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Abstract
Researchers often struggle when applying ‘golden rules of thumb’ to evaluate structural equation models. This paper questions
the notion of universal thresholds and calls for adjusted orientation points that account for sample size, factor loadings, the
number of latent variables and indicators, as well as data (non-)normality. This research explores the need for flexible cutoffs and
their accuracy in single- and two-index strategies. Study 1 reveals that many indices are biased; thus, rigid cutoffs can become
imprecise. Flexible cutoff values are shown to compensate for the unique distorting patterns and prove to be particularly
beneficial for moderate misspecification. Study 2 sheds further light on this ‘gray’ area of misspecification and disentangles
the different sources of misspecification. Study 3 finally investigates the performance of flexible cutoffs for non-normal data.
Having substantiated higher performance for flexible reference values, this paper provides to managers an easy-to-use tool that
facilitates the determination of adequate cutoffs.
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Introduction

Structural equation modeling (SEM) is widely applied as a
theory-testing tool and the technique is extensively used in
many domains of the marketing discipline, especially in
marketing strategy and consumer behavior research. In their
analysis of the major marketing journals, Kumar et al. (2017)
recently observed that SEM ranked second in currently used
analytical techniques. Reliance on SEM, which has been found
to boost strategic insights, is a Bpioneer[s] in contributing to the
citations^ (Kumar et al. 2017, p. 180). SEM is also often the
method of choice for validating multi-item scales (Hulland et al.

2017) and for assessing common method variance (Podsakoff et
al. 2003). However, researchers sometimes strugglewhen testing
theoretical models with the help of SEM. The once-promising
concept of indicators of global model fit (referred to as fit indi-
ces) has received relatively little attention lately. This develop-
ment (or lack thereof) is worrisome because a substantial body of
research indicates that fit indices vary with model size (e.g., the
number of latent and manifest variables) and data characteristics
(e.g., sample size). When fit indices respond to factors other than
model misspecification, this introduces nuisance variance in fit
scores and, in turn, provokes misleading conclusions. To resolve
this issue, the seminal work byHu andBentler (1999), which has
been cited over 53,000 times to date (Google Scholar citations,
as of June 2018), proposes relying on pairs of indicators instead
of just one indicator. Still, the decision about the model is based
on fixed reference values (cutoffs) that indicate ‘good fit’ (e.g.,
close to .95), regardless of the model or data characteristics,
which are known to contaminate the fit indices’ ability to identify
‘correct’ models and reject ‘false’ ones.

The paper aims to tackle this weakness, using a contingency
approach. The ‘sui generis’ principle (Cheung and Rensvold
2001) implies that each fit index has a unique distribution that
is limited by the parameters of the model and the sample. In
contrast to fixed cutoffs, flexible cutoff values are specific to
these parameters. The present research proposes that this can
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be achieved by simulations that estimate correctly specified
models under the specific model and data conditions. As we
will show, flexible cutoffs improve precision when testing
models for a vast range of configurations, from small to large
models and samples. Unlike fixed cutoffs, this contingent ap-
proach allows to specify the assumed uncertainty about the cut-
off values (α of .001 to .1). The flexible cutoffs are thus not only
flexible in terms of model parameters but also flexible in the
conclusions about a model. Depending on the certainty re-
searchers have about the model or the data, this allows to adjust
for more or less conservative evaluations and even makes sen-
sitivity analyses of the decision about the model possible.

This paper first identifies the factors that distort fit indices,
irrespective of the actual extent of misspecification. Flexible
cutoffs, which serve as orientation points for decisions about
a model, are then determined in a comprehensive simulation.
As researchers place perhaps too much faith in gold standards
(e.g., fixed thresholds for statistical significance or model fit),
our flexible paradigm aims at balancing Type I errors (‘errone-
ously rejecting a correct model’) and Type II errors (‘errone-
ously accepting a misspecified model’), and thereof power.1

Three studies set out to provide evidence that compared to fixed
cutoffs, flexible cutoffs have preferable accuracy in detecting
correct and misspecified models, especially in the ‘gray area’ of
minor misspecifications and less ideal conditions (e.g., few
degrees of freedom or small samples, (Kenny et al. 2015).
Study 1 furnishes initial evidence that flexible cutoffs are capa-
ble of dampening the distorting impact of the factors that are
unrelated to model misspecification. Study 2 then investigates a
finer and continuous form of misspecification and disentangles
the different sources of model misspecification. As non-normal
data is not uncommon in practice, Study 3 finally examines the
performance of fixed and flexible cutoffs under this data con-
dition. We contribute to the literature in several ways. This
research—to the best of our knowledge for the first time—in
a ‘sui generis’ approach, develops cutoff values that (i) flexibly
cater to data and model characteristics, (ii) are particularly ef-
fective in the critical gray area of misspecification, (iii) improve
the detection of error in both the structural model and the mea-
surement model, (iv) allow for the balancing of Type I and Type
II errors, and (v) account for the non-normality of the data.

Note that the focus of this research is on the reference
values with respect to making more accurate decisions about
a model; however, the development or optimization of the fit
indices themselves is not within the scope of this paper.
Neither can a flexible approach remedy poorly performing
fit indicators, nor should this be the sole basis for accepting
or rejecting models. Flexible cutoffs should only serve as ori-
entation points (i.e., what fit value of an index is to be

expected for correctly specified models under these specific
models and data conditions). To guide marketing managers,
we illustrate the benefits of the flexible cutoff paradigm with
examples frommarketing research.We provide an easy-to-use
tool at www.flexiblecutoffs.org that helps to derive adjusted
cutoffs across a wide range of model configurations and
sample sizes.

Literature review and conceptual background

Sources of variation in model fit indices

Covariance-based structural equation modeling (CBSEM)
tests whether a theoretically modeled covariance matrix (as
implied by the theoretical model) resembles the empirical
(observed) covariance matrix of the data (e.g., Jöreskog and
Sörbom 1982). This fit is indicated by low values of χ2. As the
χ2 statistic increases with sample size, the probability of
rejecting the model also increases, which leads to unreliable
behaviors in the assessment of the theoretical model fit (e.g.,
Curran et al. 2002). To overcome this limitation, scholars have
advocated the use of fit indices. Over the past decades, a
multiplicity of fit measures has been suggested that can be
roughly grouped into ‘goodness-of-fit indices’ (a value of 1
indicates good fit) and ‘badness-of-fit indices’ (a value of 0
indicates good fit). Goodness-of-fit indices can further be split
into absolute indices (e.g., GFI) and incremental fit indices
(e.g., IFI) for which the model under investigation is com-
pared to a baseline model without any correlations or loadings
(Bentler and Bonett 1980).

Scholars have developed various ‘golden rules’ (Marsh et
al. 2004, p. 321) to draw a dividing line between models with
‘acceptable’ fit and models that are incorrectly specified.
However, these cutoff values cannot be treated in the same
way as test statistics, such as the χ2 test. Theory testing by
comparing an empirical value to a theoretical value with a
given confidence level (e.g., α = 5%) is thus not possible for
fit indices (Hayduk et al. 2007). Model misspecification, at
least in theory, should be the sole source of variation in the
indicators of model fit (Hu and Bentler 1998). However, a
large body of research has identified various factors that are
unrelated to misspecification but which also cause notable
variation in model fit statistics. Five key factors appear to have
the greatest potential in distorting fit values: the sample size,
model size, measurement model, model type, and the normal-
ity of the data distribution (Table 1).

Sensitivity to sample size and model size effects

Sample size is expected to induce variation in fit indices due to
the aforementioned bias of the underlying χ2 statistic. As fit
indices often rely on χ2 values, they inherit their sample size

1 The definitions of Type I and Type II errors are based on Hu and Bentler
(1999, p. 5) and Marsh et al. (2004, pp. 335-336) (see the Web Appendix for a
more detailed explanation).
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biases (e.g., Fan and Sivo 2007). Additionally, the size of the
model is deemed to harm the precision of generic cutoffs. This
model size effect stems from two sources that determine the
amount of model variables: (a) the number of latent variables
(Breivik and Olsson 2001) and (b) the indicators per latent
variable (Kenny and McCoach 2003; Marsh et al. 1998).
More variables in a model imply a larger covariance matrix
that, all other parameters being equal, increases the degrees of
freedom. Larger models therefore tend to increase the χ2 sta-
tistic (Kenny and McCoach 2003) and make one’s standards
for ‘fit’more lenient. Fit indices that for reasons of parsimony
penalize models with relatively few degrees of freedom, such
as RMSEA (Steiger and Lind 1980), are sensitive to this effect
(Sharma et al. 2005).

Sensitivity to the measurement model

The evidence is mixed as to whether fit indices are affected by
factor loadings, the dependencies between latent and manifest
variables (Gagne and Hancock 2006; Moshagen 2012;
Savalei 2012) or the correlations (or covariances) among la-
tent variables (Nasser and Wisenbaker 2003). As shown in
Table 1, only a few studies have investigated both questions
simultaneously. Sharma et al. (2005, p. 941) emphasized that
dependency effects are only critical if factor loadings fall be-
low a threshold of .5. Yet, such very low loadings (< .5) fail to
meet the minimum requirements for reliability (Bagozzi and
Yi 1988) and raise questions about the measurement.
Nonetheless, the impact of factor loadings on cutoff accuracy
is included in this research.

Sensitivity to the model type

CBSEM is used for different purposes, such as confirmatory
factor analysis (CFA) or SEM.While both CFAs and SEMs are
theory-driven, CFAs consider all relationships among latent
variables and are therefore often more complex than SEMs.
There are competing predictions as to whether fit indices differ
between both types of models. On one hand, CFAs typically
estimate more parameters than do SEMs (non-recursive SEMs
contain even fewer degrees of freedom), which results in fewer
degrees of freedom and a smaller χ2 value. Fit indices might
bear an imprint of this difference. On the other hand, the differ-
ence is only marginal considering the total degrees of freedom
available, particularly for large models with many indicators. It
is further plausible that SEMs already contain the theoretically
relevant paths. CFAs and SEMs therefore primarily differ in
dispensable and irrelevant relationships. Hence, the incremental
bias should be rather low. Given these considerations, the re-
sults obtained for CFAs are traditionally extended to SEMs
(Fan and Sivo 2007).

