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Abbreviations

List of Symbols
α  Polymorphic form, least stable
β  Polymorphic form, most stable
β′  Polymorphic form, intermediate stability
γi

j  Activity coefficient of TAG i in the solid 
phase, j

γi
l  Activity coefficient of TAG i in the liquid 

phase, l
μi

j (J/mol)  Chemical potential of component in the 
solid phase, j

μi
l (J/mol)  Chemical potential of component i in the 

liquid phase, l
θ  Interaction parameter matrix
Aik  Interaction parameter between TAG i and k
G (J/mol)  Gibb’s free energy of the system
gE (J/mol)  Gibb’s excess energy
ΔHi

sl (J/mol)  Heat of fusion of TAG i
Mi (g/mol)  Molar mass of TAG i
m  Number of evaluated data points
N  Number of components in the system
ni

j (mol)  Number of moles of TAG i in the solid 
phase, j

nj (mol)  Number of moles in the solid phase, j
nl (mol)  Number of moles in the liquid phase, l
ni

l (mol)  Number of moles of TAG i in the liquid 
phase, l (mol)

ni
l,eq  Number of moles of TAG i in the liquid 

phase at equilibrium

Abstract Compositional thermodynamic phase sepa-
ration is investigated for industrial-grade vegetable oils 
with complex compositions. Solid–liquid equilibria have 
been calculated by utilizing the Margules 2-suffix activ-
ity-coefficient model in combination with minimization 
of the Gibb’s free energy of the system. On the basis of 
quasi-equilibrium solid-fat content (SFC) measurements, a 
new approach to the estimation of the interaction param-
eters, needed for the activity-coefficient model, has been 
developed. The parameters are fitted by matching the SFC 
of two oils at various degrees of dilution and isothermal 
temperatures. Subsequently, the parameters are success-
fully validated against three oils, rich in asymmetric and 
symmetric triacylglycerols (TAG), respectively. The new 
approach developed is shown to be very flexible, allowing 
incorporation of additional TAG and polymorphic states. 
It thereby provides a simple way to dealing with multi-
component, multi-phase TAG mixtures without having the 
required binary interaction parameters at hand a priori. 
This ultimately provides a powerful, predictive tool which 
may serve as a starting point for laboratory screening and 
creation of tailor-made products because many different oil 
mixtures can be evaluated quickly with respect to specific 
properties, prior to more time-consuming experimental 
evaluation.
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ni,tot (mol)  Total amount of component i in the system
P  Number of phases in the system
R [J/(mol K)]  Gas constant (8.314)
T (K)  Temperature
Tm,i(K)  Melting temperature of TAG i
xi  Mole fraction of TAG i in the liquid phase, l
yi  Mole fraction of component i in the trial 

phase
Yi  Phase stability evaluation parameter
zi

j  Mole fraction of TAG i in the solid phase, j

Sub/superscripts
d  dth adjustable parameter
i  ith triacylglycerol
j  jth solid phase
k  kth triacylglycerol
l  Liquid phase
s  sth data point
y  Trial phase

Introduction

Vegetable oils and fats constitute a considerable part of 
many food products such as chocolate, margarine, bread 
and spreads. Several attractive properties found in these 
products, including flavor release, melting profile and 
appearance, are governed by the oils and fats added [1]. 
Consequently, altering the fat phase may lead to enhanced 
properties of the products. To date such improvements have 
largely been based on empirical laboratory tests designed 
by skilled experts and specialists drawing on many years 
of experience and knowledge. Nonetheless, unexpected 
outcomes are quite often observed when mixing various 
oil fractions. For example, mixing cocoa butter substitutes 
(CBS) with cocoa butter leads to a strong incompatibility in 
the solid phase, rendering a product softer than expected. 
Furthermore, some fats used for chocolate fillings are seen 
to cause oil migration bloom much faster than others [2]. 
Mapping the behavior of oils and fats in a physiochemical 
context may improve understanding and predictability of 
the outcome when different oils and fats are mixed.

The primary focus of the present work is vegetable oils 
and fats originating from palm fruits, palm and shea ker-
nels. Natural and interesterified oils are used to accom-
modate both symmetric and asymmetric triacylglycerols 
(TAG).

Vegetable oils usually contain more than 95 % TAG, a 
family of molecules which is shown to govern many of the 
aforementioned properties of oils and fats. Consequently, 
this family of compounds is the focus of the experiments 
and simulations conducted in this manuscript.

The incentive for the present work is to obtain a predic-
tive tool, capable of describing solid–liquid phase equilib-
ria (SLE) for several oils, with the ability to accommodate 
the oil complexity usually encountered in the industrial 
sector, with regard to composition and purity. Furthermore, 
the aim is to develop a simple and quick method to obtain 
the required TAG interaction parameters, without the need 
for excessive experiments with analytically pure, binary 
TAG mixtures.

