
SPECIAL EDITION Controversies in Surgery for Thoracic Aorta

Bicuspid aortic valve related aortopathy

Sina Stock1 • Salah A. Mohamed1 • Hans-Hinrich Sievers1

Received: 24 May 2017 / Accepted: 22 August 2017 / Published online: 30 August 2017

� The Japanese Association for Thoracic Surgery 2017

Abstract Bicuspid aortic valve related aortopathy is

known to significantly increase the risk for catastrophic

aortic events and, therefore, represents a considerable

health burden. Albeit of ongoing research in this field

including genetic, molecular, hemodynamic and morpho-

logic aspects, bicuspid aortic valve related aortopathy still

represents an imperfectly understood disorder. This lack in

knowledge results in a lack of consistency considering

different therapeutic approaches. Recent studies have pro-

vided new insights into the etiology and clinical impacts of

bicuspid aortic valve related aortopathy in different clinical

settings, leading to a growing body of opinion towards a

more individualized surgical approach than currently pro-

vided by the guidelines. Especially valvular hemodynam-

ics—stenosis and regurgitation—seem to have significant

impact on the development of bicuspid aortic valve related

aortopathy. In this context, there is evidence that regurgi-

tation of bicuspid aortic valves is the more fatal path-

omechanism. Furthermore, ‘‘age’’ represents an aspect that

should be taken into account when deciding whether to

replace the aorta or not, because the diameter depends

mainly on a patients age. The same diameter of the aorta in

a 70-year old and a 20-year old patient has to be interpreted

differently and should, therefore, result in different thera-

peutic strategies.
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Introduction

With a prevalence of 1–2% in the general population, the

bicuspid aortic valve (BAV) represents the most frequent

congenital cardiovascular malformation [1]. This anatom-

ical variation leads to an increased risk for severe cardio-

vascular events, which are not only due to valvular

dysfunction itself but further caused by concomitant

dilatation of any or all segments of the proximal aorta

occurring in roughly 40–60% of BAV patients. The so-

called ‘‘BAV aortopathy’’ is associated with a 6- to 9-fold

increased risk of aortic complications such as rupture and

dissection compared to the general population [2–4], thus

representing a striking risk factor for these catastrophic

clinical events involving high mortality and morbidity.

Aiming to conceive and to deal with this concerning

health burden, BAV aortopathy has been an omnipresent

issue in cardiovascular research over the past years. Many

investigators scrutinized BAV aortopathy considering its

multifactorial pathophysiology, concentrating on hemody-

namics, molecular as well as cellular pathways and

genetics, its mechanisms of disease progression and the

different therapeutic approaches during BAV surgery.

Nevertheless, despite ever-new insights into the intricacy

of BAV aortopathy, crucial questions of this eclectic dis-

ease remain unanswered and scientific findings of

debatable interpretation.

Morphology of bicuspid aortic valve related
aortopathy

As BAV aortopathy remains an imperfectly understood

disorder with a heterogeneous nature, efforts in the past

have been made to classify morphologic types to facilitate
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risk stratification and standardize surgical approaches in

BAV aortopathy. The technical surgical options range from

a supracoronary tube graft through full root replacement—

either valve sparing or composite with a heart valve pros-

thesis—to partial or full replacement of the arch with

concomitant deep hypothermia and circulatory arrest. Since

perioperative morbidity and mortality are related to the

extent of the procedure, it is crucial to keep the surgical

approach to ‘‘as much as necessary and as little as

possible’’.

To reach this goal, several classifications including

the anatomy of the proximal aorta with or without rela-

tion to the BAV phenotype have emerged [5–9]. Fazel

and coworkers [5] defined four clusters of BAV aor-

topathy according to the dilated regions of the proximal

aorta. Cluster I includes patients with dilation of the

aortic root, Cluster II dilation of the tubular ascending

aorta (AAo), Cluster III dilation of the tubular AAo and

transverse arch and Cluster IV combined dilation of the

aortic root, the tubular AAo and the transverse arch. A

significant relation between cusp fusion pattern of the

BAV and the different clusters was not detected. Another

classification was derived by Della Corte et al. [6]

including the four phenotypes (1) normal aorta, (2) small

aorta, (3) ‘‘mild-ascending phenotype’’ consisting of a

dilation of the tubular AAo and (4) ‘‘root phenotype’’

consisting of a dilated aortic root. In addition to the

Fazel classification, Della Corte and colleagues also

investigated in this study the role of valve failure in BAV

patients and found a significant proportional relation in

the degree of stenosis and ascending aortic diameter in

the ‘‘mild-ascending phenotype’’, whereas ‘‘root pheno-

type’’ was often associated with regurgitation and inde-

pendent of stenosis [6]. The association of BAV

phenotype, aortic configuration and hemodynamics was

further investigated by Sievers and coworkers [9] con-

firming the findings of Della Corte et al. and further

reporting a correlation with BAV phenotypes [10]

