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Abstract
Background  To explore an effective model based on radiomics features extracted from nonenhanced computed tomography 
(CT) images to distinguish invasive adenocarcinoma (IAC) from minimally invasive adenocarcinoma (MIA) presenting as 
pure ground-glass nodules (pGGNs) with bubble-like (B-pGGNs) signs.
Patients and methods  We retrospectively reviewed 511 nodules (MIA, n = 288; IAC, n = 223) between November 2012 and 
June 2018 from almost all pGGNs pathologically confirmed MIA or IAC. Eventually, a total of 109 B-pGGNs (MIA, n = 55; 
IAC, n = 54) from 109 patients fulfilling the criteria were randomly assigned to the training and test cluster at a ratio of 7:3. 
The gradient boosting decision tree (GBDT) method and logistic regression (LR) analysis were applied to feature selection 
(radiomics, semantic, and conventional CT features). LR was performed to construct three models (the conventional, radiom-
ics and combined model). The performance of the predictive models was evaluated using the area under the curve (AUC).
Results  The radiomics model had good AUCs of 0.947 in the training cluster and of 0.945 in the test cluster. The combined 
model produced an AUC of 0.953 in the training cluster and of 0.945 in the test cluster. The combined model yielded no 
performance improvement (vs. the radiomics model). The rad_score was the only independent predictor of invasiveness.
Conclusion  The radiomics model showed excellent predictive performance in discriminating IAC from MIA presenting as 
B-pGGNs and may provide a necessary reference for extending clinical practice.

Keywords  Pure ground-glass nodule (pGGN) · Bubble-like sign · Invasive adenocarcinoma (IAC) · Minimally invasive 
adenocarcinoma (MIA) · Radiomics

Introduction

Pulmonary pure ground-glass nodules (pGGNs) on high-
resolution computed tomography (HRCT) appearing as 
an isolated lesion of hazy increased does not obliterate 

the fundamental bronchial and vascular configuration [1]. 
About 75% of persistent pGGNs were attributed to lung 
adenocarcinomas (LACs) or their precursors [2]. The new 
concept of adenocarcinoma in situ (AIS), minimally inva-
sive adenocarcinoma (MIA) and invasive adenocarcinoma 
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(IAC) was proposed by the International Association for 
Study of Lung Cancer, the American Thoracic Society and 
the European Respiratory Society (IASLC, ATS, and ERS) 
in 2011 [3] and adopted by the World Health Organization 
(WHO) in 2015 [4]. MIA refers to a solitary LAC (≤ 3 cm in 
diameter) with predominantly lepidic growth and a ≤ 0.5 cm 
invasive component pathologically. IACs are mainly catego-
rised based on invasive components > 0.5 cm [4]. MIA has 
been shown to correlate with low metastatic potential and is 
rarely associated with postoperative recurrence. In contrast, 
IACs show aggressive biological behaviour associated with 
pleural invasion, lymph node metastasis and postoperative 
recurrence [5].

The relationships between intra-tumour gene heterogene-
ity and pathologic classification have also been demonstrated 
[6]. Sakamoto et al. [7] showed that KRAS mutations were 
detectable in 7% of MIA cases and 0% of IAC cases. Zhang 
et al. [8] showed that TP53 was detected more frequently in 
IAC than in AIS/MIA (5/14 vs. 1/16, P = 0.04). An accurate 
description of early pathological types is necessary to deter-
mine the tumour state. Although the criteria for resection 
range remain controversial, the appearance of pGGNs on CT 
is strongly suspected as MIA pathologically; close follow-
up scanning is recommended, and sublobar resection is not 
performed until suspicious morphology or other risk fac-
tors are observed [9, 10]. Lobectomy is still considered the 
standard surgical treatment for IAC [10]. Therefore, more 
precise preoperative diagnostic and individualized manage-
ment should be established for pGGNs.

