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Abstract Inclusion probabilities are design dependent and should be furnished with
the design elements. Inclusion probability of an element in the population is the prob-
ability that the element will be chosen in a sample. In this paper the inclusion prob-
abilities in the case of ranked set sampling design and some of its variations are
furnished. This paper provides good and interesting examples of sampling designs
for which the inclusion probabilities are not equal.
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1 Introduction

Simple random sampling (SRS) is the most basic sampling technique. It is the sam-
pling technique for which all possible samples of the same size have the same proba-
bility of being chosen. If the population consists of N distinct elements, then a subset
of size n is a SRS, if it is chosen so that each subset of size n has a probability of
1/

(
N
n

)
of being the chosen sample. As a consequence of this definition, each element

of the population has a probability of n
N

of being included in the chosen sample. This
probability is called the inclusion probability. Thus, in SRS, all elements of the popu-
lation have equal inclusion probability. Other sampling plans also have this property;
for example, systematic sampling and some special cases of cluster and stratified
sampling. In general, probability sampling is a sampling technique for which each

M.F. Al-Saleh is currently at Qatar University (on leave), e-mail: malsaleh@qu.edu.qa.

M.F. Al-Saleh (�) · H.M. Samawi
Department of Statistics, Yarmouk University, Irbid, Jordan
e-mail: m-saleh@yu.edu.jo



A note on inclusion probability 199

element in the population has a known inclusion probability. Let πN(k) be the prob-
ability that an element uk of a population of size N will be chosen in a sample of
size n. It is well known that

∑N
k=1 πN(k) = n; thus, in the above mentioned sampling

techniques the inclusion probabilities are all equal to the average inclusion probability
of n

N
. In SRS, all samples of size n are equally likely; hence, a very unrepresenta-

tive sample is as likely to appear as does a very representative one. For example, if
a sample of size n = 3 is to be taken from a population of trees for the purpose of
estimating the population average height then the likelihood of obtaining very short
3 trees or very tall 3 trees in the sample is the same as that of obtaining one tall, one
short and one medium. This is because in SRS there is no control on which element
enters the sample.

A more controlled sample (more representative) can be obtained using ranked
set sampling technique. Ranked set sampling (RSS) was first suggested by McIntyre
(1952) as a method for estimating pasture yields. The supporting mathematical theory
was later provided by Takahasi and Wakimoto (1968). The RSS procedure consists of
drawing m random samples of size m each from the population, and ranking each of
them by judgment with respect to the characteristic of interest. Then the ith smallest
observation from the ith set is chosen for actual quantification. The RSS consists of
these m selected units. Although only m units out of m2 are chosen for quantification,
all units contribute information to the m quantified ones. In practice, to be able to
rank by judgment, m should be small, 2 or 3, say. To get a sample of larger size the
entire cycle may be repeated, if necessary, r times to produce a RSS of size n = rm.
The mean of the RSS is an unbiased estimator of the population mean (μ) and is
found to have smaller variance than the mean of a SRS of the same size. Assume that
sampling is from an infinite population. Let μ̂RSS be the average of a RSS sample
of size n = rm, and μ̂SRS be the average of a SRS of the same size. It was shown
by Takahasi and Wakimoto (1968) that the relative efficiency of μ̂RSS w.r.t. μ̂SRS
satisfies the following relation:

1 ≤ Var(μ̂RSS; μ̂SRS) = Var(μ̂SRS)

Var(μ̂RSS)
≤ m + 1

2
,

where the upper bound is achieved if and only if the distribution is uniform. However,
relative efficiencies of other unimodal distributions are also close to the upper bound
(Dell and Clutter 1972). For more about RSS see Kaur et al. (1995) and Patil et al.
(1999). For recent work see Al-Saleh (2004), Perron and Sinha (2004), Carlos (2000),
Al-Saleh and Zheng (2003), Al-Saleh and Al-Omary (2002), Zheng and Al-Saleh
(2002) and Al-Saleh and Al-Kadiri (2000).

All of the authors above assume that the RSS is taken from an infinite population.
In this paper we consider sampling from a finite population. Only few authors have
discussed RSS in finite populations. It was first considered by Takahasi and Futat-
suya (1988). They showed that μ̂RSS is unbiased for the population mean and found
explicit formula for its efficiency for a set size m = 2. Their results were extended to
more general finite populations and to larger set-sizes by Patil et al. (1999). The effi-
ciency was shown to be ≥ 1, under some mild conditions, by Takahasi and Futatsuya
(1998).

