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Introduction

Hydroxy fatty acids comprise of one or more hydroxyl 
groups and a carbon chain with a carboxyl group at the 
α-carbon position. Hydroxy fatty acids show a higher 
reactivity, solvent miscibility, hydrophilicity, and vis-
cosity than non-hydroxylated fatty acids [1, 2]. There-
fore, they are widely used as starting materials for the 
synthesis of resins, nylons, polyurethanes, plastics, and 
polymers, as additives for the manufacture of lubricants, 
surfactants, and stabilizers [3, 4], and as precursors for 
the synthesis of lactones [5]. Hydroxy fatty acids have 
been shown to function as signaling compounds in host-
pathogen interactions in fungi [6], and have pharmaceu-
tical activities, including anti-bacterial, anti-fungal, and 
anti-diabetic properties [2, 4, 7, 8]. Among hydroxy fatty 
acids, dihydroxy fatty acids are used in the manufactur-
ing polyurethane rigid foams and skin care products [9], 
and they are known to be better surfactants than mono-
hydroxy fatty acids [10]. Some dihydroxy fatty acids, 
called precocious sexual inducer (psi) factors, regulate 
the sexual and asexual life cycles in filamentous fungi 
[11].

α-Linolenic acid (18:3Δ9,12,15), polyunsaturated fatty 
acid, and omega-3 fatty acid, are an essential dietary 
nutrient for vertebrates [12]. Dihydroxy fatty acid derived 
from α-linolenic acid such as 9,16-dihydroxyoctadecatrie-
noic acid exhibits anti-aggregatory and anti-inflammatory 
properties [13]. Thus, the production of dihydroxy fatty 
acid from α-linolenic acid via biotransformation is impor-
tant. Several microorganisms, including Agaricus bispo-
rus [14], Clavibacter sp. ALA2 [15], Flavobacterium sp. 
DS5 [16], Fusarium oxysporum [17], Gaeumannomyces 
graminis [18], Lysinibacillus fusiformis [19], Magna-
porthe grisea [20], Nocardia cholesterolicum [21], and 
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Stenotrophomonas maltophilia [22], are capable of con-
verting α-linolenic acid into several kinds of hydroxy 
fatty acids. Specially, Agaricus bisporus [14], Clavibac-
ter sp. ALA2 [15], Fusarium oxysporum [17], and several 
strains of Pseudomonas aeruginosa such as PR3, 42A2, 
and 32T3 [23–29], have been shown to qualitatively con-
vert fatty acids into dihydroxy fatty acids. The quantita-
tive production of diverse dihydroxy fatty acids from dif-
ferent fatty acids, including palmitoleic acid, oleic acid, 
eicosenoic acid, ricinoleic acid, and linoleic acid, has 
been reported in P. aeruginosa PR3 and 42A2 containing 
diol synthase [30–36] and E. coli expressing A. nidulans 
diol synthase [37]. However, the quantitative production 
of dihydroxy fatty acid from α-linolenic acid by diol syn-
thase or cells containing diol synthase has not yet been 
attempted.

In the present study, the biotechnological production of 
5,8-dihydroxy-9,12,15(Z,Z,Z)-octadecatrienoic acid from 
α-linolenic acid was achieved using whole recombinant 
cells expressing diol synthase from A. nidulans (Fig. 1). To 
increase the production, the reaction conditions such as pH, 
temperature, solvent, agitation speed, and concentrations 
of cell and substrate were optimized. Under the optimized 
conditions, an increase in the production of 5,8-dihydroxy-
9,12,15(Z,Z,Z)-octadecatrienoic acid from α-linolenic acid 
was achieved.