The bubble-like sign is defined as small spots of round 
or ovoid air attenuation [11, 12]. Saito et al. [13] reported 
that bubble-like within GGNs were a histological character-
istic of collapse and dilated bronchioles and were strongly 
associated with LAC. Takahashi et al. [14] and Qi et al. 
[15] suggested pGGNs with bubble-like signs (B-pGGNs) 
were significantly associated with progressive adenocar-
cinoma. Zhang et al. [16] suggested B-pGGNs were sig-
nificantly more common in the IAC than in the AIS-MIA 
(14/63, 22.22% vs. 16/163, 9.82%, P = 0.014). Qi et al. [15] 
also concluded that B-pGGNs were more likely reminis-
cent of IAC (IAC: 8/24, 33.33% vs. MIA: 12/108, 11.11%, 
P = 0.001).

The bubble-like sign strongly suggests the invasiveness 
and progression of pGGN on imaging, it is a risk factor for 
the invasiveness of the IAC. Moreover, bubble-like as a 
risk factor is not uncommon in MIA. In previous studies, 
the probability of B-pGGN in MIA was 22.06–22.92%, the 
probability of B-pGGN in IAC was 20.96–33.83% [17–20]. 
The morphological features of MIA and IAC presented as 
B-pGGN have greater overlap and similarity. Therefore, it 
is of more radiological significance to identify and how to 
identify such MIA and IAC. It’s may offer some guidance 

for personalized medical decision-making if B-pGGN-like 
IAC can be identified on preoperative CT images.

Preoperative HRCT images predicting the invasiveness 
of pGGNs were based on larger nodule size, higher entropy, 
and the bubble-like sign, etc., had been widely recognized 
in previous studies [21–25]. However, the conventional 
assessments were usually based on the radiologist's direct 
view and experience. By comparison, in radiomics, extrac-
tion of numerous features from the entire tumour volume 
is an objective and highly reproducible process, including 
complex patterns that are impossible for the human visual 
system to recognize or quantify [26]. Previous studies sug-
gested that radiomics feature decoding was strongly corre-
lated with invasiveness indices at the histological level [27, 
28]. A nomogram is a graphical representation to depict a 
statistical model that generates a probability of a clinical 
event, for a given individual [29].

However, to the best of our knowledge, no studies have 
investigated identification of IAC and MIA in B-pGGNs. 
Therefore, the objective of the present retrospective study 
was to construct a radiomics nomogram for more precise 
prediction of IAC and MIA presenting as B-pGGNs on pre-
operative HRCT.

Patients and methods

Patients

With approval from the Ethical Committee and the Institu-
tional Review Board, this retrospective study was completed 
with an exemption for informed consent. We retrospectively 
reviewed 511 nodules (MIA, n = 288; IAC, n = 223) between 
November 2012 and June 2018 who were pathologically 
confirmed after thoracic surgical resection. Inclusion cri-
teria: (A) HRCT scans performed within two weeks before 
lesion resection; (B) complete specimens of pGGNs on lung 
window images (window width, WW, 1500 HU; window 
level, WL, − 500 HU) histologically confirmed to be MIA 
or IAC; (C) available picture archiving and communication 
systems (PACS, CT imaging thickness ≤ 1.5 mm); and (D) 
B-pGGNs characterized as small spots of round or ovoid 
air attenuation within the lesions. Eventually, after apply-
ing the exclusion criteria, a total of 109 B-pGGNs (MIA, 
n = 55; IAC, n = 54) from 109 patients fulfilled the inclusion 
criteria. The detailed process of case selection is shown in 
Fig. 1. Demographic variables (e.g., age, sex, smoking his-
tory, underlying diseases) were recorded.

CT scan parameters

Noncontrast chest CT examinations were performed with 
scanning machines (Optima CT660, Discovery CT750 HD, 
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Revolution CT or LightSpeed16 from General Electric, 
SOMATOM Perspective or Emotion 16 from Siemens, Bril-
liance 16P from Philips). Although various chest CT imag-
ing protocols were used in this study, all examinations were 
performed with contiguous 1.00–1.50-mm axial sections 
and 1.00–1.50-mm slice intervals and then reconstructed 
at 1.00–1.50-mm intervals. Imaging parameters: a matrix 
of 512 × 512; tube current of 170–200 mA; a tube voltage 
of 120 kVp; rotation times of 0.5–0.6 s; a full field of view 
(FOV). Data were reconstructed with a lung kernel algo-
rithm. Chest scans were performed with the patients in a 
supine position from the lung apex to the lung base area at 
the end of inspiration. A breath-hold exercise was imple-
mented before each examination.