The calculated equilibria can be used to determine the 
solid-fat content (SFC) of the oil-fat mixtures together with 
the number of phases and the TAG composition for each of 
these. Furthermore, it may shed light on solid–solid phase 
splits, which may be impossible to determine experimen-
tally, but can be a primary driver for some of the phenom-
ena, e.g., oil migration and rate of crystallization, observed 
when oils crystallize.

Previous Models Describing Thermodynamic Solid–Liquid 
Equilibria

The approach suggested in this work concerns calculation 
of the thermodynamic equilibrium for a given oil at a given 
temperature by minimizing the Gibbs free energy of the 
system. Simpler approaches for calculating the equilibrium 
in terms of solubility of given components were used previ-
ously [3–5], but these approaches proved inadequate when 
dealing with multi-component systems, involving solid–
solid interactions.

The method of calculating multi-phase SLE for TAG 
mixtures by minimizing the Gibbs free energy of the sys-
tem has been well documented by Wesdorp [6, 7] who built 
his minimization calculations on the work of Michelsen [8–
10]. Using the Margules 2 and 3-suffix activity-coefficient 
models, Wesdorp did a comprehensive experimental study 
on binary interaction parameters for a fairly large num-
ber of TAG molecules, ultimately suggesting a correlation 
between the symmetric interaction parameter and the geo-
metrical differences between TAG. A similar approach was 
used by Rousset et al. [11] for a binary TAG system.

The interaction correlation suggested by Wesdorp was 
later used by Santos and Los et al. [12–14] to calculate 
SLE for complex oil blends with up to 17 different TAG. 
The correlation was based solely on the chain-length dif-
ferences between the fatty-acid moieties attached to the 
glycerol backbones of the mixed TAG and disregarded any 
degree of unsaturation, decreasing the predictive power of 
the correlated interaction parameters substantially [5].

Present Approach to Obtaining Interaction Parameters

To overcome the potential pitfalls, described above, 
involved when using the interaction parameter correlation 
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developed and at the same time accommodate the complex-
ity of industrial-grade oils with respect to impurities and 
minor components, a new approach to estimation of interac-
tion parameters is proposed and evaluated here. The interac-
tion parameters required are fitted so that the total SFC of a 
given oil at a given temperature matches the experimentally 
obtained value. In this way, pure binary mixtures for each 
pair of TAG are not required to obtain the corresponding 
binary interaction parameters. Nonetheless, the immediate 
disadvantage of this approach is that the experimental SFC 
for a single experiment can be fitted using different com-
binations of interaction parameters, meaning the estimated 
parameters would be purely empirical lacking predictive 
power. However, if the parameters are fitted to a large array 
of experiments, where oils are mixed in different ratios and 
evaluated at different temperatures, it is likely that a unique 
set of parameters can be obtained.

Methodology for Solid–Liquid Equilibria Calculations

Solid–liquid equilibria calculations can be very complex 
when non-ideal mixing is taken into account [15–17]. Non-
ideal behavior occurs as a consequence of different TAG 
having different interactions with each other and is respon-
sible for multiple co-existing solid phases [6, 10, 18, 19].

Conditions for Solid–Liquid Equilibria

For solid–liquid systems, activity-coefficient models are gen-
erally used to describe non-ideal interactions [18, 20]. At equi-
librium, it is required that the chemical potential for a given 
component should be the same in all phases present [17]:

where i and j refer to the ith component and jth solid phase, 
respectively.

Often, change in heat capacity is disregarded and ideal 
liquid behavior is assumed (i.e., γi

l = 1)) [17, 20]. This 
approach has been well described in the literature and leads 
to the following equations [5, 6]:

where R is the gas constant, T the temperature, xi and zi the 
mole fraction of component i in the liquid and solid phase, 
�Hsl

i  the heat of fusion, Tm,i the melting point and γ j
i  the 

activity coefficient.

(1)µl
i = µ

j
i

(2)µl
i = RT ln(xi)

(3)µ
j
i = RT

[

�Hsl
i

RTmi

(

Tmi
− T

T

)

+ ln (γ
j
i zi)

]

Stoichiometric Constraints

The solution to the solid–liquid equilibrium must also sat-
isfy the overall mass-balance leading to the formulation of 
a few stoichiometric constraints. The mole fractions in each 
phase must sum to unity, and the sum of the moles of com-
ponent i in all phases must be equal to the total number of 
moles of component i.

From Eqs. (3–5) it is evident that P (N + 1) equations 
with P (N + 1) unknowns arise. P and N are the number 
of phases and components, respectively. Once values of 
the activity coefficients are available, this non-linear set of 
equations can in principle be solved using an appropriate 
method.