To determine the relevance of the model type, we reviewed
articles that were recently published in this journal over a

period of 5 years (2014 to 03/2018) and coded their applica-
tion (Web Appendix 1). Of the 68 articles that made use of
CBSEM, a vast majority (65 articles) used it for CFA to check
for convergent and discriminant validity or common method
bias. Twenty-nine articles used SEM to test a theoretical mod-
el, and a few papers (11) compared groups using multi-group
SEM. It is therefore reasonable to assume that CFA is the most
prominent and practically relevant application of SEM.

Sensitivity to data non-normality

Deviations from the multivariate normality of data (required
for ML and GLS estimators) is known to bias the χ2 statistic
and therewith fit indices (Fouladi 2000). The relevant research
(Table 1) addresses two parameters, specifically, the kurtosis
(tailedness) and skewness (asymmetry) of a multivariate dis-
tribution. The more tailed or skewed a distribution is, the
higher the degree of non-normality will be, although there is
no general agreement on what non-normality constitutes.
Some studies have solely varied kurtosis (e.g., Hu and
Bentler 1998), examining peaked or flat symmetric distribu-
tions, while others jointly varied kurtosis and skewness (e.g.,
Muthén and Kaplan 1985). There is neither agreement on
what degree of kurtosis or skewness constitutes a slight, mod-
erate, or severe extent of non-normality nor what values con-
stitute ‘acceptable’ non-normality (Curran et al. 1996; Marsh
et al. 2004; Nye and Drasgow 2011). A general finding seems
to be that fit indices that rely on the χ2 statistic (e.g., RMSEA)
are more sensitive to non-normal data than are indices that do
not, such as SRMR (Bentler 1995). The accuracy of the deci-
sions about a model should thus respond to deviations from
the normality assumption of the data. Our review of recent
CBSEM-papers in this journal indicates that eight papers men-
tion non-normality regarding their data (e.g., Miao and Wang
2017; Sleep et al. 2015).

Sensitivity to the type of misspecification: Structural
model vs. measurement model

Each fit index is not only subject to the aforementioned
sources of variation but is also known to respond differently
to the specific reasons of specification errors (Table 1). While
certain fit indices are particularly sensitive to misspecified
paths in the structural model (e.g., SRMR), others are more
sensitive to a misspecification of the measurement model,
such as CFI (Bentler 1990) or TLI (Tucker and Lewis 1973).
In consideration of this sensitivity to one type of
misspecification but insensitivity to the other, reliance on in-
dividual indices (single-index strategies) is deemed insuffi-
cient for the evaluation of model fit. Since no ‘one-fits-all’
indicator is yet available that is equally sensitive to both types
of misspecification, Hu and Bentler (1999) argue that relying
on a thoughtful combination of two indices and balancing
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their respective strengths and weaknesses is superior to rely-
ing on single indices. A two-index strategy combines the in-
dex that responds most sensitively to the misspecification of
the structural model (SRMR) with another index that is equal-
ly sensitive to the misspecification of the measurement model
(e.g., CFI).

To justify their decision about a model, researchers often
report larger sets of indicators, and sometimes it appears that
fit indices supporting the desired decision are ‘cherry-picked’.
Such a ‘more is better’ approach is problematic for two rea-
sons. First, reporting fit indices from the same group (e.g.,
CFI, TLI) leaves the problem that these indicators are only
efficient in detecting one source of misspecification.
Arbitrary combinations of similar indices are therefore prone
to ignore cases of misspecification to which these indices are
relatively insensitive. Second, untested combinations may in-
troduce nuisance variance in the evaluation of model fit. Each
fit index has a unique distribution and responds to the
misspecification-unrelated factors in a different fashion. By
cherry-picking untested combinations, researchers lose the
key benefit of balancing the respective strengths and weak-
nesses of the selected index pairs.

Balancing different indices still overlooks one key prob-
lem. Despite being carefully selected, the cutoff values for
the pairs of indices are fixed.2 Apart from some limiting notes
(e.g., TLI < .96 instead of .95 for N > 1000), the cutoffs for a
given combinational rule are uniformly applied to small sam-
ples of 150 cases and larger samples of, say, 950 cases.
Similarly, the very same cutoffs are used for simple models
(e.g., four indicators of two latent variables) and complex
models (e.g., 100 indicators for 20 latent variables). The
distorting factors discussed above still contaminate the fit
values of the indices being paired. It is therefore reasonable
to assume that this also harms the precision of the two-index
strategy, although to a lesser extent than for a single-index
strategy. Because each fit index supposedly has its own ‘sui
generis’ distribution (Cheung and Rensvold 2001), the cutoffs
for different fit indices should inherently account for their
unique distribution with regard to the relevant characteristics
of the model and the data.

Flexible cutoff values

Principle

In consideration of the multiplicity of distortions outlined
above, popular fixed cutoff points, such as .90 (Bentler and
Bonett 1980), .95 (Hu and Bentler 1998) or .05 (Browne and

Cudeck 1989) can be misleading (Chen et al. 2008; Sivo et al.
2006). To overcome this weakness of fixed cutoffs, this re-
search proposes the idea of flexible reference values that fol-
low a contingency approach in linewith the ‘sui generis’ claim
(Cheung and Rensvold 2001). As each index has its own
unique distribution, flexible cutoffs must account for the im-
print of the relevant distorting factors. Rather than applying a
universal threshold (e.g., a value close to .95 for CFI), cutoff
points for complexmodels with small samples should be more
‘forgiving’ (CFI below .95), while they should be stricter for
simple models with large samples (CFI above .97). To en-
hance objectivity, cutoff points for model evaluation are not
solely based on a predefined level of misspecification (Marsh
et al. 2004). In a flexible cutoff paradigm, a case-specific
lower confidence interval of correctly specified models (or
an upper confidence interval for badness-of-fit indices) is de-
rived depending on the model size, reliability of the measure-
ment model, sample size, and normality of the distribution.
The index’s lower margin for a correctly specified model de-
fines the cutoff value, which serves as an orientation point for
the decision about the model at hand. A fit value for a given
model at or above this point suggests correct specification, as
under the specific model and data conditions, a very large
number of correctly specified models achieve at least this
value. A fit value below this point can be regarded as the value
of a distribution that differs from that of a correctly specified
model and thus points to misspecification.

Unlike fixed cutoffs, a flexible paradigm allows accounting
for uncertainty in the evaluation of the model’s fit. As for other
means of theory testing, the acceptable error (Type I) is set to a
certain value (e.g., .05). For more or less conservative evalua-
tions, the width of the confidence intervals can be varied across
different levels of acceptable error. This error is one-sided be-
cause cutoffs above (below) the median are irrelevant for
goodness-of-fit indices (badness-of-fit indices). As illustrated
in Fig. 1, an error (α) of .1 is rather conservative compared to
an error of .01. Consider the example of a model that contains
four latent variables with three items each, an average factor
loading of .8, and 250 respondents. The flexible approach with
an acceptable error α of .1 yields a cutoff point of .97 for CFI
and a value of .05 for SRMR. Changing the accepted α to .01
results in less conservative cutoffs of .95 and .05, respectively.
As this research will show, only levels of α = .05 and the wider
confidence interval of α = .01 (if the researcher is certain about
the model) should be applied in practice. More extreme conser-
vative (α = .1) or lenient uncertainty levels (α = .001) will be
included in the analyses to conduct sensitivity analyses.

To summarize, flexible cutoffs allow for the contingent ad-
justment of threshold values to those factors that are known to
harm a fit index’s ability to detect model misspecification.
Integrating the level of assumed uncertainty (α) further allows
for the adjustment of these cutoffs depending on prior theoretical
considerations, ranging frommore lenient to more conservative.

2 Note that Hu and Bentler’s (1999) recommendations are often ‘inappropri-
ately promoted’ (Marsh et al. 2004, p. 322) in textbooks or guidelines, citing
single-index cutoffs while clearly promoting two-index cutoffs.
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Method

To obtain flexible cutoffs for a large number of generalizable
models, a comprehensive Monte Carlo simulation was run,
estimating correctly specified CFAs (with all loadings equal,
all correlations are .3 between latent variables) that vary sys-
tematically for a wide range of levels across the distorting
factors. Sample size range between 100 and 1000 subjects in
steps of 50. Model size is varied by the number of latent
variables, and the indicators per latent variable range from
two to ten indicators per latent variable. Factor loadings are
varied in steps of .7, .8, and .9, assuming that only reliable
latent variables are applied and that reliability is smaller than
one (Bagozzi and Yi 1988, p. 82). In addition, normal (kurto-
sis = 0, skewness = 0) and non-normal data conditions (kurto-
sis = 3.5 or 7, skewness = 1 or 2) are available. We config-
ure 13,851 CFA models with normally or non-normally dis-
tributed data. Empirical confidence intervals (α levels of .001,
.01, .05, and .1) are determined based on at least 500 replica-
tions per model. Our dataset thus ranges from very small
CFAs (two latent variables with two indicators and 100 cases)
up to extensive models (ten latent variables with ten indicators
each and 1000 cases).

All data is generated using R. For the estimation of the
flexible cutoff values, multivariate normal or non-normal dis-
tributed datasets of the corresponding size and number of
variables are generated by applying the simulateData function
in the R package lavaan. Models are estimated with the help
of the R package lavaan applying its standard settings for CFA
models (free intercepts of manifest variables, free intercepts of
latent variables, first indicator for each latent variable is fixed
to 1, free residual variances and variances of latent variables,
free covariances of latent variables, settings for limited vari-
ables do not apply). Median-unbiased and distribution-
irrelevant empirical quantiles (Hyndman and Fan 1996) are

then used to derive the cutoffs with a given width of error
(α = .001, .01, .05, .1). We finally consolidate a dataset of all
calculated model configurations. The 55,404 determined cut-
off values are also implemented in a tool that can be accessed
at www.flexiblecutoffs.org.