Histological type diagnosis

All pathological type diagnoses results were based on 
clinicopathological reports. During pathological diagno-
sis, all histological specimens were formalin fixed, paraf-
fin embedded, haematoxylin–eosin stained and examined 

by an experienced pathologist, then reviewed by a senior 
pathologist. Any disagreements were resolved by consensus, 
finally the pathological results were obtained. The histologi-
cal types were recorded in accordance with the new clas-
sification suggested by the IASLC/ATS/ERS in 2011. We 
reviewed the diameter of invasion in all tumour recorded 
according to WHO in 2015.

CT feature analysis

CT features were observed by two thoracic radiologists (a 
junior and a senior with 20 years of experience) blinded 
to the pathological results in the lung window (WW, 1500 
HU; WL, − 500 HU). B-pGGN images were evaluated, and 
the following imaging features were recorded: tumour loca-
tion, shape (irregular or round and oval), the tumour-lung 
interface (clear or unclear), lobulation, and pleural indenta-
tion in the B-pGGNs. The maximum axial layer (MAL) was 
selected for all measurement from the lung window. MD-
MAL: the maximum diameter; MVD-MAL: the maximum 
vertical diameter of the MD. CTv-MAL: the CT value. The 

Fig. 1   The study flow chart shows the inclusion criteria and exclusion criteria for the final selected cases
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measurement details: (1) An irregular curve depicted the 
edge of the region of interest (ROI) of the B-pGGN as much 
as possible. (2) Large vessels, bronchi and bubble-like signs 
should be eliminated when present in the measurement layer. 
Submaximum layers should be measured when they cannot 
be completely removed.

Manual nodule segmentation

All anonymized DICOM-format image sequences were 
manually segmented with axial lung window settings (WW, 
1500 HU; WL, -500 HU) by outlining the ROI layer-by-layer 
on B-pGGN images and eliminating large vessels, bronchi 
and bubble-like signs. Then, a three-dimensional ROI of the 
lesions was obtained.

Radiomics feature extraction and selection process

A total of 106 radiomics features were extracted by 3D slicer 
(version 4.8.1, https://​www.​slicer.​org/). Seven categories 
included Shape (n = 13), Grey Level Dependence Matrix 
(GLDM; n = 14), Grey Level Co-occurrence Matrix (GLCM; 
n = 24), First-order (n = 18), Grey Level Run Length Matrix 
(GLRLM; n = 16), Grey Level Size Zone Matrix (GLSZM; 
n = 16) and Neighbouring Grey Tone Difference Matrix 
(NGTDM; n = 5).

The reproducibility and robustness of extracted features 
were calculated by intra- and inter-reviewer correlation coef-
ficients (ICCs). One radiologist performed all nodule seg-
mentations on the HRCT images. Then, the same radiologist 
and another radiologist independently resegmented the same 
50 B-pGGNs image sequences selected randomly after an 
interval of no less than 30 days. Intra- and inter-reviewer 
agreement were calculated.

Our dataset was randomly assigned to two clusters at a 
7:3 ratio, feature selection and model establishment were 
carried out for the larger cluster, and model performance was 
verified by the smaller clusters and further independently 
verified in cases grouped by the brands of CT scanning 
machines. Before processing, normalization was conducted. 
The features were interpreted as showing good agreement 
if ICCs > 0.75 were retained. The feature selection method 
based on the gradient boosting decision tree (GBDT) [30].

Six kinds of machine-learning algorithms constructed 
various radiomics models (rad_score) based on the opti-
mal feature subsets of the training cluster: logistic regres-
sion (LR), support vector machine (SVM), naive Bayesian 
classifier (NBC), K-nearest neighbour (KNN), decision tree 
(DT), and random forest (RF). The performances of different 
models were comprehensively evaluated by receiver operator 
characteristic (ROC) curves and selected the optimal stable 
model.

Multivariable LR analysis was performed with clinical, 
semantic and conventional quantitative CT candidate predic-
tors of nodules to constitute the conventional LR predictive 
model. In addition, the conventional model was combined 
with a radiomics model to construct a combined model. The 
tenfold cross-validation were also performed to evaluate the 
performance and reliability of our model.