Activity-Coefficient Model

Several activity-coefficient models of increasing com-
plexity exist [20–22]. Based on Wesdorp’s suggestion, 
the simple Margules 2-suffix model has been chosen here 
since this model was shown to perform well in mixtures 
with components having similar molecular volumes, 
shapes and chemical compositions [6, 12]. Furthermore, 
advanced models require both precise and extensive 
amounts of pure-component data, which are not available 
for TAG. The Margules 2-suffix model assumes symmet-
ric interactions between TAG and thus requires only one 
interaction parameter per binary pair of TAG. For a multi-
component system, the activity coefficients are described 
as a function of mole fractions and binary-interaction 
parameters:

Triacylglycerols have been shown to behave nearly 
athermally when mixed and thus temperature dependence 
of the interaction parameters is disregarded [6, 20].

(4)
N

∑

i=1

xi =

N
∑

i=1

z
j
i = 1

(5)

P−1
∑

j=1

z
j
in

j + xin
l = ni,tot

(6)Aik = Aki

(7)RT ln γi = −gE +

N
∑

k=1,i �=k

Aikxk

(8)gE =

N
∑

i=1

N
∑

k=i+1

Aikxixk
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Phase Splits

If the number of phases at equilibrium is known 
Eqs. (2–5) can be solved by successive substitution 
[10]. However, the number of phases at equilibrium is 
usually not known a priori, and a method is therefore 
needed to determine whether a potential phase split is 
feasible.

Michelsen [8] has developed a method (the tangent-
plane criteria) to evaluate whether a given system is stable, 
or whether addition of a trial phase (y) would increase sta-
bility in terms of lowering the overall Gibb’s free energy 
of the system. This method has successfully been applied 
to solid–liquid systems by rewriting the original equations 
[6]:

According to the tangent-plane criteria, Yi must be less 
than unity for the system to be stable and therefore a value 
above unity suggests that a phase split would result in an 
overall decrease in Gibbs free energy. The methodology to 
ensure that the minimum Gibbs free energy is reached is 
well described by Michelsen [8].

Phase Coalescence

During the calculations it is possible that the overall Gibbs 
free energy can be decreased by reducing the number of 
phases on account of coalescence. Therefore, during the 
calculations, if one or more phases comprise less than 
10 % of the overall system, coalescence of these qualifying 
phases with all other phases is evaluated.

Minimizing the Gibb’s Free Energy

In general, the Gibb’s free energy of the system should be 
at its minimum and the mass-balance constraints satisfied 
to ensure equilibrium conditions.

Minimization can be solved by applying the Newton–
Raphson method as described by Michelsen [10]. The 
iterative solving procedure, handling minimization of 
the Gibb’s free energy has been adopted from Wesdorp 
[6].

When the Gibb’s free energy of the system has been 
minimized, the SFC of the system can be calculated:

(9)ln (Yi) =
µ

j
i − µ

y
i

RT
− ln γ

y
i

(10)yi =
Yi

∑

i Yi

(11)G =

P
∑

j=1

N
∑

i=1

n
j
iµ

j
i

All calculations and simulations were carried out on a 
standard PC and the minimization routine was written in 
C++.

Materials and Methods

Materials

Six industrial-grade oils, both asymmetric (interesterified) 
and symmetric, obtained from AAK Denmark A/S, were 
used in the present work. The TAG compositions of the oils 
are shown in Table 1. All oils were neutralized, bleached 
and deodorized prior to the experimental work. The com-
positions presented are simplified, following a lumping-
procedure (to be explained later), to remove several minor 
TAG.

If the diacylglyceride (DAG) content in the oils was 
above 3 %, the oils were washed with ethanol, until the dia-
cylglyceride content was brought beneath this threshold.

Analytical Equipment

SFC measurements were carried out using pulsed NMR on 
a Bruker Minispec SFC analyzer. Differential-scanning cal-
orimetry (DSC) measurements were carried out on a Met-
tler Toledo DSC823e. Aluminum, 40 µl crucibles were used 
and all samples were analyzed using a heating-slope of 
5 °C/min. X-ray measurements were carried out using Sie-
mens D500 equipment and 10 mg of the given oil sample.

For all analyses the samples were kept at 60 °C for 2 h 
and subsequently placed at the desired holding temperature 
(10–25 °C) for 100 h before analyzing the samples.