To obtain the RSS sample from a finite population these authors used the same
procedure that is used for infinite populations: to obtain an RSS of size n = rm a SRS
of a sample of size rm2 is partitioned into mr sets of size m each. For each of the first
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r sets the minimum is identified; for each of the second r sets the second minimum
is identified; etc. The RSS obtained consists of r minima, r second minima, . . . , r
maxima. Thus, from the rm2 elements only rm are chosen for actual quantifications
and the others are ignored. While this seems to be okay if the population is infinite,
it might be a waste and may cause some problems if the population is finite and N is
not very large. Therefore, the following adjusted procedure will be used for obtaining
the RSS:

1. A SRS of size m is selected (without replacement) from the population and the
minimum of the sample with respect to the characteristic of interest is identified
by judgment. All other elements are returned to the population.

2. A second SRS of size m is selected (without replacement) from the population and
the second minimum of the sample is identified by judgment. All other elements
are returned to the population.

3. In the ith step, the ith minimum of the ith chosen SRS is identified by judgment,
i = 1,2, . . . ,m.

The m identified elements make up a RSS of size m. The entire cycle may be
repeated, if necessary, r times to produce a RSS sample of size n = rm.

Note 1 The only difference between this adjusted procedure and the previous one is
that after each step, all elements except the one chosen for quatification, are returned
to the population before the start of the process of choosing the next element.

Each sampling method implies a set of inclusion probabilities. In this paper, our
main interest is in the inclusion probability of this sampling technique and some of its
variations. To the best of our knowledge, the inclusion probability of this technique
has not been obtained yet.

2 Inclusion probability

Knowing the value of the inclusion probability for each element of the population is
very important. The following are some of the reasons for the need of knowing the
inclusion probability in RSS:

1. Inclusion probabilities give an insight on how the RSS design has more control on
which element enters the sample as compared with the SRS.

2. Inclusion probabilities are needed when one wants to consider some unbiased es-
timators of the population mean or total such as the Horvitz–Thompson estimator.
If πi is the inclusion probability of the element ui in the population and s is a
sample taken from the population then the Horvitz–Thompson estimator of the
population total T is

T̂HT =
∑

i∈s

ui

πi

.

T̂HT is the only unbiased estimator of T in the class of estimators{
∑

i∈s

biui : bi ∈ R

}

.
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To use T̂HT in practice πi should be known in advance for each ui in the population;
which is rarely the case. It will be seen that, in order to find πi , we need to find the
rank of ui in the population. However, there are some situations in which the rank
of ui can be approximately obtained using some other concomitant variable wi . For
example, if ui is the size of tree i in a population of N trees then the rank of ui can
be approximated using the height wi , which is highly correlated with ui . (Largest
trees tend to produce the most timber and contribute the most to the variability of
volumes.) See Mukhopadhyay (2000).

3. Knowing the inclusion probabilities of a design facilitates the sampling from an
available population. For example, if the values of a large population are given
and stored on a computer, then one of the main purposes is to summarize the data
using some suitable methods of data reduction. If it is decided to summarize the
data set using repeated RSS, as in Al-Saleh (2004), it is easier, in terms of time
and effort, to write a program to repeatedly sample RSSs from the population
using the inclusion probabilities rather than using the above procedure. Also the
same applies if we are studying the properties of some complex estimator using
simulation.

4. Most of the examples taught in a classroom for unequal probability samples are
artificial. The content of the paper provides good and interesting non-artificial
examples of sampling designs for which the inclusion probabilities are not equal.

5. Knowing the inclusion probabilities of two or more sampling designs can help one
decide which design suits one’s need. In the trees example, see point 2 above, since
large trees contribute more to the total size of the population, one may choose a
design that assigns larger inclusion probabilities to trees of larger heights; hence
MERSS, described below with moving maximum instead of minimum, is a more
suitable design. If prior information suggests that the sampled population is sym-
metric then a design that gives large inclusion probabilities to extreme values is
preferred, for example extreme RSS. If the variability among the elements of the
population is low then a design that assigns equal inclusion probabilities is prefer-
able; hence SRS is a more suitable design.