The Kolmogorov–Smirnov test was performed to deter-
mine normal distribution. T tests were used for normally 
distributed data expressed as the mean ± standard deviation 
(SD), and the Mann–Whitney U test was used for nonnor-
mally distributed data expressed as the median and quar-
tile. A chi-squared test or Fisher’s test was used to examine 
semantic signs. ROC curves were plotted to assess the per-
formance of the three models. The accuracy (ACC), sensitiv-
ity (SEN), specificity (SPE) and AUC were also calculated. 
Calibration curves accompanied by the Hosmer–Lemeshow 
test (a nonsignificant test statistic indicates that the model is 
perfectly calibrated) were plotted to evaluate the predictive 
accuracy of the models. Decision curve analysis (DCA) was 
conducted to evaluate whether the models were sufficiently 
robust. Significance in Delong test suggested differences and 
stability between models.

All statistical analyses for the present study were exe-
cuted by SPSS (version 26.0, IBM, Armonk, NY, USA), R 
(version 3.5.1) and Python (version 3.5.6). A two-tailed P 
value < 0.05 indicated statistical significance.

Results

A total of 109 patients (50 males and 59 females) with 109 
nodules who were randomly allocated into the training clus-
ter (n = 75) and the test cluster (n = 34), including 55 MIA 
(54.46%) and 54 IAC (49.54%), were enrolled in this study. 
No B-pGGNs were correlated with any mediastinal lymph 
node metastases. Our data showed that diameter of invasion 
in IAC group is 8.00 (6.25, 8.75) mm, the diameter of inva-
sion in MIA group is 3.00 (2.00, 4.00) mm, the diameter of 
invasion in all B-pGGN is 5.00 (3.00, 8.00) mm. Few cases 
were associated with limited and mild underlying diseases, 
and more underlying diseases were noted in the IAC than 
in the MIA group (P = 0.004). The comparisons between 
clinical information and CT findings of all populations are 
shown in Supplementary Material Table S1. Representative 
axial CT images and corresponding HE-stained sections in 
B-pGGNs are shown in Fig. 2.

Univariate LR analysis showed statistically significant 
differences in shape, tumour-lung interface, the MD-MAL 
and the MVD-MAL between the MIA and IAC group in 
the training cluster (P < 0.05). Multivariate LR analysis 
showed that only tumour-lung interface and the MVD-MAL 
remained statistically significant. Comparisons of clinical 

https://www.slicer.org/
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information and CT findings between the MIA and IAC 
group are listed in Table 1. The results of the LR analysis 
for conventional features are listed in Table 2.

In ICC tests, 100 features with ICCs > 0.75 were retained, 
and 6 features were eliminated (Supplementary Material 
Table S2). The GBDT method was applied to consolidate 
the 100 features into 16 potential predictors which were 
implemented to develop the radiomics model.

Based on the selected feature set, six machine-learning 
algorithms were adopted and the models were evaluated 
(Table  3). Considering the performance of the models 
between the training and the test cluster as well as the inter-
pretability of the algorithms, the LR algorithm was finally 
selected to build the most appropriate model. The tenfold 
cross-validation curve for radiomics model and the com-
bined model are presented in Supplementary Fig S1.

Fig. 2   Representative axial CT images and corresponding HE-stained 
sections in B-pGGNs. Row A: The axial CT image of a 45-year-old 
female's B-pGGN showed that CTv-MAL was −  553.49 HU, MD-
MAL was 13.10  mm and MVD-MAL was 9.34  mm, with irregular 
shape, lobulation and plural indentation. The corresponding his-
tological findings can be seen on the HE-stained section, under the 
microscope, the size of whole B-pGGN was 0.5 × 0.6  mm, the size 
of invasive component was 0.2 × 0.15 mm, the pathological diagnosis 
was MIA, and it was an atypical case clinically. Row B: The axial 
CT image of a 53-year-old male's B-pGGN showed that CTv-MAL 
was −  634.64 HU, MD-MAL was 9.99  mm and MVD-MAL was 
7.60  mm, with lobulation. The corresponding histological findings 
can be seen on the HE-stained section, under the microscope, the size 
of whole B-pGGN was 0.4 × 0.5 mm, the size of invasive component 
was 0.1 × 0.1 mm, the pathological diagnosis was MIA, and it was a 