Materials and Methods

Preparation of Dihydroxy Fatty Acid Standards

A double-site (H1004A-C1006S) variant of A. nidu-
lans 5,8-diol synthase produced only 8-hydroperoxy-
9,12,15(Z,Z,Z)-octadecatrienoic acid (not yet published). 
Recombinant cells expressing the wild-type and double-
site variant of A. nidulans diol synthase were used for the 
preparation of 5,8-dihydroxy-9,12,15(Z,Z,Z)-octadecatrie-
noic acid and 8-hydroperoxy-9,12,15(Z,Z,Z)-octadecatrie-
noic acid, respectively. The reactions were performed as 
described previously [37]. After the reactions, the fractions 
containing the reaction products were collected by solvent 
fractional crystallization at low temperature [38]. The par-
tially purified products were extracted with two volumes of 
ethyl acetate. The solvent was removed from the extracts 
using a rotary evaporator. After evaporation, methanol 
was added to the solvent-free solutions, which were then 
applied to an HPLC system (Agilent 1260, Santa Clara, 
CA, USA) coupled with a UV detector and analyzed at 
a detection wavelength of 202  nm using a Nucleosil C18 
semi-prep column (10.0  ×  250  mm; Phenomenex, Tor-
rance, CA, USA) and a separate fraction collector. The col-
umn was eluted at 40 °C, with a flow rate of 0.25 mL/min. 
The product fractions were collected and the solvent using 

Fig. 1   Production of 5S,8R-
dihydroxy-9,12,15(Z,Z,Z)-
octadecatrienoic acid from 
α-linolenic acid via 8R-hydrop-
eroxy-9,12,15(Z,Z,Z)-octade-
catrienoic acid intermediate 
by whole recombinant cells 
expressing diol synthase from 
A. nidulans. The stereo-
specificity of these compounds 
produced by diol synthase from 
A. nidulans has been reported 
previously [11]
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a rotary evaporator was removed, leaving solid extracts. 
5,8-Dihydroxy-9,12,15(Z,Z,Z)-octadecatrienoic acid and 
8-hydroperoxy-9,12,15(Z,Z,Z)-octadecatrienoic acid with 
high purity (>99  %) were obtained and used as standard 
compounds in subsequent analyses.

Microorganisms, Plasmids, Gene Cloning, and Culture 
Conditions

A. nidulans ATCC 10074, E. coli ER2566 (New England 
Biolabs, Hertfordshire, UK), and pET-21a(+) plasmid 
(Novagen, Madison, WI, USA) were used as the sources of 
DNA template for the diol synthase gene, host cells, and 
expression vector, respectively. P. aeruginosa PR3 was 
kindly provided by Professor Hak-Ryul Kim at the Kyung-
pook National University (Daegu, South Korea). Although 
the production of dihydroxy fatty acids by P. aeruginosa 
PR3 has been published [23, 30–32, 39], the cell mass of  
P. aeruginosa PR3 in the production was not reported.  
P. aeruginosa PR3 was cultivated as described previously 
[39], and the strain was used for determining the cell mass 
of P. aeruginosa PR3 using a linear calibration curve relat-
ing optical density at 610 nm versus dry cell weight. The 
cell mass of P. aeruginosa PR3 was used for the calculation 
of volumetric and specific productivities for dihydroxy fatty 
acids. The diol synthase gene (GenBank accession number 
AY502073) from A. nidulans was obtained from a previ-
ous construction in E. coli [37]. The recombinant E. coli 
cells expressing diol synthase from A. nidulans were culti-
vated in a 2-L flask containing 500 mL Luria–Bertani (LB) 
medium and 50 μg/mL ampicillin at 37 °C with shaking at 
200  rpm. When the optical density of the culture reached 
0.6 at 600 nm, isopropyl-β-d-thiogalactopyranoside (IPTG) 
was added to a final concentration of 0.1 mM. The culture 
was incubated at 16 °C with shaking at 150 rpm for 16 h 
to express the enzyme. The whole cells obtained were used 
for 5,8-dihydroxy-9,12,15(Z,Z,Z)-octadecatrienoic acid 
production.

Effects of pH, Temperature and Thermostability

Unless otherwise stated, the reactions were performed 
in 50  mM HEPES (pH 7.0) containing 2  g/L cells and 
0.14  g/L α-linolenic acid, which was purchased from 
Sigma-Aldrich (St. Louis, MO, USA), at 40 °C for 5 min 
with agitation at 250  rpm in a 250-mL baffled flask con-
taining 50 mL reaction solution. Agitation was carried out 
in a shaking incubator (Vision Scientific, Bucheon, Korea). 
The effects of pH and temperature on the production of 
5,8-dihydroxy-9,12,15(Z,Z,Z)-octadecatrienoic acid from 
α-linolenic acid were investigated by varying the pH from 
6.0 to 8.0 using 50 mM HEPES buffer at a constant tem-
perature of 40 °C, and by varying the temperature from 30 