Methodology for Obtaining Interaction Parameters

Lumping of Oil Compositions

The industrial-grade oils contained an abundant number of 
TAG of which a fairly large share were only present in low 
concentrations. To decrease the complexity of the oil (and 
thereby increase the calculation speed), the number of TAG 
was reduced by lumping them into groups, using two crite-
ria: First, one TAG from every TAG-category (see Table 1) 
should be present in the composition. This was desirable 
in order to capture the specific features linked to the vari-
ous TAG categories [23, 24]. Secondly, if a TAG comprised 
less than 1.5 % of the oil, the TAG was removed and the 
amount added to the most similar TAG included in the 

(12)SFC =

∑P−1
j=1

[

nj
∑N

i=1 z
j
iMi

]

∑N
i=1 ni,totMi
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composition, having this TAG’s pure-component proper-
ties. For example, PPS would be added to PPP (Having the 
pure-component properties of PPP), LiOO would be added 
to OOO and so on.

Although up to 3 % diacylglycerols were allowed in the 
oils, these were disregarded in the oil compositions.

Polymorphism

Generally, TAG are considered to exhibit monotropic pol-
ymorphism in terms of three major polymorphs together 
with a number of sub-modifications, more difficult to dis-
tinguish from one another [25–28]. The major polymorphs 
are named α, β′ and β in order of increasing stability. The 
stability is linked to the order in the crystal structure, so 
that the α-phase can be regarded as behaving ideally, while 
the latter two modifications may show non-ideal behavior. 
The instability of the α-phase renders its presence improb-
able at equilibrium for all types of TAG considered in this 
work [11, 27, 29, 30]. Therefore this modification is left out 
of the calculations.

Generally, β′ polymorphism is promoted by interest-
erification of oils by increasing the amount of asymmetric 
TAG [31, 32] and palm oil based blends are often shown 
to be β′ tending [33–35]. Furthermore, double chain-length 
packing of the TAG is common for many natural oil sys-
tems, comprising a wide array of different TAG [25, 32, 36, 
37]. Although mono-acid saturated TAG generally exhibit 
β polymorphism, this group only comprises a few percent 

of the investigated oils, and are assumed to exhibit β′ poly-
morphism. Symmetric, mono-unsaturated TAG also exhibit 
β conformation in their most stable state. However none of 
the oils have been tempered and therefore it is assumed that 
the symmetric oils are β′ tending under the conditions used 
in this work [27, 32].

Finally, the potential presence of molecular compounds 
has been disregarded [38–40].

Obtaining Interaction Parameters from SFC Measurements

A new approach to estimating interaction parameters is 
proposed in this work. In complex systems, several TAG 
exist and it would be prohibitively time-consuming to esti-
mate the required interaction parameters from binary mix-
tures of the complete TAG combination matrix. In addi-
tion, not all TAG needed may be commercially available 
in pure form. Hence, a new approach to estimating interac-
tion parameters, based on SFC, has been developed. This 
method essentially estimates the interaction parameters 
from the best match between simulated and experimental 
SFC at quasi-equilibrium.

Undoubtedly, for a single experiment it would be pos-
sible to arrive at the correct SFC value using several com-
binations of the interaction parameters. Therefore, a large 
array of experimental SFC data points are needed to ensure 
semi-universal values of the estimated interaction param-
eters. To form this array of experimental data, oils I and II 
were used and diluted with liquid oil (oil IV) in different 

Table 1  Triacylglycerol composition [% (w/w)] and pure-component data for the six used oils

The conventional nomenclature has been used: the three fatty acid moieties attached to the glycerol backbone is abbreviated using letters

The leftmost column denotes the category to which the TAG belong

St stearic, P palmitic, O oleic, Li linoleic

TAG category TAG References Tm(β
′

) (K) �H
sl(β

′

) (kJ/mol) Oils

I II III IV V VI

1–Trisat. StStSt [32] 336.6 149.7 – – 2.5 0.5 1.0 2.4

PPP [32] 329.8 129.0 6 1.7 – – 3.4 –

PPSt [6, 32] 331.3 124.0 4.2 3.3 – – –

2–Mono-unsat. POP [6] 303.6 104.0 13.4 4.8 – – 60.6 0.8

PPO [32] 307.6 111.0 30.7 10.9 – – 5.5 –

POSt [6] 306.0 114.0 5.6 10 2.1 – 13.6 7.7

PStO [32] 313.0 109.3 11.8 23.9 4.4 – – –

StOSt [6] 310.4 111.0 1.5 5.7 24.1 1.3 1.9 71.1

StStO [32] 315.9 138.3 1.9 15 51.2 – – –

3–Disat., di-unsat. PLiP [6] 300.1 (γ) 96.2 (γ) 12.8 13.3 – – 8.0 –

StLiSt [49] 302.1 (γ) 137.4 (γ) – – 6.5 0.6 – 8.6

4–Di-unsat. POO [32] 275.5 93.3 8 3.9 – 11.9 4.1 1.0

StOO [32] 281.6 109.8 2.4 6.4 8.3 11.6 1.3 8.4

5–Tri-unsat. OOO [32] 264.0 79.0 1.7 1.1 0.9 74.1 1.4 1.4
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ratios. The isothermal holding temperature was varied 
between 10 and 25 °C to obtain different concentrations of 
TAG in the liquid and solid phases. In total, 80 experimen-
tal SFC points served as the foundation for the following 
parameter estimation.