typical case clinically. Row C: The axial CT image of a 55-year-old 
male's B-pGGN showed that CTv-MAL was − 687.66 HU, MD-MAL 
was 13.40  mm and MVD-MAL was 11.80  mm. The corresponding 
histological findings can be seen on the HE-stained section, under the 
microscope, the size of whole B-pGGN was 0.5 × 0.6  mm, the size 
of invasive component was 0.5 × 0.6 mm, the pathological diagnosis 
was IAC, and it was an atypical case clinically. Row D: The axial 
CT image of a 50-year-old male's B-pGGN showed that CTv-MAL 
was − 603. 16 HU, MD-MAL was 14.30 mm and MVD-MAL was 
10.90  mm, with pleural indentation. The corresponding histological 
findings can be seen on the HE-stained section, under the microscope, 
the size of whole B-pGGN was 0.3 × 0.7  mm, the size of invasive 
component was 0.3 × 0.7  mm, the pathological diagnosis was IAC, 
and it was a typical case clinically”
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Table 1   Clinical information and CT findings of the training cluster and test cluster

The semantic features are represented as numbers (%). Normally distributed data are presented as the mean ± standard deviation (SD). Nonnor-
mally distributed data are presented as the median (interquartile range). IAC invasive adenocarcinoma, MIA minimally invasive adenocarcinoma. 
CTv-MAL refers to the computed tomography attenuation value on the maximum axial layer. MD-MAL refers to the maximum diameter on the 
maximum axial layer. MVD-MAL refers to the maximum vertical diameter of the maximum diameter on the maximum axial layer

Variables Training cluster (n = 75) Test cluster (n = 34)
MIA (n = 38) IAC (n = 37) P MIA (n = 17) IAC (n = 17) P

Age (years) 56.71 ± 10.39 60.32 ± 10.33 0.135 57.00 ± 12.39 62.00 ± 9.62 0.198
Gender (%) 0.301 0.732
 Female 24 (63.16%) 19 (51.35%) 9 (52.94%) 7 (41.18%)
 Male 14 (36.84%) 18 (48.65%) 8 (47.06%) 10 (58.82%)

Smoking status 0.981 0.485
 Never smoked 36 (94.74%) 36 (97.30%) 15 (88.24%) 17 (100.00%)
 Former or current smoker 2 (5.26%) 1 (2.70%) 2 (11.76%) 0 (0.00%)

Tumour location 0.593 0.820
 Right upper lobe 15 (39.47%) 14 (37.84%) 5 (29.41%) 6 (35.29%)
 Right middle lobe 5 (13.16%) 2 (5.41%) 1 (5.88%) 0 (0.00%)
 Right lower lobe 6 (15.79%) 4 (10.81%) 3 (17.65%) 5 (29.41%)
 Left upper lobe 7 (18.42%) 8 (21.62%) 4 (23.53%) 4 (23.53%)
 Left lower lobe 5(13.16%) 9(24.32%) 4(23.53%) 2(11.76%)

Shape 0.015 1.000
 Irregular 12 (31.58%) 22 (59.46%) 7 (41.18%) 8 (47.06%)
 Round and oval 26 (68.42%) 15 (40.54%) 10 (58.82%) 9 (52.94%)

Tumour-lung interface 0.015 0.601
 Clear 35 (92.11%) 26 (70.27%) 14 (82.35%) 16 (94.12%)
 Unclear 3 (7.89%) 11 (29.73%) 3 (17.65%) 1 (5.88%)

Lobulation 0.744 0.018
 Absent 13 (34.21%) 14 (37.84%) 0 (0.00%) 6 (35.29%)
 Presence 25 (65.79%) 23 (62.16%) 17 (100.00%) 11 (64.71%)

Pleural indentation 0.300 0.296
 Absent 25 (65.79%) 20 (54.05%) 12 (70.59%) 8 (47.06%)
 Presence 13 (34.21%) 17 (45.95%) 5 (29.41%) 9 (52.94%)

CTv-MAL (HU) − 686.29 (− 741.04, 
− 641.21)

− 627.77 (− 690.22, 
− 586.56)