A first inspection of the data shows that the lower bound of
fit scores for these correctly specified models varies consider-
ably depending on the size of the model and the sample. This
provides initial support for this paper’s premise. Figure 2 il-
lustrates this susceptibility to misspecification-unrelated fac-
tors for a goodness-of-fit indicator (CFI) and a badness-of-fit
indicator (SRMR). For CFI, the average fit score is below the
widely noted threshold of close to .95 if the sample size is
relatively small (≤ 300). Bear in mind that flexible cutoffs
build on correctly specified models. Figure 2 also shows a
drop in fit scores for very large models. Thus, if fixed golden
rules were used under such conditions, even correctly speci-
fied models are likely to be rejected. This highlights the need
to account for the distorting factors when evaluating model fit.

Cutoffs in light of hypothesis testing and power

Type I vs. Type II errors Following established theory-testing
principles, cutoff values must balance Type I and Type II errors
(Cohen 1988; Sedlmeier and Gigerenzer 1989). Similar to the
case for the indices themselves, the trade-off between Type I
and Type II errors will bear an imprint of the above discussed
factors that are unrelated to model misspecification. Cutoffs
that neglect to account for these sources of variation in fit
scores will hence suffer in their attempt to minimize both er-
rors. Accordingly, power has been found to suffer due to fixed
cutoffs, especially for small samples for which the distributions
of true and false models tend to overlap (Marsh et al. 2004, p.
328). Pairs of indicators also seem to have difficulties
balancing Type I and Type II errors under non-normal data

Quantiles:
.001 = .917
.010 = .940
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.100 = .967

Quantiles:
.001 = .050
.010 = .048
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.100 = .043
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Fig. 1 Flexible cutoff values for CFI and SRMR depending on the width
of error interval. Notes. Empirical example (1000 replications), left: CFI,
right: SRMR, normal distributed flexible cutoffs, gray bars: frequency,

orange area: density, solid lines: ⍺ = .1, long dashed lines: ⍺ = .05, dashed
lines: ⍺ = .01, dotted lines: ⍺ = .001
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conditions. The appendix of Hu and Bentler (1999) indicates
that for complex models, the pairing of CFI and SRMR results
in large sums of errors of 45.6% (for N = 150) and 24.6% (for
N = 250), respectively, which is predominantly due to failures
in detecting correctly specified models (Type I error). Flexible
cutoffs, by contrast, are specific to the situation with regard to
the key model and data characteristics. Accounting for their
distorting impact with a flexible approach is therefore expected
to facilitate the balancing of Type I and Type II errors.

Acceptable error α Prior approaches have been criticized for
making recommendations about appropriate cutoffs based on
arbitrary definitions of model misspecification (Marsh et al.
2004). As the acceptable Type I error is not set, generic ap-
proaches may boost the danger of Type II errors. Herein lie the
major opportunities for flexible cutoffs. Given that flexible
cutoffs are based on the distribution of fit values from a true
model, misspecification is not subject to a potentially errone-
ous assumption about the ‘severity’ of misspecification. As
for theory testing, a flexible approach allows specifying as-
sumed uncertainty—the acceptable error α of the confidence
interval—and thereby controls for Type I errors. This addi-
tionally allows the determination of the stability of the cutoff
values. With sensitivity analyses (varying the confidence in-
terval between the most conservative and optimistic α), re-
searchers can draw conclusions about the robustness of the

cutoff, and in turn, the decision about the model. Still, flexible
cutoff points are only as precise as the respective fit index. As
Fig. 2 shows, the stability of flexible values (indicated by the
shaded area) is contingent on the model and data conditions.
For example, the cutoffs for CFI are more robust for larger
samples, while those for SRMR are slightly less robust when
few model parameters are available. This stability of the flex-
ibly derived cutoffs has to be considered when selecting the
acceptable error α and when drawing conclusions about the
estimated model.

Taking all of this together, with a ‘sui generis’ approach
and by controlling the acceptable error α, flexible cutoffs are
expected to be better at safeguarding against Type I and Type
II errors and therefore loss in power than fixed cutoffs are. It is
imperative to note that the flexible paradigm aims to ensure
more accurate decisions about whether the data fits a theoret-
ical model (i.e., by providing more precise cutoffs). Flexible
cutoffs should not be mistaken for a remedy to correct the fit
values of suboptimal indices that are per se less sensitive to
model misspecification or a specific type of misspecification,
such as GFI (Jöreskog and Sörbom 1981).

Overview of the series of simulation studies

Three simulation studies contrast the performance of fixed and
flexible cutoffs. Study 1 examines the cutoffs’ performance
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Fig. 2 Flexible cutoffs for
selected fit indices depending on
misspecification-unrelated
factors. Notes. Fixed cutoffs:
CFI = .95, SRMR= .08; correct
models (flex) for α = .05; The
shaded area indicates the
sensitivity of the flexible cutoffs
(α.001 to α.1)
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for three discrete degrees of misspecification (no, moderate,
and severe misspecification). Study 2 then introduces a finer,
continuous form of model misspecification to spotlight the
‘gray’ area between correct and misspecified models. Study
2 further disentangles the misspecification of the structural
model and the measurement model. Finally, Study 3 investi-
gates the flexible cutoffs under non-normal data conditions.
Although flexible cutoffs have been determined for a large set
of fit indices, the following analyses focus on a subset of four
indicators to allow greater detail. With CFI and the structurally
close index TLI as well as RMSEA and SRMR, we examine
the most frequently used fit indices in CFA (Jackson et al.
2009) that are recommended for a two-index strategy by Hu
and Bentler (1999). This paper’s Web Appendix provides a
detailed description of the selected indices and their specifics
as well as additional analyses of the Studies 1 to 3.

Study 1: Accuracy of fixed and flexible cutoff
values

Objectives

Study 1 examines the performance of fixed and flexible cutoff
values. A Monte Carlo simulation first extracts the incremen-
tal impact of the major distorting factors. The analysis then
assesses the extent of their imprint on the accuracy in identi-
fying misspecification for both single-index and two-index
strategies.

Data generation

In Study 1, we generated models that varied systematically
across five factors pertaining to the characteristics of the mod-
el and the data used for estimation. The factors and their levels
were selected on the basis of the literature review (Table 1).
More detailed descriptions of the factors and variables applied
in the literature are provided in the Web Appendix. To en-
hance generalizability, we focus on factor levels that are fre-
quently used in the previous research:

Factor 1: the degree of model misspecification, three
levels (no, moderate, and severe misspecification of the
conceptual model)
Factor 2: sample size, three levels (N = 250, 500, and
1000 cases)
Factor 3: the number of indicators, four levels (2, 3, 4, and
5 indicators per latent variable)
Factor 4: the number of latent variables, five levels (4, 5,
6, 7, and 8 latent variables)
Factor 5: factor loadings (.7, .8, and .9)

Model misspecification We adapted the approach by Hu and
Bentler (1999) to manipulate the extent of model
misspecification. Since this approach employed only two
levels (a simple and a complex model), we followed Marsh
et al. (2004) and Fan and Sivo (2007) and manipulated three
levels of misspecification to enhance generalizability. In the
‘nomisspecification’ condition, no adjustments were made. In
the ‘moderate misspecification’ condition, sampling data were
generated with an indicator of latent variable 3 loading on
latent variable 2 and a correlation of r = .5 between latent
variable 1 and 4. For the ‘severe misspecification’ condition,
an indicator of latent variable 2 additionally loads on latent
variable 1, and a second correlation with r = .5 between latent
variables 2 and 4 was introduced. All factor loadings were
simulated with a constant value of .7, .8 or .9 depending on
the loading condition and all structural parameters were sim-
ulated with .3, except for the two correlations (r = .5) that are
used to manipulate the different conditions. The ‘no
misspecification’models had no restrictions. In the ‘moderate’
condition models, one correlation among the latent variables
(among variables 1 and 4) was constrained to zero, whereas in
the ‘severe’ condition, this was the case for two correlations (1
and 4, 2 and 4). Thus, an equal number of ‘failures’ was
simultaneously introduced into the structural models (0, 1,
and 2) and the measurement models (0, 1, and 2), as proposed
by Fan and Sivo (2007). The upper part of Fig. 3 illustrates the
manipulation of misspecification in greater detail.

Sample and model size We varied the sample size in three
levels (250, 500, and 1000) because these levels are expected
to evoke an important (and unique) effect on the model inter-
pretation. According to Hu and Bentler (1999), larger samples
(e.g., N = 2500 or 5000) produce only marginal differences.
Model complexity was varied in the steps that are commonly
found in published models. We used 2, 3, 4, and 5 indicators
per latent variable and configured models with 4, 5, 6, 7, or 8
latent variables. The factor loadings were varied in the levels
of .7, .8, and .9.

We applied the simulation packages and data structure that
were used to calculate the flexible cutoffs. For data generation,
we specified a 3 (misspecification) × 3 (sample size) × 3
(factor loadings) × 4 (indicators) × 5 (latent variables) full
factorial design with 200 replications, resulting in a total of
108,000 models.

Results

Distortion of the fit scores First, we quantify the extent to
which the fit indices are distorted. ANOVAs are run including
the manipulated misspecification-factor, the four factors that
are unrelated to model misspecification (number of latent var-
iables, number of indicators, sample size, factor loading), and
the fit indices as the dependent variables. Given the large
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number of replications, virtually all F-statistics (ANOVA) in-
dicate significant results (Table 2). As we consider relevance
to be more important than statistical significance, the analysis
focuses on each factor’s incremental effect size (η2).