In the next section the inclusion probability for each element in the population is
obtained for the most common cases of m = 2 and m = 3, when the design is RSS.
The case of a general m is also addressed. In Sect. 3 this probability is obtained for
two variations of RSS. Conclusions are given in Sect. 4.

3 Inclusion probability in RSS

Assume that the population of interest consists of the elements {u1, u2, . . . , uN }. An
RSS sample of size n = rm is to be taken from the population using the procedure
outlined above, where m is the set size and r is the number of cycles. The interest
is in the inclusion probability of each ui , i = 1, . . . ,N . For simplicity, assume that
the population consists of distinct elements (u1 < u2 < · · · < uN , say). Assume first
that r = 1 and let S be the chosen RSS sample. Throughout the paper it is found
instructive to use binomial coefficients without simplification.
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Case 1: m = 2.
For k = 1,2, . . . ,N , let πN(k) = p(uk ∈ S) be the inclusion probability of the
kth element of the population. For uk to be in S, uk must be the minimum of
the first SRS of size 2 taken from the N elements (A1) or the maximum of the
second sample of size 2 taken from the N −1 remaining elements (A2). Let the
probabilities of these two events be π

(1)
N (k) and π

(2)
N (k), respectively. Clearly,

πN(k) = π
(1)
N (k) + π

(2)
N (k) (3.1)

and

π
(2)
N (k) = p

(
A2|Ac

1

)
p
(
Ac

1

) = p
(
A2|Ac

1

)(
1 − π

(1)
N (k)

)
. (3.2)

Now, for uk to be the minimum of the first sample, the other element should
be chosen from the N − k elements; thus, using binomial coefficients notation,
we have

π
(1)
N (k) =

(
N−k

1

)

(
N
2

) . (3.3)

To obtain the value of π
(2)
N (k), Ac

1 can be further partitioned to A11(A12): the
minimum of the first SRS of size 2 taken from the N elements is < uk (> uk).
Then,

π
(2)
N (k) = p(A2|A11)p(A11) + p(A2|A12)p(A12). (3.4)

It can be easily seen using some elementary combinatorics that

p(A2|A11) =
(

k−2
1

)

(
N−1

2

) and p(A2|A12) =
(

k−1
1

)

(
N−1

2

) . (3.5)

The event A11 consists of those samples for which uk is an element of (there
are

(
k−1

1

)
of them) and those samples for which uk is not an element of (there

are
(

k−1
2

) + (
k−1

1

)(
N−k

1

)
of them). Thus,

p(A11) =
(

k−1
2

) + (
k−1

1

)(
N−k

1

) + (
k−1

1

)

(
N
2

) . (3.6)

Similarly, p(A12) can be shown to be

p(A12) =
(

N−k
2

)

(
N
2

) . (3.7)

Therefore, the value of π
(2)
N (k) is given by

π
(2)
N (k) =

(
k−2

1

)

(
N−1

2

) ×
(

k−1
2

) + (
k−1

1

)(
N−k

1

) + (
k−1

1

)

(
N
2

) +
(

k−1
1

)

(
N−1

2

) ×
(

N−k
2

)

(
N
2

) . (3.8)
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Table 1 RSS inclusion probability for m = 2

N u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

3 0. 667 0.333 1.00 – – – – – – –

4 0.500 0.389 0.444 0.667 – – – – – –

5 0.400 0.350 0.350 0.400 0.500 – – – – –

6 0.333 0.307 0.300 0.313 0.347 0.400 – – – –

7 0.286 0.270 0.263 0.267 0.280 0.302 0.333 – – –

8 0.250 0.240 0.235 0.235 0.240 0.250 0.265 0.286 – –

9 0.222 0.215 0.211 0.210 0.212 0.217 0.225 0.236 0.250 –

10 0.200 0.195 0.192 0.191 0.191 0.194 0.198 0.204 0.212 0.222

Actually, if Y1 and Y2 are, respectively, the first and second element of the RSS
sample then the pdf of Y1 is f1(k) = π

(1)
N (k), (i.e. π

(1)
N (k) is the pdf of the first

order statistic) and the pdf of the second order statistic Y2 is f2(k) = π
(2)
N (k).

