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Abstract This paper considers the problem of reporting a “posterior distribution”
using a parametric family of distributions while working in a nonparametric frame-
work. This “posterior” is obtained as the solution to a decision problem and can be
found via a well-known optimization algorithm.
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1 Introduction

There is a standard and well known route for the Bayesian to construct a parametric
posterior distribution. The idea is to formulate a prior distribution on the parameter
space Θ , which connects up with the parametric family of densities, say f (x; θ),
with θ ∈ Θ . Here Θ is a finite dimensional parameter space. The prior distribution
on Θ , say π(θ), combines with the data Xn = {X1, . . . ,Xn} to give the posterior
distribution

π
(
θ | Xn

) =
∏n

i=1 f (Xi; θ)π(θ)
∫ ∏n

i=1 f (Xi; θ)π(θ) dθ
.
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However, it is typically the case that any chosen parametric model is wrong, in the
sense that there is no θ0 ∈ Θ , with π(θ0) > 0, such that, for example, the {Xi} are
independent and identically distributed from f (x; θ0). Under these circumstances,
honest specification of a prior on θ is, to say the least, problematic. We would argue
that, if the posited parametric model is thought to be wrong, it does not make much
sense to try to specify a prior on θ .

In the traditional Bayesian approach to statistics, having acknowledged that the
parametric model may be wrong, it seems prudent to compare different models using
Bayes factors or other Bayesian criteria such as those discussed in Bernardo and
Smith (1994, Chap. 6). But this ignores the fact that the use of the parametric model
involves the declaration that

Pr(f ∈ Ω) = 1,

where

Ω = {
f : f (·) ≡ f (·; θ) for some θ ∈ Θ

}
.

Here, for a set of densities B ,

Pr(f ∈ B) ≡ Π(B) =
∫

{θ :f (·;θ)∈B}
π(θ) dθ.

The prior specification of Pr(f ∈ Ω) = 1, which carries through to the posterior,
is clearly at odds with the experimenter who readily acknowledges the model should
be checked once the data has been observed in order to verify that the model and the
data are compatible. Authors such as Linsdey (1999) and Draper (1999) see this as a
serious problem for Bayesians and we argue it is nothing short of irrational behavior
on the part of the statistician. Draper (1999) also discusses the practical implications
of model switching once Pr(f ∈ Ω) = 1 is questioned, suggesting poor calibration is
the most likely scenario. Equivalently, poor statistics. Knowing this, Draper (1995)
proposed model expansion (leading to model averaging) as a means to circumvent
such problems.

Draper (1995) equates good calibration to honest uncertainty assessments. Being
calibrated here can be loosely interpreted as not being surprised by the data, no matter
how many are observed. Thus, a forecaster “is well calibrated if, for example, of those
events to which he assigns a probability of 30 percent, the long run proportion that
actually occurs turns out to be 30 percent” (Dawid 1982). If we condition on a single
parametric model, poor calibration of the resulting inference is likely since model
uncertainty is not being taken into account.

It might be suggested that a parametric model is simply a conditional model; that
is, conditional on the assumption that it is a “good” model, inferences being reported
conditionally on this fact. This then begs the question as to what the prior actually
is. In the context of model comparison, the conditional idea implicitly assumes there
are a number of possible models, say M1, . . . ,Mk , with conditional prior weights,
π1, . . . , πk . One approach would then be to use posterior odds or Bayes factors for
comparing models. But then none of the priors can be an actual prior. None of them
acknowledge the uncertainty inherent in considering other models, so none can ac-
tually reflect true beliefs. When one model is selected after seeing the data, all the
original uncertainty has been suppressed artificially and hence the experimenter is
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clearly underestimating the uncertainty. Moreover, for a posterior to represent poste-
rior beliefs the prior must represent prior beliefs, and none of them do in this case. We
believe that the only rational approach in this conditional setting is for the Bayesian
to use the prior model

k∑

j=1

πkMk.

This model would then not be checked post data observation. Note, however, that
such a prior is far from natural and in most cases its support will not contain the true
density f .