The Concept of Quasi‑Equilibria

The term “quasi-equilibrium” describes an apparent steady 
state, or time span, during which no changes are observed 
in the system. The concept behind the quasi-equilibrium 
state, shaping the foundation of the following parameter 
estimation, was that no significant changes would occur 
in the crystallized oils around the time of SFC measure-
ment—the system need not be in its final equilibrium state, 
but it should be possible to relate the SFC measurement to 
specific polymorphic states of the involved TAG. Conse-
quently, interaction parameters for different polymorphic 
states could then be obtained by “trapping” the system 
in the desired polymorphic form and measuring the SFC 
under these conditions. This principle is schematically 
shown in Fig. 1.

The quasi-equilibrium SFC of the oils were obtained by 
leaving the oils at a specified temperature for a given time. 
Whether quasi-equilibrium was reached was evaluated by 
changes in SFC over time, coupled with DSC and X-ray 
measurements. The oils were thus evaluated isothermally 
over a certain time span until a quasi-equilibrium state was 
evident from the given measurements, keeping in mind that 
dilution and temperature may alter the crystallization kinet-
ics [11, 41, 42].

Methodology of Parameter Fitting

The interaction parameters were fitted by minimization of 
a defined objective function. The non-linear least squares 

method objective function was applied [43, 44]. The sum 
of squares of the residuals (SSR) is calculated as shown in 
Eq. (13). Using this method, all adjustable parameters are 
fitted to all datasets at once.

where s is the current data point, m is the number of data 
points, SFCexp,s is the experimental SFC value at point s 
and SFC(θ)s is the simulated SFC value at point s.

Several minimization methods of varying complexity, 
convergence intervals and computation speeds exist [10, 
43, 45]. In this case, a rather simple parabolic interpolation 
method is used [44]. This method makes for a fairly trans-
parent approach, where the minimization pathway is easy 
to monitor and assess. All calculations and simulations 
are carried out on a standard PC, and the model was pro-
grammed in C++.

Parameter Values and Boundaries

In the present work it was of interest to determine all inter-
action parameters linked to the various oils. Therefore, 
every possible combination of binary interaction param-
eters was added to the matrix, θ. The parameter boundaries 
(minimum = 0, maximum = 8) were defined as suggested 
by Wesdorp [6]. To ensure that the global minimum was 
reached during minimization the minimization routine was 
run using three different matrices, θinit, holding the initial 
guesses, namely ideal behavior (θinit = 0), near-immiscible 
behavior (θinit = 8) and the correlation suggested by Wes-
dorp [6] which lay somewhere in between guess 1 and 2.

Parameter Importance and Sensitivity

The developed model is analyzed by evaluating the dif-
ferential coefficient of every data set for a small change in 
every adjustable parameter, d [45–47]:

Then for every parameter the total change over all data 
sets can be calculated. This would describe the importance 
of every parameter, δd, on the model output:

The sensitivity of selected parameters are evaluated by 
the OAT (one at a time) method [47], where the parameters 
are repeatedly varied, one at a time, while the rest are kept 
constant.

(13)SSR =

m
∑

s=1

[

SFCexp,s − SFC(θ)s

]2

(14)Ss,d =
∂SFCs

∂θd

=
SFCs(θd + �θd) − SFCs(θd)

�θd

(15)δd =

√

√

√

√

1

m

m
∑

i=1

S2
s,d

Fig. 1  Schematic representation of the quasi-equilibrium states at 
which data for parameter estimation can be obtained. t

i,β
′ represents 

the interval during which data for the β′ polymorph can be obtained
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Experimental Results and Model Analysis

Experimental Determination of Quasi-Equilibria

Figure 2 shows SFC and DSC measurements for oil I which 
were used to illustrate the approach to validate quasi-equi-
librium states for the oils. From all analyses it was evident 
that only small changes occurred to the system after 100 h 
at a given temperature. The X-ray diffractograms in Fig. 3 
confirmed that no major polymorphic transitions were 
occurring after a holding time of approximately 100 h and 
the values clearly suggested the expected double chain-
length packing for oil I [25, 36, 37]. Furthermore, the 
wide angle diffractograms pointed towards a β′ dominated 
system.