0.007 − 670.03 ± 59.50 − 627.41 ± 79.84 0.087

MD-MAL (mm) 14.55 (11.40, 19.54) 18.20 (14.88, 21.56) 0.005 13.80 (9.79, 16.12) 20.40 (15.07, 26.31) 0.001
MVD-MAL (mm) 10.75 (8.85, 14.40) 13.50 (10.87, 17.33) 0.007 11.59 ± 4.14 15.35 ± 4.76 0.020

Table 2   Results of the 
logistic regression analysis for 
conventional features

MD-MAL refers to the maximum diameter on the maximum axial layer. MVD-MAL refers to the maxi-
mum vertical diameter of the maximum diameter on the maximum axial layer. OR odds ratio, CI confi-
dence interval

Features Univariate logistic regression Multivariate logistic regression

OR 95% CI P OR 95% CI P

Shape 3.178 1.231, 8.200 0.017 –
Tumour–lung interface 4.936 1.250, 19.498 0.023 6.259 1.443, 27.147 0.014
MD-MAL (mm) 1.117 1.019, 1.223 0.018 -
MVD-MAL (mm) 1.175 1.046, 1.320 0.007 1.198 1.057, 1.357 0.005
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Table 3   Performance evaluation 
of all models established by the 
six machine-learning algorithms

LR logistic regression, SVM support vector machine, NBC naive Bayesian classifier, KNN K-nearest neigh-
bour, DT decision tree, RF random forest, AUC​ area under the receiver operating characteristic curve, CI 
confidence interval, ACC​ accuracy, SEN sensitivity, SPE specificity

Model Train Test

AUC (95%CI) ACC​ SPE SEN AUC (95%CI) ACC​ SPE SEN

LR 0.947 (0.905, 0.980) 0.867 0.895 0.838 0.945 (0.875, 0.996) 0.853 0.882 0.824
SVM 0.979 (0.956, 0.995) 0.893 0.895 0.892 0.934 (0.857, 0.990) 0.853 0.824 0.882
NBC 0.879 (0.809, 0.936) 0.773 0.711 0.838 0.875 (0.758, 0.965) 0.853 0.824 0.882
KNN 0.860 (0.791, 0.922) 0.693 0.921 0.459 0.881 (0.773, 0.964) 0.794 0.882 0.706
DT 0.898 (0.841, 0.947) 0.827 0.711 0.946 0.799 (0.670, 0.912) 0.794 0.765 0.824
RF 0.970 (0.939, 0.991) 0.920 0.974 0.865 0.903 (0.803, 0.979) 0.794 0.882 0.706

Fig. 3   The Nomogram of the combined model constructed by the 
rad_score, tumour-lung interface, and MVD-MAL to assess the prob-
ability of IAC in B-pGGNs. Among these, for tumour-lung inter-
face, “1” indicates a pure ground-glass nodule with bubble-likes 
(B-pGGN) with an unclear edge appearance. A straight line was 

drawn perpendicularly from the marked position of each feature axis 
to the total points, and a corresponding point for each feature was 
obtained. All points were summed for all features. Next, the sum was 
marked on the total point axes, and a straight line was drawn perpen-
dicular to the probability axis

Table 4   Evaluation of the three logistic regression prediction models

AUC​ area under the receiver operating characteristic curve, CI confidence interval, ACC​ accuracy, SEN sensitivity, SPE specificity

Item Conventional model Radiomics model Combined model

Training Test Training Test Training Test

AUC (95% CI) 0.750 (0.654,0.839) 0.692 (0.526, 
0.840)

0.947 (0.905, 0.980) 0.945 (0.875, 
0.996)

0.953 (0.915, 0.982) 0.945 
(0.874,1.000)

ACC​ 0.653 0.618 0.867 0.853 0.867 0.882
SEN 0.784 0.824 0.838 0.824 0.892 0.882
SPE 0.526 0.412 0.895 0.882 0.842 0.882
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The rad_score was the only independent predictor in the 
combine model. The rad_score of 16 radiomics features was 
calculated as follows:

In the present study, the conventional model composed 
of tumour-lung interface and the MVD-MAL produced 
medium AUCs of 0.750 in the training cluster and 0.692 in 
the test cluster. The radiomics model had better AUCs of 
0.947 in the training cluster and 0.945 in the test cluster. The 
combined model produced AUCs of 0.953 in the training 
cluster and 0.945 in the test cluster, and was visualized by a 
nomogram (Fig. 3). The performance comparison details of 
the three models can be viewed in Table 4. The confusion 
matrixes of the three models are presented in Supplementary 
Tables S3–S11.