The results imply that misspecification explains a large part
of variance in most of the fit indices with effect sizes that are
larger than the sum of all other factors. All indices are addi-
tionally driven by factors other than misspecification. Smaller
samples consistently lead to smaller goodness-of-fit values
(vice versa for badness-of-fit values), irrespective of model
misspecification. In addition, the characteristics of the model
affect the indices. For example, CFI and TLI decrease for
larger models in terms of correct models, while both indices
increase with model size for misspecified models. CFI and
TLI thus discriminate better between correct and misspecified
models for smaller rather than larger models. Also, RMSEA
decreases with lower factor loadings (Savalei 2012), or SRMR
is sensitive to the number of latent variables because the
higher number of correlations that are present in the model
expands the factor correlation matrix (Fan and Sivo 2005).
Even more importantly, the interplay between the distorting
factors explains a considerable share of variance. This implies
that the distortions are not only of an additive nature. We

observe several substantial two-way interactions (e.g.,
SRMR: η2 = .08). Due to these intricate and complex influ-
ences, the reliance on fixed cutoffs that fail to account for the
distorting factors and their interplay will be misleading, even
for informed SEM users. The next steps examine whether
flexible cutoffs are able to compensate for the implications
of these distortions.

Accuracy of the cutoff values To assess precision, we calcu-
lated the hit rates of fixed and flexible cutoff as follows.
The cases in the no misspecification condition were coded
1 if the estimated fit score was at or above the fixed cutoff
or the flexible value as derived with our tool (and 0 if the
fit index was below the cutoff). The inverse coding was
employed for the cases in the moderate and severe
misspecification conditions. The hit rates for the badness-
of-fit indices were generated in the opposite manner. Using
the thresholds suggested by Hu and Bentler (1999), we
derived single-index hit rates for CFI and TLI (.95),
SRMR (.08) and RMSEA (.06). We also estimated the hit
rates for the two-index strategy (pairs of CFI and SRMR,
TLI and SRMR, RMSEA and SRMR), using the cutoffs of
the single-index strategies and .09 for SRMR.

1

1 2 3

2

1 2 3

3

1 2 3

4

1 2 3

.5 (moderate, severe: .0)

.5 (severe: 0)
Study 1

A

a1 a2 a3

B

b1 b2 b3

C

c1 c2 c3

D

d1 d2 d3

Studies 2 and 3

I

II

III

IV

V

VI

Fig. 3 Manipulation of model misspecification in Studies 1, 2 and 3.
Notes. Examples for four latent variables with three indicators
(loadings: .7) each. Ovals represent latent variables, rectangles
indicators. Solid lines are constant in all models (loadings: .7;
correlations: .3). Dashed lines in Study 1 are misspecifications for the
moderate and severe conditions. Dotted lines in Study 1 are
misspecifications for the severe condition (population values outside,
manipulation values inside parentheses). Dashed lines in Studies 2 and
3 are pairwise switches of step 1 (e.g., a1 to B, b1 to A ➔ MM= 1).

Dotted lines in Study 2 and 3 are pairwise switches of step 2 (e.g., a2 to B,
b2 to A ➔ MM= 1). Dashed and dotted lines in Studies 2 and 3 are
pairwise switches of step 3 (e.g., a3 to B, b3 to A ➔ MM= 0). In step 0
(MM= 0), all indicators belong to the correct latent variable (e.g., a1-a3 to
A). Maximum MM is reached if the truncated half of the overall
indicators is reached (here: 3/2➔ 1). Roman numerals indicate the order
of restricting a correlation (true value: .3) to zero. In step 0 (SM= 0), all
correlations are estimated. For example, in step 3 (SM= 3), correlations I,
II and III are set to zero
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Table 3 (upper part) presents the (absolute) hit rates of fixed
cutoffs for the three types of misspecification (no, moderate,
and severe) and the average hit rates. For example, in the ‘no
misspecification’ section, the ‘97’ in the TLI row and ‘Fix
absolute’ column indicates that 97% of the samples with cor-
rectly specified models had a TLI that was greater or equal to
the generic cutoff value of .95. Table 3 also presents the
(relative) difference between the hit rates of the fixed and flex-
ible cutoffs. The ‘+2’ in the same row under the ‘Δflex .01’
column indicates that the flexible cutoff outperforms the fixed
value by 2%, meaning that 99% of the samples with correctly
specified models had a TLI of greater than the flexible cutoff
value for a .01 range of error. The hit rates that were below 100
in the ‘no misspecification’ column are indicative of Type I
errors (correct models are erroneously rejected), whereas the
entries below 100 in the ‘moderate misspecification’ and ‘se-
vere misspecification’ columns are indicative of Type II errors
(misspecified models are erroneously accepted). Ideally, effec-
tive cutoff values minimize both types of errors while reaching
the maximum (e.g., 100 minus the accepted error).

Table 3 indicates that established fixed cutoffs are suffi-
ciently effective in identifying correct models. However, they
had marked difficulties in detecting a moderate extent of
misspecification. RMSEA (47%) and SRMR (75%) have
even relatively low hit rates for a severe degree of
misspecification. Table 3 further highlights that the hit rates
improve when applying flexible cutoff values (except for TLI,
which already shows good accuracy). For RMSEA, the in-
crease in overall hit rate ranges between 38 and 42%, and it
ranges between 33 and 36% for SRMR. Although the overall

increase in accuracy is less prominent for CFI and TLI, the anal-
ysis still indicates improvement, particularly in terms ofmoderate
misspecification in which the hit rates rise above 90% when
applying flexible thresholds (α = .05). The analysis shows very
similar patterns with regard to the two-index strategy. The best
performing two-index strategy with fixed cutoffs (TLI and
SRMR) identifies moderate misspecifications relatively reliably
(89%). Flexible cutoffs improve these hit rates by 9 to 11%. The
gain in precision in this condition is even stronger for CFI and
SRMR (23 to 24%) or RMSEA and SRMR (82 to 83%).

The analysis also addressed the question of whether flexi-
ble cutoffs are able to dampen the impact of the distorting
factors. As shown in Fig. 4, there is a distinct drop in the hit
rates of fixed cutoffs, which is due to the size of the sample or
the model (e.g., more latent variables or indicators in terms of
RMSEA). By contrast, the relatively constant graphs (= sim-
ilar hit rates) imply that flexible cutoffs compensate for the
imprint of each distorting factor on the fit indices. Still, a
sensitivity analysis (shaded area representing α = .001 to
α = .1) clearly shows that for CFI, smaller samples result in
less robust decisions about the model, while the decisions
based on SRMR are relatively robust in this regard.

Balancing type I and type II error rates Table 3 also showcases
how the precision of flexible indices depends on the applied
error interval (α). While narrow intervals (e.g., α = .001) raise
the likelihood of identifying correctly specified models, wider
intervals (e.g., .1) better identify moderate and severe cases of
misspecification. However, this also increases the danger of
accepting a misspecified model (Type II error) and

Table 2 ANOVA results for the simulation studies

Study 1 / Study 2 / Study 3

Factors Levels CFI TLI RMSEA SRMR

Misspecification

Discrete manipulation no1, moderate1, severe1 .80/—/— .71/—/— .63/—/— .73/—/—

Structural model misspecification continuous2 —/.11/.11 —/.04/.04 —/.04/.04 —/.35/.36

Measurement model misspecification continuous2 —/.42/.44 —/.26/.27 —/.25/.24 —/.14/.14

Misspecification-unrelated factors

Latent variables 22, 4, 51, 6, 71, 8 .05/.11/.11 .06/.16/.17 .11/.29/.27 .08/.15/.13

Indicators 2, 3, 4, 5 .00/.14/.13 .03/.16/.16 .05/.13/.15 .01/.00/.01

Sample size 1252, 250, 500, 10001 .00/.00/.00 .00/.00/.00 .00/.00/.00 .03/.02/.03

Factor loadings .7, .8, .9 .00/.00/.00 .00/.00/.00 .02/.02/.02 .03/.11/.11

Non-normality normal, moderate, severe —/—/.00 —/—/.00 —/—/.00 —/—/.00

Two-way-interactions .05/.16/.15 .09/.27/.26 .11/.23/.23 .08/.18/.17

Three−/four−/five-way interactions .00/.04/.03 .00/.09/.08 .00/.03/.04 .00/.01/.01

Residuals .09/.01/.02 .10/.01/.02 .07/.01/.01 .04/.04/.04

—/—/— value indicates the variations in the respective fit index in Study 1/Study 2/Study 3 based on individual level data (Study 1) and aggregated level
data (Study 2 and 3), 1 Level solely employed in Study 1, 2 Study 2, 3 Study 3; η2 ; Effect size conventions by Cohen (1988): bold: ≥ 0.14; italic: < 0.14,
≥ 0.06; straight: < 0.06, N-way interactions: interaction effects among the manipulated distorting factors
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erroneously rejecting a correct model (Type I error), respec-
tively. Figure 5 depicts this trade-off between Type I and Type
II error rates for flexible cutoffs. Very low α of .001 are at
times too lenient to detect moderate misspecification, whereas
wider error intervals of .1 tend to reject even correct models.
The results in Fig. 5 clearly indicate that an α of .05 and .01
appear to balance Type I and Type II errors best.

Discussion

Flexible cutoffs aim to adjust for the key characteristics of a
model and sample that are known to substantially bias fit indi-
ces. Unlike ‘golden rules’ that endorse one fixed (and somewhat
arbitrary) threshold, these cutoffs are contingent as they are
based on the distribution of correctly specified models that are
estimated under such conditions. Study 1 confirmed the poten-
tial of flexible cutoffs as reference points for model evaluation
and showed when they outperform fixed cutoffs. A substantial
gain was observed in identifying moderately misspecified
models for both single indices and the two-index strategy.