to 60 °C at a constant pH of 7.0. The thermal stability of 
recombinant cells expressing diol synthase from A. nidu-
lans for the production of 5,8-dihydroxy-9,12,15(Z,Z,Z)-
octadecatrienoic acid from α-linolenic acid was determined 
after incubating the cells at four different temperatures (35, 
40, 45, and 50  °C). Samples were withdrawn at regular 
time intervals, and the activity was assessed by measuring 
5,8-dihydroxy-9,12,15(Z,Z,Z)-octadecatrienoic acid pro-
duction under the standard reaction conditions described 
above. The half-life of recombinant cells expressing diol 
synthase from A. nidulans was calculated using the Sigma 
Plot 9.0 software (Systat Software, San Jose, CA, USA).

Effect of Solvent

The effect of solvent on 5,8-dihydroxy-9,12,15(Z,Z,Z)-
octadecatrienoic acid production was examined using 
ethanol, methanol, ethyl acetate, cyclohexane, diethyl 
ether, 1-propanol, dimethyl sulfoxide, 1-butanol, hexane, 
and isopropanol at the concentrations of 5 and 10 % (v/v) 
in 50  mM HEPES buffer (pH 7.0) with 2  g/L cells and 
0.14 g/L α-linolenic acid at 40 °C for 5 min. To determine 
the optimum concentration of 1-propanol or dimethyl sul-
foxide for the production of 5,8-dihydroxy-9,12,15(Z,Z,Z)-
octadecatrienoic acid from α-linolenic acid at the high 
concentrations of cells and substrate, the reactions were 
performed in 50 mM HEPES buffer (pH 7.0) with 20 g/L 
cells and 3 g/L α-linolenic acid at 40 °C for 10 min with 
agitation at 250  rpm by varying the concentration from 0 
to 13 % (v/v) in a 250-mL baffled flask containing 50 mL 
reaction solution.

Optimization of Reaction Conditions

The effect of agitation speed on the production of 
5,8-dihydroxy-9,12,15(Z,Z,Z)-octadecatrienoic acid from 
α-linolenic acid by whole recombinant cells expressing diol 
synthase from A. nidulans was examined in 50 mM HEPES 
buffer (pH 7.0) containing 20 g/L cells, 3 g/L α-linolenic 
acid, and 5 % (v/v) dimethyl sulfoxide by varying the agi-
tation speed from 0 to 270 rpm in a 250-mL baffled flask 
containing 50 mL reaction solution at 40 °C for 10 min.

To determine the optimal cell concentration required for 
the maximum production of 5,8-dihydroxy-9,12,15(Z,Z,Z)-
octadecatrienoic acid from α-linolenic acid, the reactions 
were performed in 50 mM HEPES buffer (pH 7.0) contain-
ing cells with a constant substrate concentration of 9  g/L 
α-linolenic acid and 5 % (v/v) dimethyl sulfoxide at 40 °C 
for 60  min with agitation at 250  rpm by varying the cell 
concentration from 10 to 50 g/L in a 250-mL baffled flask 
containing 50 mL reaction solution. To determine the opti-
mal substrate concentration, the reactions were performed 
at 40 °C in 50 mM HEPES buffer (pH 7.0) containing with 
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a constant cell concentration of 40 g/L cells and 5 % (v/v) 
dimethyl sulfoxide with shaking at 250 rpm for 60 min by 
varying the substrate concentration from 3 to 18 g/L in a 
250-mL baffled flask containing 50 mL reaction solution.

Time‑course of Production of 5,8‑Dihydroxy‑ 
9,12,15(Z,Z,Z)‑Octadecatrienoic Acid from α‑Linolenic 
Acid

The time-course reactions of the production of 5,8-dihy-
droxy-9,12,15(Z,Z,Z)-octadecatrienoic acid from α-linolenic  
acid by whole recombinant cells expressing diol synthase 
from A. nidulans via 8-hydroperoxy-9,12,15(Z,Z,Z)-octa-
decatrienoic acid as an intermediate were conducted under 
optimized conditions at 40  °C in 50  mM HEPES buffer 
(pH 7.0) containing 40 g/L cells, 12 g/L α-linolenic acid, 
and 5 % (v/v) dimethyl sulfoxide with shaking at 250 rpm 
in a 250-mL baffled flask containing 50 mL reaction solu-
tion for 100  min. A sample of 0.5  mL reaction solution 
was withdrawn at time interval and was analyzed with the 
HPLC system described below.

