pi

subject to
∑

pi = 1 and
∑

piKh(x − Xi){Yi − m̃(x; β̂)} = 0. Let rn{m̃(x; β̂)} =
−2 log[Ln{m̃(x; β̂)}nn] be the log EL ratio. It may be seen by following similar steps
to those outlined in Sect. 2 that

rn
{
m̃(x; β̂)

} = nhd
{
m̂(x) − m̃(x; β̂)

}2
V −1(x)

{
1 + op

(
hd/2)}, (51)

where V (x) = R(K)σ 2(x)/f (x), f (·) is the density of X, R(K) = ∫
K2(t) dt , and

σ 2(x) = Var(Y |X = x). We then formulate the final test statistic

Ln =
∫

rn
{
m̃(x; β̂)

}
π(x)dx,

which has a leading order term
∫

nhd
{
m̂(x) − m̃(x; β̂)

}2
V −1(x)π(x) dx. (52)
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Hence, Ln is effectively a studentized L2-distance between m̂(·) and m̃(·; β̂). The
EL formulation provides a studentization by V −1(x) automatically without having to
estimate it explicitly. This is an attractive feature of the EL. In the current univariate
regression situation, as shown in Chen et al. (2003a),

h−d/2{Ln − μ0} d→ N
(
0, σ 2

0

)
as n → ∞,

where σ 2
0 = 2K(4)(0){K(2)(0)}−2

∫
π2(x) dx and μ0 = 1 + hd/2

∫
V −1(x)Δ2

n(x) ×
π(x)dx. Here Δn(x) are uniformly bounded functions that define the difference be-
tween m(x) and m(x;β) in that m(x) = m(x;β)+ n−1/2h−d/4Δn(x). Therefore, Ln

is asymptotically pivotal under H0.
The above EL formulation of the goodness-of-fit statistic can be extended to mul-

tiple regression curves with Yi being a k-variate response and Xi still being a d-
dimensional covariate. Let m(x) = E(Yi |Xi = x) = (m1(x), . . . ,mk(x)) be the con-
ditional mean consisting of k regression curves on Rd and Σ(x) = Var(Yi |Xi = x)

be a k × k matrix whose values may change along with the covariate. Let m(·) =
m(·, β, g) = (m1(·, β, g), . . . ,mk(·, β, g)) be a working regression model, of which
we would like to check its validity. Here, the form of m is known up to a finite-
dimensional parameter β and an infinite-dimensional nuisance parameter g where
β ∈ B ⊂ Rp and g ∈ G which is a complete metric space consisting of functions from
Rd to Rq (q ≥ 1). This semiparametric regression model includes a wide range of
parametric, semiparametric, and nonparametric regression models as special cases. In
the absence of g, the model degenerates to a fully parametric model m(·) = m(·, β),
whereas the presence of g covers a range of semiparametric models including the
single or multiindex models and partially linear single-index models considered in
Sect. 4. Nonparametric regression is also covered by taking the β-space as an empty
set. The class also includes models with qualitative constraints, like additive models
and models with shape constraints.

The goodness-of-fit hypotheses for the semiparametric regression are

H0 : m(·) = m(·, β0, g0) for some β0 ∈ B and g0 ∈ G versus

H1 : m(·) �= m(·, β, g) for any β ∈ B and any g ∈ G.

Let β̂ be a
√

n-consistent estimator of β0, and ĝ be a consistent estimator of g0
under a norm ‖ · ‖G defined on the complete metric space G . Any

√
n-consistent esti-

mator of β0 would be fine, for instance, the pseudo-likelihood estimator that assumes
the residual distribution being normal. We suppose that ĝ is a kernel estimator based
on a kernel L of order s ≥ 2 and a bandwidth sequence b, most likely different from
the bandwidth h (defined below) used to estimate m. We will require that ĝ converges
to g0 faster than (nhd)−1/2, the optimal rate in a completely d-dimensional nonpara-
metric model. As demonstrated in Sect. 4, this can be easily satisfied since g is of
lower dimension than the saturated nonparametric model for m.

Again to cancel the bias due to kernel estimation for each ml(x), we smooth
ml(x, β̂, ĝ) by the same kernel K and bandwidth hl as in the kernel estimator m̂l(x):

m̃l(x, β̂, ĝ) =
∑n

i=1 Khl
(x − Xi)ml(Xi, β̂, ĝ)∑n

t=1 Khl
(x − Xt)
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for l = 1, . . . , k. Let m̃(x, β̂, ĝ) = (m̃1(x, β̂, ĝ), . . . , m̃k(x, β̂, ĝ))T .
The EL formulation of the goodness-of-fit tests follows a similar line as the uni-

variate parametric regression we have considered earlier in this section. We assume
throughout that hl/h → βl as n → ∞, where h represents a baseline level of the
smoothing bandwidth and c0 ≤ minl{βl} ≤ maxl{βl} ≤ c1 for finite and positive con-
stants c0 and c1 free of n.