Beyond higher hit rates, we consider cutoff points that bal-
ance Type I and Type II errors as critically important for model
testing (Hu and Bentler 1999; Marsh et al. 2004). A trade-off
between the acceptance of correct models and the rejection of
misspecified models is commensurable. Our results revealed
that an error level α of .05 provides a conservative test of the
model. Correctly specified models are detected in no less than
94% of the cases for the single indices and 92% for two-index
strategies, while the likelihood of detecting moderate
misspecification increases substantially compared to fixed
cutoffs. To avoid a cherry-picking of α (similar to p-hacking),
our results prohibit against moving towards the more extreme
α unless it is used for sensitivity analysis to determine the
robustness of the decision about the model.

Study 1 has one major shortcoming. Adopting the approach
by Hu and Bentler (1999), the models were manipulated to
cause a ‘no’, ‘moderate’, or ‘severe’ level of misspecification.
Although these discrete levels have proven to be effective, the
manipulation may be somewhat arbitrary, as the question of
what can be qualified as either a ‘moderate’ or ‘severe’
misspecification is subjective (Marsh et al. 2004) and has draw-
backs. To manipulate the respective condition, one or two pa-
rameters are misspecified in the measurement model and the
structural model. However, one or two missed loadings in the
measurement (maximum five indicators) might be more ‘obvi-
ous’ than the relatively small variation of one or two missing
correlations would be (eight latent variables have 28 correla-
tions). The design of Study 1 might have thus favored indices
that are sensitive to misspecifications of the measurement mod-
el, such as CFI or TLI. Hence, a more objective procedure is
required that captures all possible combinations of loadings and
correlations. Study 2 therefore applies a systematic variation of
the extent of misspecification to better spotlight the ‘gray’ area

between correct andmoderatelymisspecified models. Since cer-
tain groups of fit indices are known to be sensitive to just one
specific source of misspecification but less sensitive to another,
Study 2 independently varies these major sources of
misspecification: the misspecification of the structural model
and the measurement model.

Study 2: Continuous manipulation
of the degree of misspecification

Objective

Study 2 avoids the arbitrary specification of the extent of
model misspecification by employing an objective, continu-
ous manipulation in a Monte Carlo simulation. This is
achieved by sequentially introducing errors into a CFAmodel.
The investigation further sheds light on the basic principles.
Beyond model and data characteristics, fit indices could be
differentially sensitive to specific sources of model
misspecification (i.e., the misspecifications that are related to
the structural parameters or the measurement model). Further,
the debate on the two-index strategy could suggest that simply
relying on larger sets of fit indices is sufficient to resolve the
issue of fixed cutoffs. Study 2 therefore tests whether this
‘more-is-better’ strategy helps or harms.

Manipulated factors

Model misspecification The literature (Table 1) offers two ap-
proaches when manipulating model misspecification. First,
the measurement model falsely assumes that a manifest vari-
able loads on a latent variable to which it does not belong
(measurement model misspecification, hereafter, MM).
Second, the structural model restricts a correlation (or a direct-
ed structural parameter in SEM) to zero that is not zero in the
data (structural model misspecification, SM). Either way, the
correlations in the data are not captured by the model, increas-
ing χ2 and thereby altering fit indices. SM and MM are com-
monly pooled tomanipulate model misconfiguration. Study 2,
by contrast, independently manipulates both misspecification
types in a full factorial design.

In terms of MM, each degree of misspecification is
manipulated pairwise.3 The starting point is the ‘no
misspecification’ condition (MM = 0) in which all indica-
tors load on the latent variables to which they belong
(e.g., the two indicators a1 and a2 load on latent variable

3 Pairwise manipulation is necessary to ensure model identification and com-
parability (i.e., positive and constant degrees of freedom across all
combinations).
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A, while the indicators b1 and b2 load on variable B).
Each new MM condition iteratively reverses the loading
of one pair of indicators (e.g., a1 loading on B, b1 loading
on A). When half of the indicators load on the incorrect
latent variable, the maximum degree of MM is reached,
which is 1 for two−/three-indicator constructs or 2 for
four−/five-indicator constructs. When switching further
pairs of indicators, the majority of incorrectly loading in-
dicators simply reverses the meanings of those latent var-
iables.4 This symmetric approach is applied to ensure MM
objectivity. Any asymmetric loading pattern would either
endanger model identification (e.g., if no items are left to
measure B) or require subjective modifications (to achieve
comparability by equal degrees of freedom).

Manipulating SM starts with unrestricted correlations, and
every iteration restricts one additional correlation to zero until
all correlations are restricted. SM is manipulated independent-
ly of MM. The number of SM-levels depends on the number
of latent variables but not on the number of indicators. Two
latent variables yield a maximum of two levels of SM (0 or 1).
Four variables have a maximum of seven levels (0 to 6), six
variables have a maximum of 16 levels, and eight variables
have a maximum of 29 levels. Figure 3 (lower part) illustrates
the manipulation. All possible combinations of MM and SM
are calculated with a nearly exponentially increasing number
of combinations ofMM and SM (e.g., two latent variables and
two indicators result in six combinations; eight latent variables
and five indicators yield 609 combinations).

Model size, factor loadings, and sample sizeThemanipulation
of the misspecification-unrelated factors builds on Study 1. As
the fit indices are expected to respond differently to errors in
the measurement model and the structural model, we again
distinguish between the number of latent variables and the
number of indicators. We used two, four, six, and eight latent
variables to avoid the asymmetric patterns that evoke depen-
dencies betweenMMand SM. Including more latent variables

4 For example, for two five-indicator constructs, the initial (a1-a5 on A) and
final specification (b1-b5 on A) are identical, forming the level MM= 0, be-
cause the meaning of the two constructs is reversed. For the same reason, the
second (b1, a2-a5) and fourth (b1-b4, a5) specifications are equal (MM= 1),
and only the third (a1-a3, b4-b5) specification entails the highest possible
degree of misspecification (MM= 2).

Fig. 4 Hit rates (in %) of fixed
and flexible cutoff values across
different distorting factors (Study
1). Notes. The shaded area
indicates the sensitivity of the
flexible cutoffs (α.001 to α.1)
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would have little incremental contribution because CFAs are
usually limited by the available degrees of freedom (Kenny
and McCoach 2003). We used the same levels regarding the
indicators (two to five items) and factor loadings (.7 to .9) as in
Study 1. The sample size had relatively little impact in Study 1
(except for SRMR). As Fig. 2 and the prior research (Marsh et
al. 2004) suggest, ‘sui generis’ distributions of fit indices are
particularly vulnerable to very small samples. To scrutinize
these challenging conditions, we split the sample sizes by
the factor 2, resulting in levels of 125, 250, and 500.We apply
the procedure of Study 1 to generate the data and to estimate
the models with 500 replications (standard CFAs using
lavaan). The overall simulation sample sums to 2.43 million
unique data points.

Manipulation check

Although the conditions of misspecification were varied
systematically, we ensured that the manipulation was suc-
cessful. To this end, the mean χ2 values were regressed by
all factors (SM, MM, sample size, factor loadings, and the
number of latent variables and indicators). Strong positive
coefficients for SM (beta = .225, SE = .353, p = .000) and
MM (beta = .326, SE = 3.263, p = .000) substantiate the
SM−/MM-induced increase in the empirical lack of model
fit (inflated χ2-metric). To ensure that statistical stability
is not impaired by very extreme conditions to estimate
CFA (i.e., complex SEMs with very small samples), the
following analyses exclude models with 13 parameters or
more for the sample size of N = 125.

Results

Accuracy of cutoffs In a first step, the analysis determines the
hit rates as described in Study 1. We observe for the single
indices and the two-index strategy that flexible cutoffs uplift

0 For example, for two five-indicator constructs, the initial (a1-a5 on A) and
final specification (b1-b5 on A) are identical, forming the level MM= 0, be-
cause the meaning of the two constructs is reversed. For the same reason, the
second (b1, a2-a5) and fourth (b1-b4, a5) specifications are equal (MM= 1),
and only the third (a1-a3, b4-b5) specification entails the highest possible
degree of misspecification (MM= 2).
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40
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100SRMR
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Fig. 5 Trade-off between Type I
and Type II error rates depending
on the width of the error interval
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the hit rates across the large number of different conditions
being evaluated. The shaded area in Fig. 6 illustrates this gain
in precision. The figure shows the cumulated hit rates for
all models estimated in Study 2. As can be seen for SRMR,
for example, flexible cutoffs produce a much larger share
of models with high hit rates (shaded area) than fixed cut-
offs do. This analysis further reveals that conditions exist
under which fixed cutoffs completely fail to correctly eval-
uate the model (hit rate of 0%), even when applying a two-
index strategy. By contrast, flexible cutoffs for index pairs
achieved hit rates of at least 41% (RMSEA and SRMR)
and 42% (CFI/TLI and SRMR), even under the most sub-
optimal conditions.

Extent of misspecification To examine the impact of ele-
vating degrees of misspecification, we formed an index
combining SM and MM (0 = no misspecified parameters
to 30 parameters misspecified). The lower part of Table 3
shows the hit rates of the single fit indices and the two-
index strategies for four prototypical cases of
(mis)specification. Mirroring the findings for the discrete
levels of misspecification in Study 1, flexible cutoffs
outperform fixed cutoffs, especially for weak to moderate
misspecification, when only few errors are present in the
model.

Disentangling different types of misspecificationWe now dis-
entangle the sources of misspecification. ANOVA is

conducted including SM and MM and the misspecification-
unrelated factors (the number of latent variables and indica-
tors, sample size, and factor loadings). The results in Table 2
show that SRMR is mostly driven by misspecified structural
parameters (η2SM = .35, all ps < .001); however, the index re-
sponds much less to the measurement model misspecification
(η2MM = .14). By contrast, the goodness-of-fit indices better
detect misspecification in the measurement model (CFI:
η2

MM = .42; η2
SM = .11; TLI: η2

MM = .26; η2
SM = .04).

RMSEA is likewise less sensitive to misspecification of the
structural model (η2MM = .25; η2SM = .04).