Analytical Methods

The cell mass was determined using a linear calibration 
curve relating optical density at 600  nm of recombinant 
E. coli expressing diol synthase from A. nidulans versus 
dry cell weight. The reaction solution was extracted with 
two volumes of ethyl acetate, and then the solvent was 
removed from the extract. The ethyl acetate fraction was 
then evaporated to dryness using a rotary evaporator, and 
methanol was added. 5,8-Dihydroxy-9,12,15(Z,Z,Z)-octa-
decatrienoic acid and α-linolenic acid were quantitatively 
analyzed using an HPLC system (Agilent 1260, Santa 
Clara, CA, USA) equipped with a UV detector at a detec-
tion wavelength of 202 nm and a reverse phase Nucleosil 
C18 column (3.2  ×  150  mm; Phenomenex). The column 
was eluted at 40 °C using a gradient of solvent A (acetoni-
trile/water/acetic acid, 50/50/0.1, v/v/v) and solvent B (ace-
tonitrile/acetic acid, 100/0.1, v/v) as follows: 100 % solvent 
A at a flow rate of 0.25 mL/min for 0–5 min; solvent B for 
5–21 min at 0.25 mL/min; for 21–22 min at 0.4 mL/min; 
100  % solvent B at 0.4  mL/min for 22–27  min; solvent 
A at 0.4 mL/min for 27–32 min; and 100 % solvent A at 
0.25 mL/min for 32–35 min.

Liquid chromatography-mass spectrometry/mass spec-
trometry (LC–MS/MS) analysis of dihydroxy fatty acids 
was performed using an electrospray ionization (ESI) 
interface with a Thermo-Finnigan LCQ Deca XP plus ion 
trap mass spectrometer (Thermo Scientific, Pittsburgh, PA, 
USA) at the National Instrumentation Center for Environ-
mental Management (NICEM) facility (Seoul National 
University, Seoul, South Korea). The instrument consisted 

of an LC pump, an auto sampler, and a photodiode array 
detector. The operation parameters were as follows: 275 °C 
capillary temperature, 5  kV ion source voltage, 30 psi 
nebulizer gas, 46 V capillary voltage in positive mode and 
15 V in negative ionization mode, 0.01  min average scan 
time, 0.02 min average time to change polarity, and colli-
sion energy of approximately 35 % abundance of the pre-
cursor ion.

Results and Discussion

Identification of the Reaction Product and Intermediate 
Obtained from the Conversion of α‑Linolenic Acid 
by Whole Recombinant Cells

The reaction product and intermediate obtained from the 
conversion of α-linolenic acid using whole recombinant 
cells expressing the wild-type and double-site variant 
(H1004A-C1006S) diol synthase of A. nidulans, respec-
tively, were analyzed by LC–MS/MS, and their mass spec-
tra were obtained. The total molecular mass of the product 
was represented by a peak at m/z 309 in LC/MS (Supple-
mentary data, Fig. S1A). The peaks have been known to 
be formed from the cleavage of the hydroxylated carbon at 
α-carbon of hydroxy fatty acid [40]. The major peak at m/z 
291 was formed by the loss of H2O from the total molecu-
lar mass. The peaks at m/z 115 and 173 resulted from the 
cleavage of the hydroxyl groups at the C5 and C8 positions, 
respectively. The product was identified as 5,8-dihydroxy-
9,12,15(Z,Z,Z)-octadecatrienoic acid on the basis of these 
fragment peaks. The reaction intermediate obtained from 
the conversion of α-linolenic acid using whole recombinant 
cells expressing the double-site variant diol synthase gave 
the mass spectrum of LC–MS/MS as shown in Supplemen-
tary data, Fig. S1B. The total molecular mass of the prod-
uct was represented by a peak at m/z 309, and the peak at 
m/z 173 resulted from the cleavage of hydroperoxy group at 
the C8 position. These peaks indicate that the product was 
8-hydroperoxy-9,12,15(Z,Z,Z)-octadecatrienoic acid.