(Fig. 1). The authors demonstrated a significant associ-

ation of stenotic BAV type 0 and type 1 LR with local-

ized AAO dilation (Fazel Cluster II [5]), whereas

regurgitant BAV type 1 LR and type 2/unicuspid were

associated with more extended aortopathy involving the

aortic root (Fazel Cluster I and Cluster IV [5]) (Fig. 2).

Though efforts have been made in the past to investigate

further the different phenotypes of BAV aortopathy and to

define distinct patterns, up to now no uniform classification

scheme is ascertained. Nevertheless, the already acquired

knowledge can guide clinical practice and might be helpful

in making precise distinctions of surgical techniques in

individual patients.

Genetic basis and biomarkers of BAV aortopathy

BAV has a high heritability of approximately 0.89. A

family-based genome-wide analysis found that BAV was

linked to chromosomal regions 5q, 13q, and 18q with an

autosomal dominant inheritance, reduced penetrance, and

non-Mendelian pattern [11, 12]. Although the ascending

aorta and semilunar valves share common embryological

origins including the second heart field and cardiac neural

crest cells, the etiology of aortopathy in patients with BAV

remains unknown at present. Few studies have identified

genes responsible for the genetic predisposition, e.g.,

mutations were detected in the transmembrane receptor

NOTCH1 (gene mapped to a locus on chromosome 9q) in

familiar, sporadic cases, and in aortopathy of BAV

[13–15]. Several genes and loci are known to be associated

with familial thoracic aortic aneurysms and dissections

(e.g., transforming growth factor beta (TGFß) receptor type

I and receptor type II, smooth muscle-specific myosin

Fig. 1 Morphologic classification of bicuspid aortic valve pheno-

types according to Sievers et al. [10]
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heavy chain, myosin light chain kinase, and smooth mus-

cle-specific alpha-actin (ACTA2). The ACTA2 gene is

thought to be responsible for approximately 10–14% of the

inherited ascending thoracic aortic aneurysms and dissec-

tions [16, 17]. Other genes originating from the identifi-

cation of knockout mouse models, e.g., eNOS/

apolipoprotein E double-knockout detected a higher inci-

dence of aortopathy and increased BAV occurrence in

mice. Nevertheless, in BAV, molecular biological investi-

gations have indicated an altered expression pattern of

matrix metalloproteinases and their inhibitors. Further-

more, how the programmed cell death proceeds in the

vascular smooth muscle cell of the aorta was also

demonstrated. In a study by Grewal et al. [18], showed, that

the smooth muscle cell of BAV leads to significant dif-

ferences in the structure and maturation of the smooth

muscle cells. Qualitative changes in collagen content in

advanced glycation end products (AGEs) showed elevated

levels of circulating soluble receptor for AGE in dilatation

associated with BAV [19]. The collagen in BAV patients is

highly AGE-modified in comparison with the control group

[20]. The validation of circulating differentially expressed

proteins will increase our understanding of the molecular

mechanisms underlying BAV aortopathy and thus support

the future development of clinical parameters, biomarkers,

and monitoring patients at high risk to avoid dissections.

Does it all come down to hemodynamics?