Manipulating SM and MM separately enabled us to disen-
tangle their impact on hit rates. For reasons of simplicity, the
analysis focuses on the two-index strategy and the pairs: CFI
and SRMR, and RMSEA and SRMR. The results are similar
for TLI and SRMR. As outlined in Fig. 7, hit rates appear to
suffer, especially when few SM (or MM) occur in combina-
tion with correctly specified MM (or SM). The results further
highlight that under such challenging conditions, flexible cut-
offs have higher hit rates than flexible thresholds do. Pairing
SRMR with the moderately performing RMSEA yields
below-average hit rates for fixed cutoffs, which can be im-
proved by flexible cutoffs. Also, these patterns are very sim-
ilar for a single-index strategy.

Dependency on model and sample sizeNext, we focus on the
factors that are unrelated to the misspecification of SM and
MM, such as the size of the model or sample. Their impact on
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Fig. 6 Comparison of the hit rates
for fixed and flexible (α = .05)
cutoffs (Study 2)
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the fit indices is presented in Table 2. The pattern closely
resembles that of Study 1. The study design also helps us to
separate SM and MM from model size effects (number of
latent variables, indicators) that lead to pronounced effects
(e.g., RMSEA favors larger models). Furthermore, identical
patterns with regard to the balancing of Type I and Type II
errors are found (Fig. 5).

For a more detailed analysis of model complexity, we de-
rived three groups of models: simplemodels consisting of four
constructs and three indicators or less (5 to 18 parameters to be
estimated); moderately complex models with a maximum of
six constructs and three indicators (22 to 33 parameters),
which seem quite elementary for marketing practice; and com-
plex models with a maximum of eight constructs and five
indicators (39 to 68 parameters). To contrast the performance
of fixed and flexible cutoffs, we estimated a score capturing
the difference between their hit rates. Positive values indicate
the extent to which the hit rates for flexible cutoffs surpass
those of fixed cutoffs. As Fig. 8 shows for two pairs (CFI and
SRMR, RMSEA and SRMR), this difference is particularly
prominent for one or few misspecified model parameters

(structural paths or indicator loadings), and the gain increases
even further with model size. In line with the prior research
(Kenny et al. 2015), pairing RMSEA and SRMR leads to
substantial differences, which is due to the poor performance
of RMSEA. As this index strongly responds to model size
(more degrees of freedom), RMSEA tends to accept
misspecified models. It should be noted that the relative ad-
vantages of flexible cutoffs come at the cost of slightly lower
hit rates for correct models (e.g., CFI and SRMRα = .05: 92.5%
instead of 97.5% for N = 250 and moderately complex
models).

Balancing quality and quantity—Is more better?To safeguard
against drawing false conclusions, conventional wisdom may
suggest that fit index sets bigger than pairs are beneficial when
evaluating model fit. As this ‘more-is-better’ principle is often
asserted (e.g., Fan and Sivo 2005), we test whether larger sets
improve the accuracy in evaluating a model. For this purpose,
we estimated mean hit rates for the four fit indices (CFI, TLI,
RMSEA, and SRMR), the three pairs suggested by Hu and
Bentler (1999), as well as for combinations of three fit indices
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Fig. 7 Interplay between the
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model and the misspecification of
the measurement model (Study 2)
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and all four indices. For fixed cutoffs, the hit rates averaged
across all possible combinations show an incremental gain in
accuracy when moving from single indices to pairs; however,
the gain flattens for larger sets (average hit rates for single
indices = 74.6%, two = 84.5%, three = 91.3%, four = 91.9%).
By contrast, flexible cutoffs (α = .05) are less strongly affected
in their performance by the size of the set (single indices =
94.5%, two = 99.1%, three = 99.1%, four = 99.1%).

Despite the incremental gain in accuracy, one aspect
warrants attention with regard to Type I errors. The inclu-
sion of further indices raises the danger of correct models
being falsely rejected because each additional index intro-
duces unique variance from sources other than
misspecification (Table 2). For example, adding RMSEA
to the pair CFI and SRMR introduces more error, as
RMSEA is vulnerable to variations due to the factor load-
ing or complex models. Consequently, this reduces the hit
rates of fixed cutoffs for correctly specified models and
even more so when adding TLI as a fourth index (CFI and
SRMR = 96.9%, +RMSEA = 95.6%, + TLI = 92.5%). As

flexible cutoffs cater to the misspecification-unrelated fac-
tors, the increase in Type I error is less pronounced (CFI
and SRMR.05 = 92.3%, + RMSEA = 91.9%, + TLI =
91.8%). Hence, carefully selected pairs of indicators seem
optimal to balance Type I and Type II errors.

Discussion

Study 2 confirms our suspicion that often-advocated
‘golden rules’ have difficulties shedding light on the
‘gray’ area of misspecification. Flexible cutoffs are better
for detecting few misspecified parameters, especially in
the problematic conditions of complex models and/or
small samples. It cannot be stressed enough that the width
of error (α) affects the conclusions for model eva-
luation. The results for the continuous variation of
misspecification corroborate that the error levels of .05
and .01 allow a decent trade-off between Type I and
Type II errors. That being said, the accuracy of flexible
cutoffs is still dependent on the fit index’s general ability

Difference
in hit rate

0 7

Sample size: N = 125 N = 250 N = 500

-100

+100

Number of misspecified parameters

0 16 0 30

0 7

-100

+100

Number of misspecified parameters

0 16 0 30

RMSEA & SRMR 

Difference
in hit rate

simple (max. 4x3) moderate (max. 6x3) complex (max. 8x5)Model size:

CFI & SRMR 

simple (max. 4x3) moderate (max. 6x3) complex (max. 8x5)Model size:

Fig. 8 Difference between the
flexible and the fixed cutoffs
depending on the interplay
between model and sample size
(Study 2)

J. of the Acad. Mark. Sci. (2018) 46:1148–1172 1165



to detect the different reasons for misspecification. Here,
we observed notable differences among the fit indices.
Our results strongly support the notion that combinations
of indices are beneficial for compensating their respective
disadvantages (Hu and Bentler 1999). However, simply
considering larger sets of indices does not resolve the
problem associated with fixed cutoffs. Including more in-
dices raises the likelihood that weak misspecification is
detected. Nevertheless, this carries the danger that one
of the indices will erroneously flag misspecification for
a correct model. Although flexible cutoffs appear to per-
form consistently with elevating numbers of fit indices,
researchers are well advised to focus on the quality rather
than quantity of their set of fit indices.

Thus far, this research has considered cutoffs for normally
distributed data. It is yet not uncommon for the data obtained
in marketing to violate the normality assumption. Study 3
tackles this issue and explores if the benefits of flexible cutoffs
can be generalized to non-normal data.

Simulation study 3: Violation of the normality
assumption

Objective

When the assumption of multivariate normality is violated,
fixed cutoffs can be based on a non-normality scaled χ2 sta-
tistic (Satorra and Bentler 2001). Also, a flexible paradigm
allows for this issue to be addressed because flexible cutoffs
can be calculated ‘sui generis’ for non-normal data (using the
scaled χ2 statistic). Study 3 investigates how the performance
of fixed cutoffs is affected and whether flexible cutoff points
are beneficial or detrimental under such conditions.

Manipulated factors

We employed the design of Study 2 and added an additional
factor with two non-normality levels that may plausibly occur
in practice. First, the literature review (Table 1) reveals that
‘severe’ levels of kurtosis = 7 (rather flat) and skewness = 2
(skewed right) are most frequently applied, for example, by
Curran et al. (1996). Second, a ‘moderate’ non-normality level
is manipulated by setting kurtosis to 3.5 and skewness to 1
(half the severe level). The flexible cutoffs and the test models
are simulated by using the simulateData function of lavaan
(with non-normality robustMLM estimator). We set the argu-
ments kurtosis and skewness to our parameters. As non-
normality can lead to the non-convergence of SEM, the num-
ber of replications for each model was raised to 1000.

Manipulation check

We used the scaling factors proposed by Satorra and Bentler
(2001) to check for the manipulation of non-normality. The
scaling factor describes the required correction of a normal χ2

statistic for non-normal distributions. Values unequal to 1 in-
dicate that the χ2 statistic must be corrected for non-normality.
We checked the scaling factors for each condition (non-nor-
mality: normal, moderate, severe) based on the data derived in
Studies 2 and 3. As expected, the data in Study 2 has a mean
scaling factor of 1.00, whereas the data in Study 3 averages
1.05 (moderate) and 1.19 (severe) for all simulated data
points. We hence assume that our manipulation was
successful.

Results

Split for the two conditions of non-normal data, Table 3 pre-
sents the hit rates of the fixed and flexible cutoffs regarding
the four cases of misspecification. The results largely confirm
the patterns observed in the previous two studies and support a
higher accuracy of flexible cutoffs, especially when few
misspecified parameters are present in a model. ANOVAs also
confirm the principal sensitivity of the selected fit indices to
SM and MM (Table 2). The analysis shows several notable
differences between normal and non-normal data. Integrating
non-normality variation introduces multiple interactions, so
that the sources of variations other than misspecification be-
come even more complex in their behavior, substantiating the
need to account for them.

An inspection of the absolute fit scores confirms our as-
sumption that non-normal data reduced the goodness-of-fit
scores, regardless of the actual misspecif icat ion
(CFInormal = .823, CFInon-moderate = .810, CFInon-severe = .801).
We also observe slightly higher badness-of-fit scores
(SRMRnormal = .095, SRMRnon-moderate = .099, SRMRnon-se-

vere = .096). This shift in the fit scores has implications for
the accuracy of fixed cutoffs, which do not account for this
condition. For CFI, non-normal data limit the chances of de-
tecting a correct model (Mnormal = 96.9%, Mnon-moderate =
94.6%, Mnon-severe = 92.2%) and thus boost Type I errors by
4.7%. Conversely, the general drop in the fit values makes it
more likely that models with few misspecified parameters are
rejected (e.g., one misspecified parameter, Mnormal = 56.3%,
Mnon-moderate = 59.9%, Mnon-severe = 62.0%). For the badness-
of-fit indices, non-normal data hamper the chances of detect-
ing weak misspecification (e.g., one misspecified parameter
for SRMR: Mnormal = 27.5%, Mnon-moderate = 21.9%, Mnon-se-

vere = 23.1%). The consequences of non-normal data also af-
fect the accuracy of index pairs. As outlined in Table 3, lower
hit rates occur for CFI (or TLI) and SRMR with regard to
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correct models, while fewer misspecified models are detected
by RMSEA and SRMR.