Using (3.1) and (3.6), the inclusion probability for any element uk , k =
1, . . . ,N , of the population is given by

πN(k) = π
(1)
N (k) + π

(2)
N (k)

=
(

N−k
1

)

(
N
2

) +
(

k−2
1

)

(
N−1

2

) ×
(

k−1
2

) + (
k−1

1

)(
N−k

1

) + (
k−1

1

)

(
N
2

)

+
(

k−1
1

)

(
N−1

2

) ×
(

N−k
2

)

(
N
2

) . (3.9)

It can be simplified to

πN(k) = 2

(
3k2 − (2N + 5)k + 7N − 4N2 + N3

N(N − 1)2(N − 2)

)
. (3.10)

It is not difficult to show that πN(k) is decreasing for k < 1
3N + 5

6 and increas-
ing for k > 1

3N + 5
6 with the minimum at the nearest integer to 1

3N + 5
6 . Also

it can be checked easily that
∑N

k=1 πN(k) = n = 2 (as expected); πN(1) = 2
N

and πN(N) = 2
N−1 . For illustration, Table 1, gives the inclusion probability

for some values of N . Clearly, the inclusion probabilities are not the same for
the population elements. In this sense RSS is different from the other sampling
plans discussed in the introduction. Elements in the two extremes get higher
probabilities of selection than elements in the middle of the population. For ex-
ample, when N = 3 the inclusion probabilities are, respectively, 0.667, 0.333
and 1.00, which means that u3 is an element of any RSS of size 2; u1 has
more chances (twice as much) to be the second element of the RSS sample
than u2.
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Case 2: m = 3.
For uk to be in the chosen sample, uk must be, for some i ∈ {1,2,3}, the ith
order statistics of the ith SRS of size 3 taken from the remaining N − i + 1
elements (Ai ). Let the probabilities of these three events be π

(1)
N (k), π

(2)
N (k)

and π
(3)
N (k), respectively.

Now,

π
(1)
N (k) =

(
N−k

2

)

(
N
3

) , (3.11)

π
(2)
N (k) = p(A2|Ac

1)p(Ac
1) = p(A2 A11)p(A11) + p(A2 A12)p(A12), where

A11 and A12 are as in Case 1 (except that the sample size is 3 instead of 2).
Thus, using the same argument as in Case 1, π

(2)
N (k) can be shown to be

π
(2)
N (k) =

(
k−2

1

)(
N−k

1

)

(
N−1

3

)

(
k
3

) + (
k−1

1

)(
N−k

2

) + (
k
2

)(
N−k

1

)

(
N
3

)

+
(

k−1
1

)(
N−k−1

1

)

(
N−1

3

)

(
N−k

3

)

(
N
3

) . (3.12)

Let B: [uk is the maximum of the third chosen sample], B11: [min < uk], B12:
[median < uk], B21: [min > uk], B22: [median > uk]. Then

π
(3)
N (k) = p(B|B11 ∩ B12)p(B11 ∩ B12)

+ p(B|B21 ∩ B22)p(B21 ∩ B22)

+ p(B|B21 ∩ B12)p(B21 ∩ B12)

+ p(B|B11 ∩ B22)p(B11 ∩ B22)

= p1 + p2 + p3 + p4. (3.13)

It can be shown that

p1 =
(

k−3
2

)

(
N−2

3

)

(
k−2

2

) + (
k−2

2

)(
N−k

1

) + (
k−2

3

)

(
N−1

3

)

(
k
3

) + (
k−1

1

)(
N−k

2

) + (
k
2

)(
N−k

1

)

(
N
3

) ,

p2 =
(

k−1
2

)

(
N−2

3

)

(
N−k−1

2

) + (
N−k−1

3

) + (
k−1

1

)(
N−k−1

2

)

(
N−1

3

)

(
N−k

3

)

(
N
3

) ,

p3 =
(

k−2
2

)

(
N−2

3

)

(
k−1

2

) + (
k−1

2

)(
N−k−1

1

) + (
k−1

3

)

(
N−1

3

)

(
N−k

3

)

(
N
3

)

and

p4 =
(

k−2
2

)

(
N−2

3

)

(
N−k

2

) + (
N−k

2

)(
k−2

1

) + (
N−k

3

)

(
N−1

3

)