In conclusion the quasi-equilibrium polymorphic state of 
the crystals seemed to occur rather quickly. Small changes 
were observed between 2 and 24 h, but after that the sys-
tem appeared stable with regard to polymorphism. In gen-
eral, the systems were shown to reach a quasi-equilibrium 

in less than 120 h. For this reason, all SFC measurements 
were performed after 1 week at constant temperature.

Resulting Parameter Fits

Figure 4 depicts the parity plots for experimental vs simu-
lated SFC values using the fitted parameter set. For confi-
dentiality reasons, the actual parameter values obtained are 
not provided.

There is a very good match between simulations and 
experimental data over the temperature span with signifi-
cantly different amounts of solid fat, e.g., oil I contains 
93.8 and 44.4 % solid fat at 10 and 25 °C, respectively. This 
leads to different TAG concentrations in the solid phases 
at different temperatures. The largest deviation between 
experimental data and simulations is 3.2 % for both oils I 
and II. For oil I this deviation occurs for 100 % oil I, while 
the deviation occurs for oil II diluted with 50 % oil IV. No 
general trend between deviations and oil composition can 
be deduced.

Fig. 2  DSC (left) and pNMR 
(right) measurements for oil I as 
a function of time at a holding 
temperature of 15 °C

Fig. 3  Short and wide-angle X-ray measurements vs time for oil I. 
The lines (from bottom to top) represent the isothermal holding time, 
being 2 h, 1, 4, 7 and 10 days, respectively. The holding temperature 

was 15 °C. The diffractograms are printed directly from the X-ray 
analysis software and the numbers on the axes are therefore very 
small
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Model Validation Against Independent Oils

Validation of the model was carried out using oil III and 
oils V and VI being rich in symmetric TAG (Table 1), yield-
ing 60 SFC points for validation. Oil III contains two TAG 
which were not introduced in the fitting routine and hence 
no interaction parameters for these TAG existed. Therefore, 
fitting of the interaction parameters, involving these two 
TAG, was allowed in the validation process. In principle 
this violated the purpose of the validation. Therefore, oils V 
and VI were included together with mixtures of oils I and II 
and mixtures of oils V and VI with and without addition of 
liquid oil (oil IV). None of these oil blends required addi-
tional parameter fitting.

The parity plot in Fig. 5 shows how the SFC of the inde-
pendent oils are well described by the model. Only at low 
SFC and 25 °C a large deviation (7.6 %) was observed for 
oil III (diamonds). Generally, the deviations are slightly 
larger (up to 4.6 %) for the oils rich in symmetric TAG, 
especially for Oil V with 60.6 % POP.

Results of the Model and Sensitivity Analysis

For the model and sensitivity analyses Oils I to IV were 
included, yielding 78 adjustable parameters. Using 
Eqs. (14–15) the parameters were grouped into 4 subsets 
containing the 15, 33, 51 and 78 most important parame-
ters. With these subsets at hand, new parameter estimations 
were carried out, allowing changes in the given subset, 
while the parameters corresponding to other TAG interac-
tions were assumed to behave ideally (Aik = 0).

In Fig. 6 the quality of the fits for the different subsets 
is depicted. Clearly, ideal (Aik = 0) and nearly immiscible 

(Aik = 8) behavior led to large errors. The interaction-
parameter correlation suggested by Wesdorp also resulted 
in large errors. The average error (grey bars) could be 
reduced substantially by fitting the 15 most important 
parameters while the maximal deviation (black bars) was 
still unacceptably large. By increasing the number of 
adjustable parameters to 51, the individual data point devi-
ations were lowered substantially with a maximum value 
of 4.3 %. Only small improvements were acquired when 

Fig. 4  Parity plots showing the experimental and simulated SFC val-
ues for oils I and II at different temperatures and levels of dilution 
with liquid oil (oil IV). The largest observed experimental standard 
deviation was 2 %. Error bars have been omitted for simplicity

Fig. 5  Parity plot showing experimental and simulated SFC values 
for oil III, mixtures of oils I and II and mixtures of oils V and VI, 
diluted with oil IV in different ratios. The largest observed experi-
mental standard deviation was 2 %. Error bars have been omitted for 
simplicity

Fig. 6  Graphical representation of the average (grey) and maximal 
(black) SFC error for all simulated data points. The x‑axis denotes the 
approach used to determine the interaction parameters. p denotes the 
number of adjustable parameters included in the minimization rou-
tine, chosen by Eq. (10). 78 p (2) represents the case where the sys-
tem is restricted to a single solid phase
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going from 51 to 78 adjustable parameters. Curiously, 
by restraining the system to one solid phase it was possi-
ble to obtain a fit only slightly worse than the multi-phase 
simulations.