Flexible cutoffs tailored to non-normal data appear to damp-
en the impact of non-normality on the decision about themodel.
With regard to CFI, the hit rates for fixed cutoffs (Mnormal =
88.7%, Mnon-moderate = 90.3%, Mnon-severe = 91.1%) are consis-
tently lower than those for the flexible cutoffs (Mnormal =
93.3%, Mnon-moderate = 93.0%, Mnon-severe = 92.1%). The rela-
tively constant (= similar) hit rates for flexible cutoffs across
the normal and non-normal data conditions imply that the flex-
ible paradigm helps to compensate for the distorting imprint of
this factor on the fit index. Additionally, flexible cutoffs damp-
en the non-normality-induced increase in Type I errors that is
observed for fixed cutoffs. In terms of flexible cutoffs
(Mnormal = 94.9%, Mnon-moderate = 94.8%, Mnon-severe = 94.5%),
the hit rates for normal versus severe non-normality drop by
.4% (Δfix = −4.7%). Still, the likelihood that few misspecified
parameters are rejected is somewhat reduced under such sub-
optimal data conditions (e.g., one misspecified parameter:
Mnormal = 65.7%, Mnon-moderate = 64.9%, Mnon-severe = 63.0%).
Compared to the performance of single indices, a two-index
strategy produces generally higher hit rates, and again, marked
differences are apparent between fixed cutoffs (e.g., CFI and
SRMR: Mnormal = 90.2%, Mnon-moderate = 91.0%, Mnon-severe =
91.7%) and flexible cutoffs (Mnormal = 99.1%, Mnon-moderate =
99.1%, Mnon-severe = 98.9%).

Discussion

Study 3 also substantiates the feasibility of the flexible para-
digm for non-normal data. Such data conditions were found to
increase Type I errors, particularly for fixed cutoffs: the num-
ber of correctly specified models detected is less than when
the data does not meet the normality assumption. This can be
traced back to scaling factors >1. Non-normality decreases the
(now corrected) χ2 statistic and, in turn, the values of CFI,
TLI, and RMSEA. As a result, fewer correct but more
misspecifiedmodels are appropriately flagged, which is in line
with Hu and Bentler (1999). Very similar to the case for the
normal data conditions (Studies 1 and 2), flexible cutoffs were
shown to produce higher hit rates, especially in the problem-
atic cases (Table 3). Because flexible cutoffs are determined
under the respective data conditions (normal or non-normal
data), the hit rates of flexible cutoffs remain relatively stable
for correct models as well as for misspecified models.

General discussion

Conclusions

This research has explored the major sources of variation in fit
indices and their consequences for model evaluation. Three

simulation studies provide triangulating evidence with impor-
tant implications for marketing and management research.
Study 1 confirms that fit indices are affected by aspects that
are unrelated to model misspecification. This unwanted nui-
sance variance harms the accuracy of fixed cutoffs in identi-
fying slightly or moderately misspecified models because ge-
neric cutoff points do not account for distortions that are in-
duced by characteristics of the data or the model. The issue is
more acute for complex models that entail many latent and
manifest variables. For such models, more degrees of freedom
are available. It is hence more likely to go unnoticed that one
or few structural paths or measurement indicators are falsely
specified. Since standards, such as values close to .95, have
been hand-selected for simpler models, fixed cutoffs are not
well suited for the degrees of freedom present in more com-
plex models (Chen et al. 2008; Marsh et al. 1988). Under
certain conditions (small samples), the fit scores for correctly
specified models do not tend to reach the popular .95-thresh-
old, so that such models may remain in the file drawer.

As these observations run counter to the notion of universal
‘golden rules’, we proposed a contingent approach and posit that
cutoff values should cater to the sample and the relevant char-
acteristics of the core model. In line with the ‘sui generis’ claim
(Cheung and Rensvold 2001), fit indices follow a distribution
that can alter as a function of the underlying model and sample.
By accounting for these misspecification-unrelated factors, flex-
ible cutoffs reduce their distorting impact and—as orientation
points for model evaluation—facilitate the detection of few
misspecified parameters. Unlike existing cutoffs, flexible cutoff
points can be adjusted with regard to the width of the error range
to balance Type I and Type II errors. This, for example, allows
sensitivity analysis to assess the stability of the decision to ac-
cept (or reject) a given model.

Study 2 then used a more objective, continuous approach
for model misspecification that separated the effects of
misspecification in the structural model and the measurement
model. Some fit indices are more precise in detecting
misspecified structural paths (SRMR), while others are more
accurate in identifying errors in the measurement model (CFI,
TLI). It was again observed that fixed cutoffs have difficulties
in the important ‘gray’ area of slightly misspecified models
that contain few problematic parameters. Flexible cutoffs per-
form better under these conditions. Finally, Study 3 has shown
that these conclusions also apply to non-normal data because
flexible cutoffs can be specifically determined under such data
conditions.

In sum, our findings cast doubt on universal thresholds.
Other than recommendations to completely omit specific fit
indices (Kenny et al. 2015) or to use bootstrapping fits (Bone
et al. 1989), a ‘sui generis’ approach provides case-specific
cutoffs, which address the criticism that there is not one uni-
versal value or ‘golden rule’ (e.g., Marsh et al. 2004).
Consistent with Hu and Bentler’s (1999) recommendation,
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certain pairs of indices (e.g., TLI and SRMR) might appear to
be sufficient when using fixed cutoffs in absolute terms and
relative to flexible cutoffs. Nonetheless, fixed cutoffs are here
equally effective only for the more extreme cases of
misspecification that are easier to identify. Flexible cutoffs
display their usefulness, especially for the problematic cases
of moderate misspecification. Fostered by conventional
wisdom, researchers might also be tempted to base their deci-
sion about a model on a large set of (affirmative) indices. Yet,
such ‘more-is-better’ strategies are shown to yield little incre-
mental precision. The strategy can even backfire, as it pro-
vokes the rejection of correct models and thus boosts Type I
errors.

Guidelines for using flexible cutoffs

SEM is an important technique and, as shown in the field of
marketing strategy, the effort invested to employ the method
should be rewarded with more citations (Kumar et al. 2017).
As calls are getting louder for a paradigm shift towards meth-
odological simplicity (Gupta et al. 2014; Lehmann 2014;
Lehmann et al. 2013), we provide an easy-to-use tool that
determines flexibly adjusted cutoff values for all major fit
indices (www.flexiblecutoffs.org). The tool allows the
determination of cutoffs by answering a few essential
questions (e.g., How many latent and measured variables
does my model have? How many cases do I have? What is
the amount of accepted uncertainty?). Flexible cutoffs can be
derived by indicating the number of indicators and latent
variables, sample size, average factor loadings, additionally
fixed parameters, non-normality5 and assumed uncertainty
(α). A large set of fit indices is available, extending beyond
those discussed in this research.

Figure 9 depicts in four steps the decisions researchers
should make when applying a flexible approach. We strongly
discourage researchers from selectively reporting only the fit
indices that support their model. Sets of fit indices can be
sensitive to certain sources of misspecification, while being
insensitive to others. For example, SRMR has superior capac-
ities to detect structural misspecification but is not as effective
in identifying misspecification of the measurement model.
Researchers should therefore refer to combinations of fit indi-
ces, balancing their strength and weaknesses (Hu and Bentler
1999). Our results suggest referring to CFI (or TLI) and
SRMR rather than RMSEA and SRMR. As no ‘one-fits-all’
indicator emerged in this research, we do not recommend a
single-index strategy or untested combinations (e.g., TLI and
RMSEA), even with flexible cutoffs, because they have not

been validated to compensate for their respective weaknesses.
We also warn against using cutoffs as the sole decision crite-
rion. Flexible cutoff points indicate whether a given empirical
model is ‘close to’ (Hu and Bentler 1999, p. 27) the ideal
model. Rejecting a theoretically sound model only because
CFI is .94, while fixed rules demand .95, seems arbitrary. It
should thereby be noted that our criticism on ‘golden rules’ is
criticism solely based on their fixed nature (being constant for
all types of model and data) and not criticism of the use of fit
indices per se.

SEM, and CFAs in particular, are complex techniques
that require sufficiently large samples. As long as common-
alities are reasonable, SEM will produce stable results for
small samples (e.g., Bentler 2007; MacCallum et al. 2001).
We still call for caution when applying flexible cutoffs here.
In addition, the width of the confidence interval is crucial
when adopting flexible cutoffs. Error intervals of α = .1 and
.001 inherently assume very high and very low uncertainty,
respectively, about the evaluated model. We advise against
applying such extreme intervals. They should only be used
for specific purposes, such as for sensitivity analyses when
testing if a model is identified correctly even under extreme
(un)certainty. Although an α of .01 (rather optimistic)
worked reasonably well, we recommend using an α of .05
(rather conservative), as this seems to provide the best trade-
off between Type I and Type II errors (Fig. 5). Still, re-
searchers should check the sensitivity of their decision about
the model because the flexible cutoff values are more or less
sensitive depending on model size and sample size (see
shaded area in Fig. 2). The level of assumed uncertainty
should be based on prior theoretical considerations. In gen-
eral, researchers may use a more conservative α (.05) if (i)
the sample is relatively small (because of imprecise estima-
tors), (ii) the model is simple with few latent variables and
indicators (because even small deviations change fit values
substantially), and (iii) the research is exploratory or the
model not grounded in existing theory. If (i) the data offers
greater certainty (e.g., larger sample), (ii) the model yields
more degrees freedom, and (iii) the constructs, their dimen-
sionality, and the model structure are well established, then
researchers can assume less uncertainty when using a less
conservative α (.01). Particularly interesting for some fields,
SEM is a still neglected method for estimating effects in
experimental design (Bagozzi and Yi 1989), thereby
explaining measurement error. These models typically con-
sist of few factors and levels.