Here we introduce what we believe should be at the heart of the solution: To put
probability one on a set of densities for which the experimenter will undertake no
checks no matter what data arrive. This is implicit in the approach of Draper (1995).
In most cases this will require a prior distribution which puts mass on all densities.
This can be achieved with the use of a nonparametric prior. If all densities are in-
cluded in the prior then the data can now offer no surprises and there is no check of
the assignment of probability one to be made. Of course, if a particular parametric
model is thought to be “correct” (that is, a θ0 does exist) then this is to be used, and
no check will then be made. This procedure avoids the contradictory (incoherent, ir-
rational) behavior of both assigning probability one to a model and a willingness to
check the model once the data has been observed.

A referee has pointed out that our approach does not protect us from the very
criticism we apply to the parametric Bayesian, since we are after all assuming that
the data are independent and identically distributed conditional on the unknown den-
sity f . We would argue, however, that inference and prediction “always involve an
assumption of conditional exchangeability of known and unknown quantities at some
level of conditioning” (Draper 1995, Sect. 7). We would also argue that, while (con-
ditional) independence is a more fundamental assumption, in many instances it can
be justified by a good experimental design or a careful data collection process. More-
over, unlike the parametric model assumption, the independence assumption is typ-
ically not checked when assumed to be true. Finally, this is also a problem for the
parametric Bayesian (besides the problems associated with a poor choice of model).

The stance of this paper is Bayesian nonparametric, and for us, we would report
all summaries in that context. However, we do acknowledge that many statisticians
prefer to work in a parametric framework. In this paper, then, we show how it is
possible to obtain a parametric “posterior distribution” which avoids the irrational
behavior discussed above and takes into account the uncertainty implicit in the choice
of the parametric model(s).

So consider the parametric model represented by f (·; θ) with θ ∈ Θ . The task
would be to select a probability distribution on Θ which was somehow derived from
the actual (nonparametric) posterior distribution

Π(df | X1, . . . ,Xn) ∝
n∏

i=1

f (Xi)Π(df ),

where Π denotes our nonparametric prior distribution. Therefore, we are looking for
a probability distribution μ(θ). We then suggest that the solution to a decision prob-



Bayesian parametric inference in a nonparametric framework 191

lem, to be described later, can as well be used as a parametric posterior distribution on
Θ which will allow the Bayesian to undertake standard tasks such as model selection
without behaving irrationally.

As pointed out above, we are looking at this problem from the nonparametric per-
spective, and not from a parametric one. Consequently, the only prior we acknowl-
edge is Π and we do not ourselves see μ(θ) as a posterior distribution but, as we
shall see, as a solution to a well defined decision problem. However, we are propos-
ing that μ(θ) can be used by a parametric statistician as though it were a posterior
distribution. Within our framework, it is then not irrational or incoherent to undertake
model selection procedures using {f (·; θ),μ(θ)}.

The outline of the paper is as follows. In the next section we state the elements
of the decision problem and discuss how it can be solved in practice. In Sect. 3 we
consider the special case where the nonparametric predictive distribution is given by
the empirical distribution function, that is, the Bayesian bootstrap. This simple case,
however, can be easily extended to provide a solution for more general, informative
nonparametric priors. This is illustrated in Sect. 4 with an example. In Sect. 5 we
discuss asymptotic properties and Sect. 6 contains some concluding remarks.

2 Formal decision problem

The elements to be specified for setting up and solving a decision problem are well
known (see, for example, Bernardo and Smith 1994). For us the unknown state of
nature is the density function f generating the data X1, . . . ,Xn. We assume that
this density is such that f ∈ F , the set of all densities with respect to the Lebesgue
measure. The elements of our decision problem are as follows:

(1) A set of decisions; {μ ∈ G}, where G is the set of probability distributions on Θ .
(2) A set of states of nature; {f ∈F}.
(3) A utility function U(μ,f ) evaluating the desirability of μ when f is the true

density function.
(4) A probability distribution on the space of density functions representing beliefs

about the true state of nature. In a Bayesian context, this probability is the prior
Π in the no-sample problem and is Π(·|Xn) once the data Xn = xn have been
observed.

The problem we focus on is one-step ahead prediction. It is apparent that it is also
possible to construct a utility function for the problem of multiple predictions into
the future. The importance of the (one-step ahead) predictive density is that it serves
as the Bayes estimate of the unknown density given all the information available at
any given point in time; see, for example, Haussler and Opper (1997).