Like our formulation for parametric regression shown above, we first conduct the
empirical likelihood ratio for m(x) evaluated at m̃(x, β̂, ĝ) and then globalize by
integrating the likelihood ratio to form the final test statistic.

Define at each fixed x,

Q̂i(x, β̂) = (
Kh1(x−Xi)

(
Yi1 −m̃1(x, β̂, ĝ)

)
, . . . ,Khk

(x−Xi)
(
Yik −m̃k(x, β̂, ĝ)

))T
.

Let {pi(x)}ni=1 be nonnegative empirical likelihood weights allocated to
{(Xi, Yi)}ni=1. The minus 2 log empirical likelihood ratio for the multiple conditional
mean evaluated at m̃(x, β̂, ĝ) is

rn
{
m̃(x, β̂, ĝ)

} = −2 max
n∑

i=1

log
{
npi(x)

}

subject to pi(x) ≥ 0,
∑n

i=1 pi(x) = 1, and
∑n

i=1 pi(x)Q̂i(x, β̂) = 0. By introducing
a vector of Lagrange multipliers λ(x) ∈ Rk , the optimal weights are given by

pi(x) = 1

n

{
1 + λT (x)Q̂i(x, β̂)

}−1
, (53)

where λ(x) solves
n∑

i=1

Q̂i(x, β̂)

1 + λT (x)Q̂i(x, β̂)
= 0. (54)

Integrating rn{m̃(x, β̂, ĝ)} over the weight function π gives

Ln =
∫

rn
{
m̃(x, β̂, ĝ)

}
π(x)dx,

which is our EL test statistic based on the bandwidth vector h = (h1, . . . , hk)
T .

Define ˆ̄Q(x, β̂) = n−1 ∑n
i=1 Q̂i(x, β̂), R(t) = ∫

K(u)K(tu)du, and V (x) is the
product of f (x) by a k × k matrix with (j, l)-element equal to β−d

j R(βl/βj )σlj (x).

Note that R(1) = R(K) =: ∫ K2(u) du and that β−d
j R(βl/βj ) = β−d

l R(βj /βl) indi-
cating that V (x) is a symmetric matrix.

It may be shown that

Λn(h) = nhd

∫
ˆ̄QT

(x,β0)V
−1(x) ˆ̄Q(x,β0)π(x) dx + op

(
hd/2),

where hd/2 is the stochastic order of the first term on the right-hand side if

d < 4r . Here r is the order of the kernel K . Since ˆ̄Q(x,β0) = f (x){m̂(x) −
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m̃(x,β0, ĝ)}{1 + op(1)}, ˆ̄Q(x,β0) serves as a raw discrepancy measure between
m̂(x) = (m̂1(x), . . . , m̂k(x)) and the hypothesized model m(x,β0, ĝ). There is a key
issue on how much each m̂l(x) − m̃l(x,β0, ĝ) contributes to the final statistic. The
EL distributes the contributions according to nhdV −1(x), the inverse of the covari-

ance matrix of ˆ̄Q(x,β0), which is the most natural choice. The nice thing about the
EL formulation is that this is done without explicit estimation of V (x) due to its in-
ternal standardization. Estimating V (x) when k is large can be challenging if not just
tedious.

Let (γlj (x))k×k = ((β−d
j R(βl/βj )σlj (x))k×k)

−1,

ωl1,l2,j1,j2(β,K)

=
∫ ∫ ∫

β−d
l2

K(u)K(v)K
{
(βj2z + βl1u)/βl2

}
K(z + βj1v/βj2) dudv dz,

σ 2(K,Σ)

= 2
k∑

l1,l2,j1,j2=1

β−d
l2

ωl1,l2,j1,j2(β,K)

∫
γl1j1(x)γl2j2(x)σl1l2(x)σj1j2(x)π2(x) dx,

which is a bounded quantity under certain assumptions given in Chen and Van Kei-
legom (2009). Chen and Van Keilegom (2009) establish the following asymptotic
normality of Ln under H0:

h−d/2{Ln − k} d→ N
(
0, σ 2(K,Σ)

)
as n → ∞.

The convergence to the asymptotic normal distribution by the above two EL
goodness-of-fit test statistics is quite slow since the test statistics are effectively U -
statistics. This is the case for almost all goodness-of-fit statistics, EL or not. As a
result, one tries to avoid carrying out the goodness-of-fit tests based on the asymp-
totic distribution. Rather, bootstrap resampling is used to better approximate the dis-
tributions of the test statistics. Chen and Van Keilegom (2009) outline a bootstrap
algorithm for practical implementation.