Aortic hemodynamics is an emerging issue in research in

BAV aortopathy. The hemodynamic hypothesis portraying

the development of BAV aortopathy due to altered flow

characteristics in the proximal aorta has been proposed as

an alternative to the genetic hypothesis. And indeed, sev-

eral studies have reported that the different phenotypes of

BAV [10] (Fig. 2) and the type of valve dysfunction—

stenosis versus regurgitation—result in distinct hemody-

namics in the proximal aorta and strongly influence the risk

for severe aortic events [2, 4, 6, 9, 21–34]. This stimulus,

also known as wall shear stress (WSS), is supposed to

affect local matrix homeostasis and subsequently the phe-

notype of BAV aortopathy [35–38]. This is a typical

example of mechanotransduction trying to adapt to the

altered force impact on the wall [39] (Fig. 3). Investiga-

tions of Atkins and colleagues validated this suggestion in

a controlled ex vivo setting comparing regional WSS in

BAV compared to tricuspid aortic valves (TAV) in a por-

cine tissue model [40]. The authors reported structural,

molecular and cellular alterations, which can focally

induce aortic medial degeneration, as seen in human BAV

aortopathy. Considering WSS in vivo, advances in reso-

nance magnetic imaging (MRI) enable nowadays the

visualization and quantification of aortic blood flow and

WSS [31, 36, 41–43]. Using 4D flow MRI, it was possible

to prove that WSS in BAV is increased compared to TAV

in an age and aortic size matched cohort [30]. Moreover,

regional differences in aortic WSS were detected [29, 30],

which lead to changes in regional aortic histology and

proteolytic events [34], are associated with different mor-

phologies of BAV aortopathy [33] and are dependent on

the BAV phenotype [29, 30] (Fig. 4).

The role of BAV cusp fusion patterns in the expression

of BAV aortopathy and its different phenotypes was issue

of various studies, revealing a correlation of these two

parameters [2, 9, 28, 29, 40, 44]. Sievers and colleagues

highlighted in a recent study this dependence of aortic

configuration, BAV phenotype and valvular hemodynam-

ics. However, these authors state in accordance with the

findings of Fazel et al. and Schäfers et al. that it is deficient

to predict the morphology of BAV aortopathy only in

relation to the BAV phenotype and vice versa [5, 7, 9], but

the coincident consideration of valvular hemodynamics

leads to significant patterns [9].

Thus, there is evidence that the mode of BAV dys-

function—stenosis versus regurgitation—and the resulting

changes in aortic flow patterns influence the development

Fig. 2 Mosaic plot of the distribution of bicuspid aortic valve type,

aortic configuration and valvular hemodynamics of a patient popu-

lation. e.g. Type 1 LR and insufficiency is frequently associated with

Fazel type IV (aortic root and ascending aorta dilatation, loss of

sinotubular junction waist). Reprinted from Sievers et al. [9] with

permission of Oxford University Press
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of BAV aortopathy, the involved regions of the proximal

aorta and the risk for aortic dissection or rupture

[9, 25, 26, 45–47]. Regarding BAV stenosis in comparison

to regurgitation, recent studies strengthened the suspicion

of BAV regurgitation resembling the more influential type

of BAV dysfunction. Wang et al. found BAV regurgitation

after isolated aortic valve replacement (AVR) to be sig-

nificantly related to aortic events accompanied by faster

aortic dilation compared to BAV stenosis or tricuspid

aortic valve regurgitation [26]. Girdauskas et al. underlined

and amplified these findings in a meta-analysis. In addition

to a 10-fold increased risk for aortic dissection in patients

undergoing AVR for regurgitant BAVs compared to a

stenotic vitium, these authors provide a trend toward

smaller aortic diameters in patients with regurgitant BAVs

at the time of AVR leading to the suggestion that aortic

dissection in patients with BAV regurgitation occurs at

lower diameters [27]. Histological findings confirm the

deteriorating character of BAV regurgitation, depicting

more hazardous histological changes in the aortic wall

compared to BAV stenosis [46]. In line with all these

aspects, recent studies by Girdauskas and coworkers

demonstrated that patients with BAV and TAV stenosis

accompanied by mild to moderate AAo dilation are at

comparably low risk for aortic events up to 15 years after

isolated AVR and exhibit similar behavior of the proximal

aorta [24, 48–50]. Therefore, a less aggressive policy

considering replacement of the proximal aorta in patients

with BAV stenosis seems to be justified.