Several authors, including Good (1952) and Bernardo (1979), advocate the loga-
rithmic score as a utility function when the decision space consists of density func-
tions. Other loss functions are possible, but we will settle with this one. Consequently,
we consider

U(μ,f ) =
∫

log
{
p(x;μ)

}
f (x)dx,
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where

p(x;μ) =
∫

f (x; θ)μ(θ) dθ

is the “predictive” density for the model f (·; θ) with probability distribution μ(θ).
Note that the pair {f (·; θ),μ(θ)} is not the standard Bayesian parametric model since
we do not regard μ as an actual prior; recall that, for us, the only real prior is Π .
The distribution μ is merely a probability distribution on the parametric space for
the family of densities f (·; θ). Thus we regard {f (·; θ),μ(θ)} as nothing more than
a working model that the parametric statistician may want to use in order to make
inferences about θ , despite the fact that the actual Bayesian model is nonparametric.

The solution to the decision problem is given by maximizing the expected utility

Un(μ) =
∫

log
{
p(x;μ)

}
fn(x) dx, (2.1)

where fn is the nonparametric predictive density function. That is,

fn(x) =
∫

f (x)Π
(
df | Xn

)
.

More precisely, fn is the predictive density associated with the prior which is suf-
ficiently large to ensure that the experimenter will not be interested in checking, no
matter what data arrive.

Suppose now that we have two working models, M1 = {f (1)(·, θ),μ(1)(θ)} and
M2 = {f (2)(·, θ),μ(2)(θ)}, and that we want to select one of them in order to re-
port parametric inferences. Then we would obviously select M1 over M2 whenever
Un(μ̂

(1)) > Un(μ̂
(2)), where μ̂(j) is the maximizer of (2.1) under model j , j = 1,2.

In this way, a parametric statistician would be able to undertake model selection with-
out incurring the contradiction alluded to in Sect. 1.

We now consider an interesting special case where the predictive distribution turns
out to be the empirical distribution function.

3 The Bayesian bootstrap

Here we consider the Bayesian bootstrap (Rubin 1981) for constructing the nonpara-
metric predictive distribution. In fact, in this case, the predictive distribution is the
empirical distribution function and hence

Un(μ) = 1

n

n∑

i=1

log
{
p(xi;μ)

}
.

It is easily seen that the optimal μ is obtained via

max
μ∈G

n∏

i=1

∫
f (xi; θ)μ(θ) dθ. (3.1)
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Lindsay (1983) discusses the existence and uniqueness of the (nonparametric)
maximum likelihood estimator of a mixing distribution, and provides an algorithm
based on the vertex direction method (VDM) to carry out such a maximization. He
also shows that the maximizer of (3.1) is a discrete distribution with support on at
most n points. Mallet (1986) proposes a related method for estimating the distribu-
tion of the parameters of a random effects model. Both authors discuss the connection
between these procedures and those occurring in the theory of optimal design of ex-
periments; see, for example, Fedorov (1972) and Silvey (1980). Schumitzky (1991)
develops an alternative procedure based on the EM algorithm. He then extends the ba-
sic algorithm to cope with the case where a continuous solution is desired. However,
in this latter case the solution is typically not a smooth density and tends to follow
the discrete solution too closely. Böhning (1995) reviews several other algorithms.
Also relevant here is the work of Magder and Zeger (1996), who propose a method
of estimating the mixing distribution using maximum likelihood over the class of ar-
bitrary mixtures of normals subject to the constraint that the component variances be
bounded below by a value h. The nonparametric maximum likelihood estimate can
then be obtained as a limiting case as h → 0. This procedure can also be extended to
estimate multivariate mixing distributions.

4 An example

For illustrative purposes, and to show how we can find μ in general, we consider as
nonparametric prior the mixture of Dirichlet Process (MDP) model. This is a well
known and a widely used nonparametric prior. See, for example, Escobar and West
(1995). The parametric model will be normal with unknown mean parameter θ and
known variance 1, written as N(θ,1). The nonparametric model is given in hierarchi-
cal form as

Xi |θi ∼ N(θi,1),

θi |F ∼ F,

F ∼ D(c,G).

Here D(c,G) is a Dirichlet process prior (Ferguson 1973). We will not go into too
much detail here except to say that the parameters c > 0 and G, a distribution func-
tion, represent scale and location, respectively. We will, for the sake of illustration,
take c = 1 and G = N(0,102). It is well known that F can be integrated out of the
model leading to the marginal distribution of (θ1, . . . , θn) being given by

p(θ1, . . . , θn) ∝ g(θ1)

n∏

i=2

{
g(θi) +

∑

j<i

δθj
(θi)

}
,

where δθ is the probability mass function with mass 1 at θ . Here g is the density
function corresponding to G.