Effects of pH and Temperature on the Production 
of 5,8‑Dihydroxy‑9,12,15(Z,Z,Z)‑Octadecatrienoic Acid 
from α‑Linolenic Acid by Whole Recombinant Cells

The maximum conversion rate of α-linolenic acid to 5,8-dihy-
droxy-9,12,15(Z,Z,Z)-octadecatrienoic acid by whole cells of 
recombinant E. coli expressing diol synthase from A. nidulans 
was observed at pH 7.0 and 40 °C (Fig. 2a, b). The maximum 
conversion rate of linoleic acid to 5,8-dihydroxy-9,12(Z,Z)-
octadecadienoic acid by recombinant cells expressing diol 
synthase from A. nidulans was observed previously at pH 7.5 
and 35 °C [37]. These different optimum pH and temperature 
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values may be due to different substrate solubility. The stability 
of recombinant cells expressing diol synthase from A. nidulans 
was measured, and the half-lives of the cells at 35, 40, 45, and 
50 °C were 1,133, 232, 77, and 28 min, respectively (Fig. 2c).

Effect of Solvent on the Production 
of 5,8‑Dihydroxy‑9,12,15(Z,Z,Z)‑Octadecatrienoic Acid 
from α‑Linolenic Acid by Whole Recombinant Cells

The effect of organic solvent on the hydroxylation activity 
of recombinant cells expressing diol synthase from A. nidu-
lans was examined at the concentrations of 5 and 10 % (v/v) 
with 2  g/L cells and 0.14  g/L α-linolenic acid. Among the 
solvents tested, the activity was the highest in the presence 
of 5 % (v/v) 1-propanol, followed by 5 % (v/v) dimethyl sul-
foxide, and their activities were 1.4 and 1.3-fold higher than 
the hydroxylation activity in the absence of an organic sol-
vent, respectively (Fig. 3a). The effects of solvent concentra-
tions of the two solvents for the production of 5,8-dihydroxy-
9,12,15(Z,Z,Z)-octadecatrienoic acid were investigated with 
the high concentrations of cells (20 g/L) and substrate (3 g/L). 
The optimal concentrations of 1-propanol and dimethyl sul-
foxide for 5,8-dihydroxy-9,12,15(Z,Z,Z)-octadecatrienoic 
acid production were 1 and 5 % (v/v), respectively (Fig. 3b, 
c). At these concentrations, the activities were 1.2- and 1.4-
fold higher than that in the absence of solvent, respectively. 
The higher production of 5,8-dihydroxy-9,12,15(Z,Z,Z)-octa-
decatrienoic acid using dimethyl sulfoxide was resulted from 
the higher substrate solubility at high concentrations in dime-
thyl sulfoxide than those in 1-propanol. Thus, 5 % (v/v) dime-
thyl sulfoxide was used for 5,8-dihydroxy-9,12,15(Z,Z,Z)-
octadecatrienoic acid production by whole recombinant cells 
expressing diol synthase from A. nidulans.

Organic solvents are widely used to dissolve free fatty 
acids in aqueous solution. As dimethyl sulfoxide was 
used to increase the concentration of fatty acid as a sub-
strate [41] in the production of 13-hydroxy-9,11-octadec-
adienoic acid with immobilized soybean lipoxygenase, 

the conversion yield was 1.4-fold higher than that in the 
absence of any treatment [42]. These results indicate that 
the increased production of 5,8-dihydroxy-9,12,15(Z,Z,Z)-
octadecatrienoic acid by the addition of dimethyl sulfoxide 
was due to an increase in substrate solubility.
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Fig. 2   Effects of pH and temperature on the production of 5,8-dihy-
droxy-9,12,15(Z,Z,Z)-octadecatrienoic acid from α-linolenic acid by 
whole recombinant cells expressing diol synthase from A. nidulans. 
a Effect of pH. The reactions were performed in 50  mM HEPES 
buffer with 2  g/L cells and 0.14  g/L α-linolenic acid at 40  °C for 
5  min by varying the pH from 6.0 to 8.0. b Effect of temperature. 
The reactions were performed in 50  mM HEPES (pH 7.0) contain-
ing 2  g/L cells and 0.14  g/L α-linolenic acid for 5  min by varying 
the temperature from 30 to 60 °C. c Effect of temperature on enzyme 
stability. Recombinant cells were incubated at 35 (unfilled squares), 
40 (filled square), 45 (unfilled circles), and 50  °C (filled circles) in 
50 mM HEPES buffer (pH 7.0) for various periods of time. A sample 
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7.0) containing 2 g/L cells and 0.14 g/L α-linolenic acid at 40 °C for 
5  min. Data present the means of three experiments and error bars 
represent standard deviations
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Optimization of Reaction Conditions for the Production 
of 5,8‑Dihydroxy‑9,12,15(Z,Z,Z)‑Octadecatrienoic Acid 
from α‑linolenic Acid by Whole Recombinant Cells