Though these scientific achievements and gain in

knowledge indicating the decisive role of hemodynamics in

the development of BAV aortopathy, there is also evidence

refuting the thesis of hemodynamics representing the sole

precondition leading to aortic events. If BAV aortopathy

was a disease only caused by altered hemodynamics, the

replacement of the malfunctioning BAV would subse-

quently not only cure the valvular disease but also prevent

further dilation of the proximal aorta. Whereas this thesis is

suggested to be partially true in stenotic BAVs [49],

potentially representing the more flow-related type of BAV

dysfunction, it is elusive regarding regurgitant BAV. The

more extended BAV aortopathy involving the aortic root is

associated with regurgitant BAV and remarkably, aortic

dilation and the risk of aortic events does not stagnate after

AVR but further progress [26, 27]. Additionally, Sievers

et al. [9] reported that extensive aortic dilation including

the aortic root also occurred in a considerable amount of

patients with only trace regurgitant BAV, indicating that

hemodynamic stress is unlikely to explain this kind of

BAV aortopathy, probably being more induced by a

genetic pathway. Instead of considering hemodynamics

and genetics as separate principles in the development of

Fig. 3 Concept of mechanobiology underlying homeostasis in the

thoracic aorta. Alterations, either due to higher imposed forces

(hypertension) or due to (genetic) alterations in the various

components required for proper sensing and/or transduction of the

signal, may lead to aneurysms/dissections. Reprinted from De Backer

[39] with permission of Oxford University Press
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BAV aortopathy, the manifold phenotype of this disease

seems to result rather from individually different impacts

of both factors and their individual interaction [2].

Surgical implications: size is not everything

Surgical decision making in BAV aortopathy still remains

controversy without broad consistency, because the deci-

sion making process is far more complex than simply

following an absolute diameter. This complexity affects

daily clinical practice considerably and is emphasized by

investigations of Verma et al. [51] reporting a sharp dis-

tinction in diagnosis and surgical approaches in BAV

aortopathy based on significant differences in the attitude

of surgeons towards the disease. Although the majority of

the 100 surveyed surgeons was well-informed about cur-

rent surgical guidelines, a considerable number performed

aortic intervention in disagreement with these guidelines.

The underlying causes were mainly personal attitude on the

etiology (genetics versus hemodynamics) and considera-

tion of different parameters other than AAo diameter.

Nonetheless, current guidelines focus on the AAo diameter

and recommend a threshold for surgical intervention in

BAV aortopathy of[55 mm and in patients undergoing

AVR of[45 mm [52, 53], but these cutoff levels have

been fluctuating in the past. Hardikar and Marwick ana-

lyzed the evolution of the guidelines for BAV aortopathy

[54], waving from a conservative threshold diameter

of[55 mm in 1998 to an aggressive cutoff level of

40–45 mm in 2010 and returning to[55 mm in 2014.

Remarkably, no conclusive data were published to support

either an aggressive or more conservative approach for

prophylactic aortic surgery in BAV aortopathy. This

underlines the still continuing knowledge gaps leading to a

lack of consistency and the foundation of surgical

approaches to BAV aortopathy. Furthermore, when

regarding AAo diameter as risk factor for aortic dissection

or rupture, ‘‘diameter’’ and ‘‘diameter’’ is not supposed to

be the same as it correlates with various factors. More as

body surface area (BSA) and gender, age and the lifelong

growth of the AAo diameter mainly influence the proximal

aorta and, therefore, need to be taken into account when

determining cutoff levels for aortic surgery in BAV

patients [55]. Physiologically, the AAo is considered out-

grown after adolescence in relation to the BSA.

Fig. 4 Bicuspid aortic valve

related flow abnormalities

increase aortic wall stress.

Reprinted from Publication

Stephens et al. [83] with

permission from Elsevier
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Nevertheless, the diameter still increases with age and AAo

tissue degeneration, faster in the early adulthood than in

older age and with broad variably in individual patients

[56–59]. For example, an AAo diameter of 40 mm at

25 years age is more pathological than at 75 years age [60].

Therefore, a more individualized approach based on a z-

score—including BSA and age in addition to the diame-

ter—seems to be advantageous [61]. Another problem

rising from ‘‘diameter’’ as sole predictor for severe aortic

events is highlighted by Pape et al., who reported that 40%

of patients with aortic dissection had diameters\50 mm

and 50% of patients with aortic dissection and normal

aortic diameters (\40 mm) had no known risk factors

(hypertension, Marfan, BAV) [62]. Additionally, a signif-

icant shortcoming is represented by the timing of the

measurement of aortic diameters. Studies mostly include

only AAo diameters post-dissection, which is known to be

roughly 13 mm larger compared to pre-dissection [63]. But

the pre-dissection diameter is the real diameter at risk.

Furthermore, the focus on ascending aortic diameter as

solitary parameter for surgical intervention is delusive as

wall tension of the aorta is the major determinant for the risk

of aortic dissection or rupture. It is safe knowledge, that

dissection occurs when wall stress exceeds the tensile

strength of the material. Different factors have to be taken

into account provided approximately by the law of Laplace.