Inference is achieved via sampling from full conditionals p(θi |θ−i ) in a Gibbs
sampler. This is easy to do and one can sample from the predictive density fn(x) by
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Fig. 1 Optimal distribution, μ̂:
n = 10
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sampling θn+1 from p(θn+1 | θ1, . . . , θn) and then taking Xn+1 from f (x; θn+1). We
will denote a sample of size M from fn as {Zn1, . . . ,ZnM}.

Consequently, we have an approximation to the expected utility function as

1

M

M∑

j=1

logp(znj ;μ).

Therefore, we are now interested in finding the μ which maximizes

M∏

j=1

p(znj ;μ), (4.1)

which can be done using one of the algorithms mentioned in the previous section. As
pointed out there, the solution will be a discrete distribution with support on at most
M points. Note, however, that in this case we can control the “smoothness” of the
solution simply by increasing the value of M , the size of the Monte Carlo sample.

We generated three samples, of respective sizes 10, 100 and 1 000, from a N(θ0,1)

density with θ0 = 0. For each of these samples, we found μ̂, the maximizer of (4.1),
based on a Monte Carlo sample of size M = 10 000 from the nonparametric predictive
and using the simple VDM algorithm. Figures 1 to 3 show μ̂ for each of these three
cases. As would be expected, the resulting distributions tend to concentrate around
the value θ0 = 0 as the sample size increases.

5 Asymptotics

We would like to know that if the data do indeed come from the parametric model
selected to make summaries then the sequence of solutions to the decision problem



Bayesian parametric inference in a nonparametric framework 195

Fig. 2 Optimal distribution, μ̂:
n = 100
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Fig. 3 Optimal distribution, μ̂:
n = 1000
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μn(θ) converges to the point mass at θ0 with probability one. Let us denote f (·; θ0)

by f0 and p(·;μ) by pμ. In order to achieve this result we will assume the nonpara-
metric predictive density is consistent in the sense that

dK(fn,f0) → 0

as n → ∞ with probability one. Here dK(f,g) = ∫
f log(f/g) is the Kullback–

Leibler divergence between f and g. We will also assume that if μ̃n is any sequence
of probability distributions such that pμ̃n

→ f0 with respect to the L1 distance then
μ̃n → δθ0 in the sense that μ̃n(A) → 1(θ0 ∈ A) ∀ sets A.
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Note that if μ puts all its mass on θ0 then pμ = f0. Now, since μn minimizes
dK(fn,pμ) and dK(fn,f0) → 0, it follows that

dK(fn,pμn) → 0

almost surely. Note that dK(fn,f0) → 0 implies d1(fn, f0) → 0 and hence we have
both d1(fn, f0) → 0 and d1(fn,pμn) → 0 almost surely. Here d1(f, g) = ∫ |f − g|
is the L1 distance between f and g. Consequently,

d1(pμn, f0) → 0

almost surely, and it follows that μn → δθ0 almost surely.
Sufficient conditions under which dK(fn,f0) → 0 are currently not known. How-

ever, Ghosal et al. (1999) provide sufficient conditions under which d1(fn, f0) → 0,
which in most cases will mean that dK(fn,f0) → 0.

6 Concluding remarks

We see the development of the solution to the decision problem described in Sect. 2 as
a possible way of avoiding the internal contradiction and poor calibration associated
with a fully parametric Bayesian analysis involving model comparison and selection.

It would be tempting to compare the solution μn(·) with a posterior derived in
a fully parametric way, that is, via a parametric prior. This, we believe, would be
inappropriate because we do not advocate the use of such a parametric posterior dis-
tribution unless it is used outside of the context of model comparison. It is perhaps
better to regard μn(·) as some sort of surrogate “posterior” distribution which is op-
timal in the sense that it yields a predictive density that is as close as possible to the
nonparametric predictive fn in terms of Kullback–Leibler divergence.

We think of μn(·) as nothing more than a probability measure on the space Θ

which may be useful to parametric Bayesians wishing to undertake model selection
procedures and/or inference coherently. The parametric posterior, on the other hand,
permanently asserts that Pr(f ∈ Ω | data) = 1 and so leads to incoherent model se-
lection procedures.
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