Rad_score = 0.725 − 2.036 × shapeSphericity + 0.452 × shapeMajorAxis + 4.958

× shapeSurfaceArea − 1.757 × firstorderSkewness − 2.793

× firstorderMedian + 0.162 × firstorderMaximum + 2.186

× firstorder10Percentile + 0.080 × firstorderKurtosis − 3.278

× glrlmShortRunLowGrayLevelEmphasis − 0.029

× glrlmLongRunLowGrayLevelEmphasis − 0.928

× glszmSizeZoneNonUniformityNormalized + 2.385

× glszmSmallAreaHighGrayLevelEmphasis + 2.646

× glszmLowGrayLevelZoneEmphasis + 1.538

× glszmSmallAreaLowGrayLevelEmphasis − 0.222

× ngtdmCoarseness

− 6.344 × ngtdmBusyness

The Delong test showed that the combined model yielded 
no performance improvement (vs. the radiomics model) in 
the training cluster (P = 0.485). Regardless of cluster, both 

the radiomics model and the combined model were statisti-
cally better than the conventional model (P < 0.05). None 
of the three models showed significant differences between 
the training cluster and the test cluster, which further dem-
onstrated the stability of our model.

The Hosmer–Lemeshow test with a nonsignificant test 
statistic (P > 0.05) indicated that our models had been well 
calibrated. The calibration curves are shown in Fig. 4. The 
decision curves showed that the radiomics model (blue line) 
and combined model (red line) generated a good net benefit 
in both clusters (Fig. 5).

Fig. 4   The calibration curves of the three models for the training (A) and test clusters (B). Calibration curves evaluated the correspondence 
between predicted and observed probabilities. A colourful line closer to the grey line corresponds to a better prediction model
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Since only 5 nodules were scanned by the Philips 
machine, the independent validation groups were divided 
into a General Electric cluster (MIA, n = 40; IAC, n = 45) 
and a Siemens cluster (MIA, n = 10; IAC, n = 9). The per-
formance of the radiomics model and the combined model 
was sufficiently verified in the General Electric cluster 
(AUC = 0.956 for the radiomics model; AUC = 0.956 for the 
combined model) and Siemens cluster (AUC = 0.897 for the 
radiomics model; AUC = 0.936 for the combined model). 
Furthermore, the Delong test demonstrated the appropriate 
stability and universality of the models.

Discussion

In this study, we aimed to analyse conventional CT and radi-
omics features to construct and verify a model that can accu-
rately predict the pathological invasiveness of B-pGGNs 
before resection. To our knowledge, we are the first to focus 
on preoperative predictions of B-pGGNs. We discovered that 
the rad_score was significantly associated with the invasive-
ness of B-pGGNs and could predict IAC as an independent 
biomarker, with AUCs of 0.947 and 0.945 for the training 
and test clusters, respectively. The performance of the com-
bined model was not significantly improved.

Suspicious morphology offered valuable information on 
pGGNs for managing [9, 31]. Bubble-like signs include a 
dilated bronchiole or residual air-filled space on pathology 
owing to partial alveolar filling by proliferative cells and/or 
thickening of alveolar septa and were valuable features for 
differentiating IAC in pGGNs [32]. Our results revealed that 
the probability of bubble-like signs in MIA reached 19.10% 
(55/288), which was similar to another report (22.1%) [20]. 
Considering the significance of precisely differentiation, our 
aim was to adopt a more comprehensive and objective model 
instead of a single morphology criterion.