8 Bibliographic notes

Owen (1988, 1990) are the two original papers that formally launched the empirical
likelihood method. His work was motivated by the paper of Thomas and Grunkemeier
(1975), who used a profile likelihood to construct confidence intervals for survival
probabilities. Those authors showed that the confidence intervals have the desired
property of respecting range, which is not generally held by normal-approximation-
based methods. The idea of the empirical likelihood can be traced earlier, for instance,
Hartley and Rao (1968), who applied the idea of the empirical likelihood in a survey
sampling context. There were a series of papers on the general properties of the em-
pirical likelihood method, which includes DiCiccio et al. (1989). Hall and La Scala
(1990) gave the first review on the empirical likelihood. DiCiccio et al. (1991) showed
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the Bartlett correction for parameters that are defined by smooth functions of means.
A more general framework for empirical likelihood formulation than the framework
of smooth functions of means is that of estimating equations, which includes para-
metric regression models as a special case. This framework allows the number of
estimating equations to be larger than the number of parameters, which is a popu-
lar method in Econometrics, representing extra model information. Qin and Lawless
(1994) established Wilks’ theorem for the empirical likelihood in such context, and
Chen and Cui (2006, 2007) showed that the Bartlett correction works.

The first paper that considered the empirical likelihood method for linear regres-
sion was Owen (1991). Chen (1993, 1994) established the Bartlett correction for
linear regression. For generalized linear models, Kolaczyk (1994) formulated the EL
based on the conditional mean aspect of the model; Chen and Cui (2003) consid-
ered adding extra constraints based on the conditional variance information within
the GLIM to improve estimation efficiency.

Empirical likelihood for nonparametric regression was considered in Chen and
Qin (2000) with a local linear kernel estimator and in Chen and Qin (2003) with the
Nadaraya–Watson local constant kernel estimator. Both Wilks’ theorem and Bartlett
correction were established by carrying out undersmoothing to control the bias due
to the kernel estimation.

In the context of semiparametric regression, Shi and Lau (2000) considered a par-
tially linear regression with fixed design and obtained a similar result as Wang and
Jing (2003) did for random design. They considered general weight functions sat-
isfying certain regularity conditions. Lu (2009) considered the extension of Wang
and Jing (2003)’s paper to the context of heteroscedastic regression. Hu et al. (2009)
applied the empirical likelihood methodology to varying-coefficient partially linear
errors-in-variables models, and Liang and Qin (2008) showed Wilks’ theorem when
the covariate X is missing with probability depending on the response Y and the
covariate Z (whose effect on Y is modeled nonparametrically).

Using empirical likelihood for inference on the mean of the response variable
when the response is subject to missingness at random was considered in Wang and
Rao (2002) for a nonparametric regression model and Wang et al. (2004) for a semi-
parametric partially linear regression model. See also Wang and Veraverbeke (2006)
for an approach based on auxiliary information. Chen et al. (2003b, 2008) considered
inference when there are surrogates for the missing values. Qin and Zhang (2007)
considered missing responses in the context of observational studies. Wang and Chen
(2009) proposed the multiple nonparametric imputation for general estimating equa-
tions where the missing values can be either in the response or the covariates.

The literature on the EL methodology for censored data is becoming very ex-
tensive. For parametric mean regression, Zhou et al. (2006) proposed a generalized
linear model for modeling health care costs and studied an EL procedure for this
model. Zhao and Wang (2008) applied an EL approach to do inference for quality-
adjusted lifetime data. For parametric median regression, we cite Whang (2006), who
used a smoothed EL approach to obtain better performance in practice than the clas-
sical EL method. See also Zhao and Chen (2008). Zhou (2005) used an empirical
likelihood analysis of a rank estimator in the accelerated failure time model, whereas
Zhou (1992) proposed an M-estimation procedure. The EL methodology for the Cox
model has been first considered by Qin and Jing (2001c).
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Using EL to test for goodness-of-fit of parametric time series regression was con-
sidered in Chen et al. (2003a). Fan and Zhang (2004) propose a sieve EL test for
testing a varying-coefficient regression model that extends the generalized likelihood
ratio test of Fan et al. (2001). They demonstrate that “Wilks’ phenomenon” contin-
ues to hold under general error distributions. Tripathi and Kitamura (2003) propose
an EL test for conditional moment restrictions. For testing semiparametric regression
models, Chen and Van Keilegom (2009) developed a smoothing-based EL approach,
whereas Van Keilegom et al. (2008) use an EL approach based on marked empirical
processes.
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