For the sensitivity analysis three parameters were cho-
sen for the sake of simplicity. The following interactions 
were investigated: PPO-PStO, PStO-PLiP and POP-PPO, 
listed in order of increasing importance. The result of the 
OAT analysis (Fig. 7) showed pronounced discontinui-
ties in the average deviation as a function of change in the 
parameter value. Moreover, increasing the change of the 
parameter in question generally increased the SFC error. 
No clear trend was observed with respect to the direction 
of the delta change, although the figure suggests a slight 
tendency towards larger deviations as the parameters were 
moved toward ideal interactions (negative delta values). 
Finally, the dependency of a specific parameter varied sig-
nificantly for oil I and II, manifested in the very different 
trends observed in the two plots.

Extending the Interaction Parameter Matrix

It was of interest to investigate whether the model could be 
extended to deal with mixtures including other TAG, keep-
ing the estimated interaction-parameter values constant. 
Oils containing lauric-acid moieties were of particular 
interest as these systems show incompatibility in the solid 
phase when mixed with non-lauric oils [2, 48]. For this pur-
pose an interesterified palm-kernel oil was mixed with oil I 
in different ratios (from 70 to 10 % lauric oil) and the SFC 
measured after isothermal storage at two different tempera-
tures (20 and 25 °C) for a week. The interaction parameters 
for the introduced TAG, containing lauric acid, were then 
fitted while the rest were kept at their values estimated ear-
lier. A drop in SFC was already present when adding 10 % 

lauric-rich oil (see Fig. 8). The SFC was described well by 
fitting solely the interaction parameters linked to the lau-
ric-rich oil. Again, it was possible to arrive at good fits by 
restraining the system to one solid phase.

Discussion

The new approach presented for estimating interaction 
parameters from quasi-equilibrium SFC measurements 
works well for a large range of compositions at different 
temperatures. SFC measurements have been utilized to 
obtain interaction parameters for complex oils, yielding 

Fig. 7  Sensitivity analysis of three chosen parameters, varied (if pos-
sible)±2 from their estimated value, for oil I (left) and oil II (right). 
The y‑axis represents the SFC deviation. Squares (POP-PPO), dia‑

monds (PStO-PLiP) and crosses (PPO-PStO) represent the three 
interaction parameters in order of decreasing importance

Fig. 8  SFC curves of mixtures of oil I with an interesterified lau-
ric-rich oil. Upper and lower curves are measured at 20 and 25 °C, 
respectively. Crosses represent experimental data. The solid line rep-
resents simulations where any number of phases are allowed. The 
dashed line represents simulations where the number of solid phases 
is restricted to one
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an easy, quick and reliable way to predict SFC values for a 
wide span of oil compositions.

Oil Composition and Polymorphism

Interaction parameters obtained as suggested in this work 
are not guaranteed to resemble the values obtained for pure 
binary systems. It could be argued that effects originating 
from the lumping procedure and content of minor compo-
nents are embedded in the estimated parameters. Yet, the 
type and concentration of impurities and minor components 
vary from oil to oil and ultimately the estimated parameters 
seem to be linked closely to the actual TAG interactions. 
Furthermore, the interaction parameters estimated for the 
complex oils in question all lie within the suggested value 
boundaries of 0–8.

The importance of allowing for non-ideal behavior 
in the β′ phase is clearly manifested in Fig. 6 where the 
model performance is increased dramatically by introduc-
ing non-ideal interactions. On the other hand, assuming 
nearly immiscible behavior for all TAG also leads to very 
large errors in the simulated SFC values. Ideal (average and 
maximal errors in SFC: 14 and 43) and nearly immiscible 
(average and maximal errors in SFC: 12 and 37) behavior 
lead to large over and underpredictions of the SFC, respec-
tively. The correlation suggested by Wesdorp (average and 
maximal errors in SFC: 12 and 40) performs slightly better 
than ideal conditions but underestimates the non-ideality 
of mixing for the systems studied. Conclusively, individual 
interaction-parameter values for different TAG–TAG inter-
actions are clearly needed. According to our model these 
values should be larger than suggested in the literature, giv-
ing rise to a larger degree of non-ideality in the β′ phase.

Molecular compound formation was not introduced in 
the model and good fits were obtained without taking this 
phenomenon into consideration.

Solid–Liquid Equilibrium Calculations

It can be argued that other activity-coefficient model 
could be used to arrive at the SFC results presented in this 
work. Nonetheless, compared to the Margules 2-suffix, 
most existing activity-coefficient models are more com-
plex and require more parameters to describe the activ-
ity coefficients. For example, by choosing the Margules 
3-suffix model, it would be possible to account for asym-
metric interactions which are unquestionably a reality for 
some binary mixtures of TAG. Utilizing this model would 
require fitting of twice as many parameters, rendering the 
SLE model more flexible with no promise of a more pre-
dictive model or estimated parameters of a more universal 
character. Although asymmetric interactions are occurring 
for pure binary TAG mixtures it seems the overall trends 

and interaction patterns for complex oils can be described 
adequately assuming symmetric interactions. Hence, in 
this work no incentive to implement more complex activ-
ity coefficient models have been encountered, and the Mar-
gules 2-suffix model is recommended to describe non-ideal 
behavior when dealing with industrial-grade vegetable oils.