Among conventional features, the tumour-lung inter-
face and MVD-MAL were significantly correlated with the 
invasiveness of B-pGGNs. In terms of the marginal fea-
tures of pGGNs, Chu et al. [20] found that invasive pGGNs 
(MIAs/IACs) usually had coarse margins (P < 0.001). 
Gao et  al. [33] showed no difference in clear tumour-
lung interfaces between preinvasive and invasive nodules 
(P = 0.140) but noted a difference between benign nodules 
and IAC (P = 0.001). Our study showed that IACs presenting 
B-pGGNs with an unclear tumour–lung interface were more 
common. The MVD-MAL was a quantitative index associ-
ated with nodule roundness [34]. Han et al. [23] showed that 
the MVD-MAL of pGGNs may be helpful for differentiat-
ing IAC from preinvasive/MIA lesions. Our study showed 
similar results: the MVD-MAL was a valuable predictor of 
B-pGGNs invasiveness.

Our research demonstrated a strong correlation between 
radiomics and tumour histological invasiveness. By using 
a combination of sixteen radiomics features, the B-pGGNs 
histological subtype could be reliably predicted, includ-
ing three “Shape”, five “First-order”, two “GLRLM”, four 
“GLSZM” and two “NGTDM” features. “Shape” defines 
the physical characteristics of the whole tumour in terms 
of shape and volume; for example, “Sphericity” determines 
how spherical (round) a tumour is, and “Surface major axis” 
and “Surface area” describe the 3D geometric properties of 
the tumour [35]. The “Shape” was also adopted by Xiong 
et al. [36] to discriminate between IAC from MIA presenting 
as pGGNs (P = 0.028). Using “First-order histogram” statis-
tics of voxel intensity features, “Skewness” and “Median” 
quantified the density characteristics of tumour regions on 
CT images [37]. “Skewness” and “Median” had good per-
formance in Zhang et al.’s [16] study distinguishing between 
IAC and AIS/MIA appearing as pGGNs. Texture features 
are derived from “GLRLM”, “GLSZM” and “NGTDM”, 
which reflect the textural characteristics of intra-tumour 

Fig. 5   The decision curves of the three models in the training (A) and 
test clusters (B). The net benefit is shown on the y-axis, and the prob-
ability threshold is shown on the x-axis. The radiomics model (blue 

line) and the combined model (red line) generated a good net benefit 
in both training and testing samples
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heterogeneity [38]. As a non-invasive indicator, the high 
heterogeneity of lung adenocarcinoma by texture extraction 
was associated with a higher pathological grade [39].

Xu et al. [40] analysed 322 pGGNs and showed good 
predictive AUC for AIS/MIA from IAC in the test cohort of 
0.824 for the conventional model, 0.833 for the radiomics 
model and 0.848 for the combined model. Compared with 
the features that they selected, “Shape” and “First-order” 
features were also included in ours, which yielded a better 
AUC. Sun et al. [41] predicted MIA/IAC from benign/AAH/
AIS manifesting as pGGNs and indicated that the combined 
model (AUC = 0.80) performed better than the radiomics 
model (AUC = 0.73) in the training cluster. However, our 
results, the combined model did not improve diagnostic effi-
ciency. In contrast to previous research, our study focused 
on B-pGGNs for the first time, showed excellent discrimina-
tive performance for the radiomics model (AUC, 0.947) in 
the training cluster and the superiority of the rad_score as 
an independent biomarker. The radiomics model had stable 
AUC, ACC, SPE and SEN values and was also proven to be 
excellent in the General Electric cluster (AUC = 0.956) and 
Siemens cluster (AUC = 0.897).

Nevertheless, our study had some limitations. First, mul-
ticentre B-pGGNs imaging data were not used for additional 
validation. We will conduct prospective experiments with 
a larger amount. Second, automatic generation of a three-
dimensional mask of nodules is still an immature technol-
ogy; thus, some subjective errors exist in the delineation 
of the ROIs. Remaining vessels and bronchi may still gen-
erate inaccurate predictions from some radiomics features. 
Because we focused on invasive lesions in case collection, 
AIS was not included in our study. In further refined experi-
ments, comparative research on bubble-like signs in lung 
pGGNs will be performed between pathology and radiology 
settings, elastic fiber staining will be used for evaluation of 
alveolar rupture, collapse and invasion.

Conclusions

We established a model based on combining conventional 
and radiomics features to facilitate differentiation between 
IAC from MIA presenting as B-pGGNs on preoperative 
HRCT and demonstrated the excellent predictive perfor-
mance. If these B-pGGNs are appropriately classified in a 
timely and reasonable manner, blind or extensive radical 
treatment will be avoided.
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