(
k
3

) + (
k−1

1

)(
N−k

2

) + (
k
2

)(
N−k

1

)

(
N
3

) .
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Table 2 RSS inclusion probability for m = 3

N u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

5 0.600 0.350 0.550 0.500 1.00 – – – – –

6 0.500 0.360 0.414 0.501 0.475 0.750 – – – –

7 0.428 0.343 0.354 0.407 0.427 0.440 0.600 – – –

8 0.375 0.319 0.317 0.344 0.368 0.377 0.400 0.500 – –

9 0.333 0.295 0.288 0.302 0.320 0.331 0.340 0.362 0.428 –

10 0.300 0.272 0.265 0.272 0.283 0.294 0.301 0.309 0.329 0.375

Hence,

πN(k) = π
(1)
N (k) + π

(2)
N (k) + π

(3)
N (k). (3.14)

Table 2, gives the values of the inclusion probability for some values of N .

Case 3: general m.
Let {Y1, Y2, . . . , Ym} be the elements of the RSS. Let Eik denotes the event
[Yi = uk], then

πN(k) =
m∑

i=1

p(Eik) =
m∑

i=1

p

(

Eik|
i−1⋂

j=1

Ec
jk

)

p

(
i−1⋂

j=1

Ec
jk

)

, (3.15)

with E0k = φ. Thus, the inclusion probability for each element in the popula-
tion can be, in principle, obtained for any given m. However, finding a closed
form for πN(k) will be tedious for large m. For all practical purposes of using
RSS, m = 2 or 3 are sufficient.

If r > 1, then P(uk ∈ S) = πN(k) = ∑r
i=1 P(uk is chosen in the ith cycle),

which can be evaluated in a similar fashion. Note that in the ith cycle, an RSS
of size m is obtained from a population of size N − m(i − 1).

4 Inclusion probability for some variations of RSS

4.1 Moving extreme RSS

Moving extreme RSS (MERSS) was introduced and discussed by Al-Odat and Al-
Saleh (2000) and also by Al-Saleh and Al-Hadrami (2003). MERSS is a variation of
RSS that allows the use of a larger set size m. In MERSS, for i = 1, . . . ,m, a SRS
of size i is taken from a population and the minimum of each sample, with respect to
the characteristic of interest, is identified by judgment obtaining a moving minimum
RSS. Alternatively, we can identify the maximum at each step, getting a moving
maximum RSS of size m instead. In this section we consider the inclusion probability
of MERSS when identifying the minimum at each step. After each step all remaining
elements are returned to the population before the next step.
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Case 1: m = 2.

In this case the first element of the MERSS is obtained by taking one ele-
ment randomly from the population; the second element is the minimum of
a SRS of size 2 taken from the N − 1 remaining elements of the population.
The inclusion probability of uk can be easily shown to be (in binomial nota-
tion):

πN(k) =
( 1

1

)

(
N
1

) +
(

k−1
1

)

(
N
1

)

(
N−k

1

)

(
N−1

2

) +
(

N−k
1

)

(
N
1

)

(
N−k−1

1

)

(
N−1

2

) (4.1)

which can be simplified to 3N−2k−1
N(N−1)

.

Clearly, πN(k) is decreasing in k with the maximum value of 3
N

at k = 1
and the minimum value of 1

N
at k = N .

Case 2: m = 3.

In this case the probability that uk is in the chosen sample is the probabil-
ity that uk is the minimum of a SRS of size 1 taken from the N elements,
the minimum of a SRS of size 2 taken from the N − 1 remaining elements
or the minimum of a SRS of size 3 taken from the N − 2 remaining ele-
ments. Denote these three probabilities by π

(1)
N (k), π

(2)
N (k), π

(3)
N (k), respec-

tively, then πN(k) = π
(1)
N (k) + π

(2)
N (k) + π

(3)
N (k). Clearly, π

(1)
N (k) is the first

term of Eq. (4.1) above and π
(2)
N (k) is the last two terms of Eq. (4.1). Also

π
(3)
N (k) = p(uk =Y3), where Y3 is the third element in the sample. This proba-

bility can be factored as

π
(3)
N (k) = p(Y1 < uk,Y2 < uk,Y3 = uk)

+ p(Y1 < uk,Y2 > uk,Y3 = uk)