The need for a multi-phase SLE model, allowing more 
solid phases to co-exist, does not seem that essential for the 
oils in question and for static SFC simulations good results 
can be obtained by simplifying the equations to deal with 1 
solid phase only.

Parameter Importance

The sensitivity analysis suggests that the calculated SFC 
is rather sensitive with regard to interaction-parameter 
values. Also, the analysis accentuated the discontinuity of 
the model making it evident that small changes in param-
eter values can have a profound effect on the SFC and 
hence the deviation between experimental and calculated 
results. This is a consequence of small changes of the 
interaction parameters sometimes leading to changes in 
phase behavior so that additional phases occur or phases 
disappear.

The model appears to contain excess adjustable param-
eters, giving rise to an overly complex model. The num-
bers in Fig. 6 provide a convenient overview of the aver-
age and maximal SFC errors obtained using different 
parameter sets. Looking only at average errors it would be 
tempting to suggest that the 15 most important parameters 
would describe SFC adequately. However, for 15 and 33 
adjustable parameters the largest deviations are 12.6 and 
13.7 %, respectively, which the authors consider unaccep-
table. Increasing the number of adjustable parameters to 51 
or 78 greatly reduces the largest errors to 4.3 and 2.9 %. 
Although the average error is only reduced with a few per-
cent when increasing the number of adjustable parameters, 
the error fluctuations are reduced substantially, giving rise 
to a more reliable model.

Based on the discussion above, the number of adjustable 
parameters could be reduced from 78 to 51 without reduc-
ing the quality of the fits substantially. However, if kinetic 
considerations are to be included, the picture might very 
well change. Phenomena such as induction time, seeding 
capability and rate of crystallization may be influenced 
by specific components and interactions. Therefore, better 
parameter estimates could probably be obtained by pair-
ing the static SFC measurement with dynamic SFC meas-
urements, describing the overall course of crystallization. 
On the other hand, such a fitting procedure is much more 
demanding with respect to the number of required simula-
tions and seems overly ambitious considering the computer 
power at hand.
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In any case, the developed model and estimated param-
eters should provide a solid foundation for further refine-
ment and inclusion of kinetic phenomena.

Conclusion

An approach to determine interaction parameters for TAG 
mixtures based on SFC has been developed and validated. 
The method allows for simple, quick and reliable estima-
tions of interaction parameters, and can be used to predict 
SFC of industrial-grade oils with a large compositional 
span comprising oils rich in asymmetric as well as symmet-
ric TAG.

To estimate the needed interaction parameters a math-
ematical model, describing SFC of various oils as a func-
tion of chemical composition and isothermal crystalliza-
tion temperature, has been developed. The model is based 
on the Margules 2-suffix activity-coefficient model and 
minimization of the Gibb’s free energy to determine the 
composition of the different phases present at equilib-
rium. This activity-coefficient model required interaction 
parameters for every binary pair of TAG present. These 
parameters were estimated from experimental SFC data 
obtained at quasi-equilibrium conditions for two indus-
trial-grade oils with complex chemical compositions 
mixed with a liquid oil in different ratios. The obtained 
interaction parameters described the experimental data 
very well and were subsequently validated against three 
other oils being rich in asymmetric and symmetric TAG, 
respectively.

The final model was extended to deal with oils rich in 
lauric acid. This oil was highly incompatible with the other 
oils in the solid phase and led to pronounced drops in SFC 
when mixed. The model predicted this effect well, render-
ing it flexible with respect to inclusion of other oils com-
prising different TAG.

The number of interaction parameters included seemed 
too high and good fits could have been obtained using 
fewer parameters. The model appeared to be rather sensi-
tive with regard to adjustable parameter values.

In conclusion, the approach presented appears to be a 
powerful way to obtain interaction parameters without the 
need for pure binary-oil mixtures. The predictive nature 
of the model renders it a good starting point whether one 
needs to extend the model to deal with kinetics or requires 
an industrial tool for optimizing screening trials and eval-
uating new oil blends. By using this model, screening of 
hundreds of oil blends can be carried out in a matter of 
minutes instead of hours, days or even weeks. It thus pro-
vides developers and specialists with a qualified first-hand 
guess of the outcome when specific oils are mixed at vari-
ous temperatures.
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