Illustrative examples based on marketing data

To illustrate the usefulness of flexible cutoffs in a marketing
context, we apply the approach to three widely noted papers
on different phenomena in marketing.

5 It should be noted that robust and scaled versions of the χ2 statistic and χ2

based fit indices are readily available in modern statistical software (e.g.,
LISREL, lavaan). Users of this software should check whether these correc-
tions are automatically applied or can be applied when estimating fit indices (if
non-normality may be an issue).
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Case I—Post-hoc examination of model fit Flexible cutoffs
can be used to evaluate model fit post-hoc. For example,
Zboja et al. (2016) developed a scale of consumer perception
of sales pressure. The authors report that their final CFA has
appropriate fit (CFI = .99, TLI = .99, RMSEA = .05, SRMR
missing). Applying our flexible cutoffs for this model with a
relatively small sample (N = 275) confirms model fit
(CFI.05 ≥ .947, TLI.05 ≥ .940) but not for RMSEA
(RMSEA.05 ≤ .029). Consulting SRMR (SRMR.05 ≤ .054)
could have provided clarification.

Case II—Gray area of misspecification Mishra et al. (1993)
explored the antecedents of the attraction effect (correlation
matrices and standard deviations allow replication). For this
illustration, we focus on the beer dataset (N = 359) and esti-
mate the original CFA model, which includes six latent vari-
ables. The model (χ2 = 344.184, df = 194, CFI = .972,
TLI = .967, SRMR= .037) is accepted when applying both
the fixed cutoffs (CFI and TLI ≥ .95, SRMR ≤ .09) and the
f l e x i b l e c u t o f f s (CF I . 0 5 ≥ . 9 6 5 , TL I . 0 5 ≥ . 9 59 ,
SRMR.05 ≤ .045). The same is true for the two-index combi-
nations. The flexible approach even allows for sensitivity
analyses of the decision to accept the model. The model is

confirmed when using the less conservative margin of error
of α = .01 (CFI.01 ≥ .951, TLI.01 ≥ .943, SRMR.01 ≤ .046).
This decision would hold even when employing the very con-
servative cutoffs with α = .1 (CFI.1 ≥ .970, TLI.1 ≥ .966,
SRMR.1 ≤ .044).

To illustrate the performance of fixed and flexible cutoffs
for the problematic ‘gray’ area of weak misspecification, we
test whether missing out on a correlation is detected (between
familiarity and task involvement, value = .231). This slightly
misspecified model (χ2 = 360.060, CFI = .970, TLI = .960,
and SRMR = .059) would still be accepted by fixed cutoffs
as well as when applying the two-index strategy. However,
the flexible cutoff for SRMR (most sensitive to structural
misspecification) rejects such a model (SRMR.05 ≤ .045), as
the two-index strategy would also do. Sensitivity analyses
again demonstrate that this remains the case, even when ap-
plying less conservative margins of errors (SRMR.01 ≤ .046;
SRMR.001 ≤ .047).

Case III— Exploratory use Our review of 68 JAMS articles
shows that 28 papers used fit indices (or χ2) for model com-
parison. However, comparing models with different parame-
ters based on fit indices can be misleading because the indices

Empirical inputs

• Model size
Overall # of indicators
Overall # of latent variables

• Sample size
• Measurement error

Average factor loadings of all indicators 
on all latent variables

• Non-normality (multivariate)
Normal (no skewness and kurtosis)
Moderate (skewness 1, kurtosis 3.5)
Severe (skewness 2, kurtosis 7)

• Modifications
# of additionally fixed parameters

Theory testing input 
(width of confidence interval)

• .001 implying 0.1% uncertainty*
(for sensitivity analysis)

• .01 implying 1% uncertainty*
(only if certain about the model)

• .05 implying 5% uncertainty* (recommended)
• .1 implying 10% uncertainty*

(for sensitivity analysis)

*set probability of Type I error (erroneously rejecting a correct 
model)

Step 2Step 1

Derive flexible cutoff values 
for model evaluation (tool) Step 3

Interpret and report flexible cutoff values
• Recommendations:

Apply two indices instead of one or multiple. 
Apply recommended indices (e.g., CFI and SRMR, TLI and SRMR) instead of not recommended 
indices (e.g., GFI and RMSEA).
Assess the appropriateness of fit indices given the model under consideration, especially regarding 
the ratio of model size and sample size as well as assumed uncertainty.
Check for sensitivity of the decision about the model (flexible cutoff points can be only as precise 
as the respective fit index). 
Keep in mind that flexible cutoff values solely serve as orientation points and carefully reflect the 
results from a conceptual standpoint as well.

Step 4

Fig. 9 Decisions to derive,
interpret and report flexible
cutoffs
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respond to model and sample size. Given this sensitivity to the
model parameters, authors may be prompted to selectively
remove items or add constructs to inflate fit scores. We illus-
trate this by using the SERVQUAL scale (Parasuraman et al.
1988) and data from Babakus and Boller (1992), who com-
pare the dimensionality of this established scale. The
SERVQUAL configuration did not show an acceptable fit of
data and model (CFI = .900, SRMR = .065), even for fixed
cutoff standards. To mimic an exploratory approach, we
modeled a five-factor CFA, using a a-priori principal axis
factor analyis to calibrate (items are allocated to the factor they
load highest and loadings < .3 are removed). Fixed cutoffs
would suggest an appropriate fit (CFI = .960, SRMR = .038).
However, and in line with issues raised by Babakus and Boller
(1992), this empirical solution is questionable, as items load
differently than originally proposed by SERVQUAL (e.g.,
nine items loaded on the responsiveness dimension).
Consequentially, greater uncertainty has to be assumed due
to the exploratory nature of the analysis. Since flexible cutoffs
are also flexible with regard to the conclusions, α can be
adjusted to the large uncertainty involved in the model assess-
ment (α = .1). Flexible cutoffs clearly spark doubts about the
fit (CFI.10 ≥ .982, SRMR.10 ≤ .036); the same holds true for an
α of .05. By contrast, if this study served a confirmative pur-
pose with very limited uncertainty (α = .001), flexible cutoffs
would indicate that the empirical factor selection is close to an
appropriate fit (CFI.001 ≥ .955, SRMR.001 ≤ .041).

Further research and limitations

As with all studies, there are limitations to our findings. The
sample size and the parameters of the core model were care-
fully selected. Although we tried to capture the most common
design levels, some scholars may have more complex CFA
models in mind, or they might want to examine uneven com-
binations of indicators and latent variables (e.g., a latent var-
iable with five indicators and another one with twelve). The
simulations also assumed constant factor loadings across all
indicators of a construct and structural relationships. Future
research should extend our approach to asymmetric or un-
equal relationships among loadings (e.g., loadings of .5 to .9
for one latent variable) and correlations (e.g., .2 for one struc-
tural path, .4 for another). The studies in this research
employed only a limited number of errors in the measurement
model to retain symmetric patterns and maintain objectivity.
More complex, asymmetric designs as well as other sources of
misspecification, such as outliers, correlated errors, or omitted
variables, and other levels of non-normal data, should be con-
sidered (e.g., positive or negative kurtosis, no skewness).

Our results clearly favor two-index strategies in model
evaluation because each index has unique strengths and weak-
nesses. It is still worthwhile to continue the search for an index
that is equally effective in detecting misspecified parameters

in the structural model as well as in the measurement model.
Such a ‘one-fits-all’ index should also be immune to aspects
that are unrelated to model misspecification. If this proves
impossible, a flexible approach as suggested in this paper
may help to reduce the distortions by misspecification-
unrelated factors.

The flexible cutoff paradigm allows researchers to set an ac-
ceptable Type I error that captures the amount of uncertainty they
are willing to accept a-priori for the given theoretical model.
When safeguarding against falsely accepted models (lower
Type II errors), this comes at the expense of sometimes lowering
chances to accept themodel under consideration (possibly slight-
ly increased Type I errors). Considering the balancing of Type I
and Type II errors, we believe that this price is worth the overall
higher chance to reliably detect a misspecified model.

In this research, fit indices have been investigated in abso-
lute terms, particularly in light of theory testing (Jöreskog and
Sörbom 1982). Flexible cutoffs may also be relevant for com-
paring alternative models (West et al. 2012). Applying the
flexible cutoff approach for these relative purposes might be
a venture for future research. The flexible cutoffs in this re-
search were derived and validated for CFAs. Similar to previ-
ously used fixed cutoffs that were derived fromCFAs, flexible
cutoffs can be applied to other applications of SEMs. When
doing this, one should be aware of the consequences arising
frommore parsimonious models. Unlike CFAs that capture all
possible relationships, SEMs consider only the paths that are
theoretically relevant. Future research should thus attempt to
fine-tune flexible cutoff values with regard to SEM models
that are often used in marketing research or specific issues in
SEM, such as multi-group analysis or latent growth. Since
flexible cutoffs are only investigated in a FIML (full informa-
tion maximum likelihood) context, investigations for other
estimators with and without missing data are welcome.
Recent developments in SEM have also spawned a Bayesian
approach (Muthén and Asparouhov 2012). We second this
approach for cases in which informative priors rather than
exact zeros for cross-loadings and residual correlations are
used. Relative performance compared to the traditional ‘ML-
SEM’ approach applied here has not been investigated sys-
tematically. We therefore advocate simulations that address
the Bayesian ‘PP’ alternative to χ2 and suggest comparing
its performance to ML-based fit indices. Overall, this research
provides a starting point for subsequent works on flexible
interpretations of fit indices. Our basic premise coupled with
the empirical findings hopefully encourages scholars to
strengthen their efforts in the search for more accurate cutoffs
to evaluate a model.
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