+ p(Y1 > uk,Y2 < uk,Y3 = uk)

+ p(Y1 > uk,Y2 > uk,Y3 = uk)

= p1 + p2 + p3 + p4, (4.2)

where

p1 =
(

k−1
1

)

(
N
1

)

(
k−2

2

) + (
k−2

1

)(
N−k+1

1

)

(
N−1

2

)

(
N−k

2

)

(
N−2

3

) , (4.3)

p2 =
(

k−1
1

)

(
N
1

)

(
N−k

2

)

(
N−1

2

)

(
N−k−1

2

)

(
N−2

3

) , (4.4)

p3 =
(

N−k
1

)

(
N
1

)

(
k−1

2

) + (
k−1

1

)(
N−k

1

)

(
N−1

2

)

(
N−k−1

2

)

(
N−2

3

) (4.5)
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Table 3 MERSS inclusion probability for m = 2,3

N u1 u2 u3 u4 u5 u6 u7 u8 u9

m = 2

3 1.00 0.667 0.333 – – – – – –

4 0.750 0.583 0.417 0.250 – – – – –

5 0.600 0.500 0.400 0.300 0.200 – – – –

6 0.500 0.433 0.367 0.300 0.233 0.167 – – –

7 0.428 0.381 0.333 0.286 0.238 0.190 0.143 – –

m = 3

5 1.00 0.900 0.600 0.300 0.200 – – – –

6 0.875 0.758 0.579 0.388 0.233 0.167 – – –

7 0.771 0.667 0.539 0.406 0.284 0.190 0.143 – –

8 0.688 0.598 0.500 0.400 0.305 0.223 0.161 0.125 –

9 0.619 0.544 0.465 0.386 0.311 0.242 0.184 0.139 0.111

and

p4 =
(

N−k
1

)

(
N
1

)

(
N−k−1

2

)

(
N−1

2

)

(
N−k−2

2

)

(
N−2

3

) . (4.6)

Table 3 contains the inclusion probability for some values of N .

Case 3: general m.
As in RSS, in this case πN(k) can be written as πN(k) = ∑m

i=1 π
(i)
N (k), where

π
(i)
N (k) = p(Yi = uk). Each of π

(i)
N (k) can be obtained in the same manner as

in Case 2 above.
Note that if instead we use the moving maximum RSS then the inclusion

probability of uk is π∗
N(k) = πN(N − k + 1).

4.2 Extreme RSS

Extreme RSS, ERSS, is similar to MERSS except that the set size m is kept fixed.
This method was suggested first by Stokes (1980). To obtain a sample of size m using
ERSS, a SRS of size m is taken and the maximum (or the minimum) is identified by
judgment. This step is repeated m times yielding a ERSS of size m. The procedure
was modified and investigated further by Samawi et al. (1996). The inclusion proba-
bility can be easily obtained using the same method as in Sect. 3. For example, if the
minimum is the one identified at each step then, for m = 2, the inclusion probability
can be easily obtained as:

πN(k) =
(

N−k
1

)

(
N
2

) +
(

k−1
2

) + (
k−1

1

)(
N−k+1

1

)

(
N
2

)

(
N−k

1

)

(
N−1

2

) +
(

N−k
1

)

(
N
2

)

(
N−k−1

1

)

(
N−1

2

) . (4.7)
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Note that πN(N) = 0 and, in general, πN(k) = 0 for k = N,N − 1, . . . ,

N − m + 2. The modification of Samawi et al. (1996) and Al-Saleh and Al-Hadrami
(2003), overcomes this difficulty.

5 Concluding remarks

The inclusion probability of each element in the population is important to know
in advance for each used sampling design. It is determined by the design and
should be furnished with the design points. “Figuratively speaking, the inclusion
probabilities can be described as the sampling method’s “footprint” on the pop-
ulation elements; each sampling method implies a set of inclusion probabilities”
(Tryfos 1996). For example when N = 4, m = 2, (0.500,0.500,0.500,0.500);
(0.500,0.389,0.444,0.667); (0.750,0.583,0.417,0.250); (0.833,0.722,0.444,

0.000) are respectively, the foot prints of SRS, RSS, MERSS and ERSS on the
population elements. The content of the paper provides good and interesting non-
artificial examples of sampling designs for which the inclusion probabilities are not
equal.
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