The production of 5,8-dihydroxy-9,12,15(Z,Z,Z)-octa-
decatrienoic acid from α-linolenic acid by whole recom-
binant cells increased with an increase in the agitation 
speed (Fig. 4a). However, above 250 rpm, the increase in 
5,8-dihydroxy-9,12,15(Z,Z,Z)-octadecatrienoic acid pro-
duction with increasing the agitation speed was not criti-
cal. Thus, the agitation speed was determined as 250 rpm. 
The optimal cell concentration was evaluated at agitation 
speed of 250  rpm with 9  g/L α-linolenic acid by vary-
ing the cell concentration from 10 to 50 g/L after 60 min. 
When the concentration was less than 40  g/L cells, the 
production increased with an increase in the cell concen-
tration. However, above 40 g/L concentration, it reached a 
plateau (Fig.  4b), indicating that the optimum concentra-
tion of recombinant cells was 40  g/L. The production of 
5,8-dihydroxy-9,12,15(Z,Z,Z)-octadecatrienoic acid from 
α-linolenic acid was assessed over a 60-min period by 
varying the substrate concentration from 3 to 18 g/L while 
keeping the cell concentration constant at 40  g/L cells. 
Below 12  g/L α-linolenic acid, the production increased 
with an increase in the concentration of α-linolenic acid 
(Fig. 4c). However, above 12 g/L α-linolenic acid, the pro-
duction of 5,8-dihydroxy-9,12,15(Z,Z,Z)-octadecatrienoic 
acid decreased as the concentration of α-linolenic acid 
increased. Thus, the optimum substrate concentration for 
5,8-dihydroxy-9,12,15(Z,Z,Z)-octadecatrienoic acid pro-
duction was 12  g/L α-linolenic acid, and the conversion 
yield at this concentration was approximately 72 % (w/w).

Production of 5,8‑Dihydroxy‑ 
9,12,15(Z,Z,Z)‑Octadecatrienoic Acid from α‑Linolenic 
Acid by Whole Recombinant Cells Under the Optimized 
Conditions

The production of 5,8-dihydroxy-9,12,15(Z,Z,Z)-octadec-
atrienoic acid by whole recombinant cells expressing diol 

synthase from A. nidulans was optimal at pH 7.0, 40  °C, 
12  g/L α-linolenic acid, and 40  g/L cells in the presence 
of 5  % (v/v) dimethyl sulfoxide in a 250-mL baffled 
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Fig. 3   Effect of solvent on the production of 5,8-dihydroxy-
9,12,15(Z,Z,Z)-octadecatrienoic acid from α-linolenic acid by whole 
recombinant cells expressing diol synthase gene from A. nidulans. 
a Effect of solvent type. The reactions were performed in 50  mM 
HEPES buffer (pH 7.0) with 2  g/L cells, 0.14  g/L α-linolenic acid, 
and 5 % (v/v) (filled square) or 10 % (v/v) (unfilled square) solvent at 
40 °C for 5 min. b Effect of 1-propanol concentration. The reactions 
were performed in 50 mM HEPES buffer (pH 7.0) containing 20 g/L 
cells, 3 g/L α-linolenic acid, and 1-propanol at 40 °C for 10 min. c 
Effect of dimethyl sulfoxide concentration. The reactions were per-
formed in 50  mM HEPES buffer (pH 7.0) containing 20  g/L cells, 
3 g/L α-linolenic acid, and dimethyl sulfoxide at 40 °C for 10 min. 
Data present the means of three experiments and error bars represent 
standard deviations
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flask containing 50  mL reaction mixture with shaking 
at 250  rpm. Under these optimized conditions, time-
course reactions for the production of 5,8-dihydroxy-
9,12,15(Z,Z,Z)-octadecatrienoic acid by whole recom-
binant cells were performed for 100  min (Fig.  5). The 
cells were stable at 40  °C for 100  min because the half-
life of the cells at this temperature for 5,8-dihydroxy-
9,12,15(Z,Z,Z)-octadecatrienoic acid production was 
232  min (Fig.  4). Whole recombinant cells produced 