Wall tension ¼ Diameter � pressure

Wall thickness=quality
:

According to this formula, hypertension as second factor

should be thoroughly kept in mind. The decisive role of

severe hypertension as catalyst for aortic dissection and

rupture of silent aneurysms has been highlighted by

investigations of Elefteriades and colleagues, reporting a

cluster of healthy young weight lifters suffering from these

catastrophic aortic events [64, 65]. Further evaluation

revealed an extreme elevation of blood pressures up to or

even higher 300 mmHg during severe weight lifting in a

healthy cohort [66, 67]. Additionally, a questionnaire

revealed in a majority of the surveyed patients extreme

exertion or severe emotional upset preliminary to acute

aortic dissection, presumably leading to transient severe

hypertension [68]. But though blood pressure can play a

crucial role in the fate of the AAo, the options to keep it

under control are limited. In contrast to the AAo diameter,

that is measurable and in some way constant, blood pres-

sure varies instantaneously, considerably and unpre-

dictably. The supervening of an acute, severe hypertensive

event to an already enlarged aorta with deteriorating

mechanical properties is often the last straw leading to

aortic dissection or rupture.

The third factor influencing aortic wall tension is the

wall characteristic itself. Recent research in this field has

provided more knowledge about histological anomalies,

but the precise structural or qualitative determinants of the

aortic wall in BAV aortopathy, however, remain elusive.

When an experienced surgeon performs aortotomy, he may

provide some information of the aortic wall quality, such as

fragility or thinning of the tissue. A recent study showed

that patients suffering from acute aortic dissection had

significantly smaller aortic wall thickness, attributing to a

thinner aortic media [69]. Histologically, there is evidence

that the aorta in patients with BAV is biomechanically

different from patients with TAV [70], but the complexity

of this issue was further strengthened by investigations

reporting more severe histological abnormalities in TAV

compared to BAV aortas [71]. The extracellular matrix

(ECM), which regulates cellular events and maintains the

integrity of a vascular wall [72], seems to play a critical

role, especially matrix metalloproteinases (MMPs) and

their specific tissue inhibitors (TIMPs) [73]. A recent study

of Wu et al. [74] also reported that micro-ribonucleic acid-

17 (miR-17) is involved in BAV aortopathy as it controls

TIMPs and interestingly, there were differences in miR-17

in less and more severely dilated regions in the same BAV

aortas. This concept of regional heterogeneity of the ECM

is additionally supported by various research groups

[74–77]. But also intracellular factors like differences in

the neural crest-derived smooth muscle cells of the AAo,

show significant patterns in BAV aortopathy [78]. Fur-

thermore, BAV aortopathy is presumed to cohere with

connective tissue weakness. Roberts and colleagues found

a significant loss of aortic medial elastic fibers in AAo

tissue of BAV patients [46]. This connective tissue weak-

ness, however, might not only influence the AAo and BAV

itself but a larger part of the cardiovascular system. An

entity described as WAMBIRE complex (weak aorto-mi-

tral bicuspid relation) represents the coincidence of aortic

and mitral regurgitation as well as dilation of the proximal

aorta and was observed in patient with BAV type 1 LR

[10, 79]. These WAMBIRE phenotype is supported by

investigations of Lad et al., who reported on 29 BAV

patients needing concomitant mitral surgery and presenting

with aortic annular dilation. Further investigations by

Charitos et al. [80] provided evidence that patients with

BAV suffer more often from elongated anterior mitral

leaflet compared to patients with TAV.

Bringing together these manifold aspects of surgical

considerations in BAV aortopathy, ‘‘size’’ or diameter as

sole parameter considered in the decision process whether

to replace the aorta in patients with BAV is insufficient.

The clinical heterogeneity of BAV aortopathy necessitates

an individualized approach in every patient considering

patient’s specific characteristics. The feasibility and

excellent outcome of such an individualized approach is

underlined by Sievers and colleagues, who realized a
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multifactorial approach to aortic resection in BAV aor-

topathy with regard to the mode of BAV failure (stenosis

and regurgitation) and BAV phenotype [81]. We agree with

Fedak and Verma that ‘‘the current guidelines for aortic

resection in patients with BAV aortopathy are too simple’’

[82] to cover the diversity of this burdensome disease.
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