9.1  g/L 5,8-dihydroxy-9,12,15(Z,Z,Z)-octadecatrienoic 
acid from 12  g/L α-linolenic acid after 100  min, with a 
conversion yield of 75 % (w/w), a volumetric productivity 
of 5.5 g/L/h, and specific productivity of 137 mg/g-cell/h. 
Whole recombinant cells also produced 1.0 g/L 8-hydrop-
eroxy-9,12,15(Z,Z,Z)-octadecatrienoic acid as an interme-
diate at 20  min. After the time, the concentration of the 
monohydroxy fatty acid was maintained at 1.0–1.4 g/L dur-
ing the time-course reactions.

Whole recombinant cells expressing hydratase from S. 
maltophilia produced 14.3  g/L 10-hydroxy-12,15(Z,Z)-
octadecadienoic acid from 17.5  g/L α-linolenic acid with 
volumetric and specific productivities of 0.79  g/L/h and 
16  mg/g-cell/h, respectively [22]. This is the highest 
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Fig. 5   Time-course reactions for the production of 5,8-dihydroxy-
9,12,15(Z,Z,Z)-octadecatrienoic acid from α-linolenic acid by whole 
recombinant cells expressing diol synthase from A. nidulans under 
the optimized conditions.  5,8-Dihydroxy-9,12,15(Z,Z,Z)-octadec-
atrienoic acid (filled circles), α-linolenic acid (unfilled circles), and 
8-hydroperoxy-9,12,15(Z,Z,Z)-octadecatrienoic acid (filled triangles). 
The reactions were performed in 50 mM HEPES buffer (pH 7.0) con-
taining 40 g/L cells, 12 g/L α-linolenic acid, and 5 % (v/v) dimethyl 
sulfoxide at 40 °C for 100 min with agitation at 250 rpm. Data pre-
sent the means of three experiments and error bars represent standard 
deviations

A

Agitation speed (rpm)

5,
8-

D
ih

yd
ro

xy
-9

,1
2,

15
(Z

,Z
,Z

)
-o

ct
ad

ec
at

rie
no

ic
 a

ci
d 

(g
/L

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

B

Cell concentration (g/L)

5,
8-

D
ih

yd
ro

xy
-9

,1
2,

15
(Z

,Z
,Z

)
-o

ct
ad

ec
at

rie
no

ic
 a

ci
d 

(g
/L

)

0

2

4

6

8

10

C

-Linolenic acid (g/L)

0 50 100 150 200 250 300

0 10 20 30 40 50 60

0 2 4 6 8 10 12 14 16 18 20

5,
8-

D
ih

yd
ro

xy
-9

,1
2,

15
(Z

,Z
,Z

)
-o

ct
ad

ec
at

rie
no

ic
 a

ci
d 

(g
/L

)

0

2

4

6

8

10

C
on

ve
rs

io
n 

yi
el

d 
(%

, w
/w

)

0

20

40

60

80

100

120

αα

Fig. 4   Effects of agitation speed and concentrations of cells and 
substrate for the production of 5,8-dihydroxy-9,12,15(Z,Z,Z)-octa-
decatrienoic acid from α-linolenic acid by whole recombinant cells 
expressing diol synthase from A. nidulans. a Effect of agitation 
speed. The reactions were performed in 50  mM HEPES buffer (pH 
7.0) with 20  g/L cells, 3  g/L α-linolenic acid, and 5  % (v/v) dime-
thyl sulfoxide at 40 °C for 10 min. b Effect of cell concentration. The 
reactions were performed in 50 mM HEPES buffer (pH 7.0) contain-
ing cells, 9  g/L α-linolenic acid, and 5  % (v/v) dimethyl sulfoxide 
at 40 °C for 60 min with agitation at 250 rpm. c Effect of substrate 
concentration on the production (filled circles) and conversion yield 
(filled squares) of 5,8-dihydroxy-9,12,15(Z,Z,Z)-octadecatrienoic 
acid. The reactions were performed in 50 mM HEPES buffer (pH 7.0) 
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foxide at 40 °C for 60 min with agitation at 250 rpm. Data present the 
means of three experiments and error bars represent standard devia-
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reported concentration, yield, and volumetric and specific 
productivities for the production of hydroxy fatty acid from 
α-linolenic acid. The volumetric and specific productivities 
of recombinant cells in the present study were 7.0- and 8.6-
fold higher than those obtained by whole recombinant cells 
expressing oleate hydratase from S. maltophilia, respec-
tively. However, the concentration and yield in the present 
study were 1.6-fold and 7 % lower, respectively.

The quantitative production of dihydroxy fatty acids from 
fatty acids has been reported in only two microorganisms, 
namely P. aeruginosa PR3 and recombinant E. coli express-
ing diol synthase from A. nidulans (Table 1). P. aeruginosa 
PR3 produced 7,10-dihydroxy-8(E)-octadecenoic acid from 
oleic acid [23], 7,10-dihydroxy-8(E)-octadecenoic acid from 
triolein [31], 7,10-dihydroxy-8(E)-hexadecenoic acid from 
palmitoleic acid [32], 9,12-dihydroxy-10(E)-eicosenoic acid 
from eicosenoic acid [30], and 7,10-dihydroxy-8(E)-octa-
decenoic acid from olive oil [39]. The specific productiv-
ity of P. aeruginosa PR3 was determined by calibrating 1.0 
optical density at 610 nm to 0.54 g/L cell mass. Among the 
production of these dihydroxy fatty acids, the production 
of 7,10-dihydroxy-8(E)-octadecenoic acid from oleic acid 
exhibited the highest concentration, conversion yield, and 
volumetric productivity, which were 9.1  g/L, 89  % (w/w), 
and 0.19  g/L/h, respectively. Moreover, the production of 
7,10-dihydroxy-8(E)-octadecenoic acid from olive oil showed 
the highest specific productivity of 47 mg/g-cell/h. The volu-
metric and specific productivities of recombinant cells in the 
present study were 29- and 3-fold higher than those obtained 
using whole P. aeruginosa PR3, respectively. However, the 
concentration and conversion yield in the present study was 
same and 1.2-fold lower, respectively. Whole recombinant 
cells expressing diol synthase from A. nidulans produced 
4.98 g/L 5,8-dihydroxy-9,12(Z,Z)-octadecadienoic acid from 
5.0 g/L linoleic acid for 150 min with a volumetric productiv-
ity of 2.5 g/L/h and a specific productivity of 85 mg/g-cell/h 

[37]. The volumetric and specific productivities for the pro-
duction of 5,8-dihydroxy-9,12,15(Z,Z,Z)-octadecatrienoic 
acid from α-linolenic acid by whole recombinant cells 
expressing diol synthase from A. nidulans were 2.2- and 1.6-
fold higher than those for the production of 5,8-dihydroxy-
9,12(Z,Z)-octadecadienoic acid from linoleic acid.

Conclusions

To increase the production of 5,8-dihydroxy-9,12,15(Z,Z,Z)-
octadecatrienoic acid from α-linolenic acid by whole 
recombinant cells expressing diol synthase from A. nidu-
lans, the reaction conditions such as pH, temperature, ther-
mostability, solvent, agitation speed, and cell and substrate 
concentrations were optimized. Under the optimized con-
ditions, whole recombinant cells produced 5,8-dihydroxy-
9,12,15(Z,Z,Z)-octadecatrienoic acid with the highest 
specific and volumetric productivities as compared to dihy-
droxy fatty acid production described previously. To the best 
of our knowledge, this is the first report on the biotechno-
logical production of 5,8-dihydroxy-9,12,15(Z,Z,Z)-octade-
catrienoic acid. These results will contribute to the improved 
industrial production of 5,8-dihydroxy-9,12,15(Z,Z,Z)-octa-
decatrienoic acid via a biological process.
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