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Abstract Various biodiesel feedstocks were evaluated

using gas chromatography–mass spectrometry data com-

bined with unsupervised chemometric methods of analysis.

Peak areas of the fatty acid methyl esters (FAMEs) present

in the biodiesel feedstocks (soybean oil, canola oil, waste

grease, animal tallow, etc.) were utilized. The importance

of chromatographic parameters, such as temperature pro-

gram and column polarity, was examined with respect to

the clustering that was observed using principal component

analysis (PCA) and hierarchical cluster analysis (HCA).

Biodiesels in this study clustered based on feedstock type

regardless of temperature program or column type, as long

as FAME isomers were resolved from one another. As

such, the number and type of FAME components required

to observe this clustering was investigated further. In

general, the minor components in the sample did not pro-

vide improved clustering and thus did not need to be

included. In addition, data from various temperature pro-

grams or column types were combined to yield similar

clustering, showing potential versatility in analyzing sim-

ilar samples across laboratories using different columns

and column properties. Overall, we determined that (1)

minor FAME components are non-essential for feedstock

identification and (2) PCA and HCA clustering is based on

feedstock, regardless of column selection, so long as res-

olution of FAME isomers is achieved.

Keywords Fatty acid methyl esters (FAMEs) � Biodiesel

fuels � Gas chromatography–mass spectrometry (GCMS) �
Principal component analysis (PCA) � Hierarchical cluster

analysis (HCA) � Correlation

Introduction

Biodiesel has become a viable alternative energy source in

the United States and around the world. In addition to

being both renewable and biodegradable, the use of bio-

diesel can mitigate the release of harmful emissions as

compared to traditional fossil fuels like diesel. The fuel can

be made from a variety of feedstocks since oils can be

easily extracted from plant sources, obtained from animal

fats, and collected from used plant-based waste greases

from restaurants. These oils then undergo a transesterifi-

cation reaction in the presence of a catalyst, such as KOH,

and methanol to produce fatty acid methyl esters (FAMEs).

These FAMEs that make up biodiesel are completely

miscible in traditional petrodiesel. Biodiesel can be used in

its pure form or in a variety of volumetric ratios with diesel

fuel [1, 2]. Properties like biodiesel fuel quality and effi-

ciency are dependent on the FAME content, which is in

turn dependent on the feedstock from which the biodiesel is

derived [2]. Gas chromatography coupled with mass

spectrometry detection (GCMS) has effectively been uti-

lized to separate and identify biodiesel FAMEs in order to

generate a unique fingerprint for each biodiesel feedstock

[1, 3–7 and references therein]. Previous work in our lab

has evaluated optimal separation conditions for various

biodiesel feedstocks (soybean oil, waste grease, canola oil,

and tallows) analyzed on a variety of column chemistries

[polyethylene glycol, phenyl-, and cyanopropyl-modified

polydimethylsiloxane (PDMS)] [3].
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The fingerprints that are obtained for each biodiesel can

be further analyzed using chemometric techniques. In fact,

many researchers have turned to chemometric methods,

such as principal component analysis (PCA) or hierarchical

cluster analysis (HCA), to evaluate complex data sets

derived from either GC or other spectroscopic techniques.

Several of these chemometric techniques extend from work

done with petroleum products such as diesel fuel [8–13].

Schale et al. [14] used several multivariate chemometric

techniques [PCA, HCA, K-Nearest Neighbors, and partial

least squares (PLS)] on GCMS data (using both polar and

nonpolar columns) in order to analyze biodiesel feedstocks

present in biodiesel-diesel blends of various percentages.

Their PLS model was successfully able to determine bio-

diesel percentage and feedstock using a small number of

feedstocks (three plant based biodiesels) and a range of

biodiesel percentages (1–30 %). In addition, near infrared

spectroscopy (NIR) and electrospray mass spectrometry

(ESI–MS) have been used for analysis of biodiesel feed-

stocks and biodiesel blends [15–18]. While PCA of this

NIR and ESI–MS data was able to provide classification of

various feedstocks, information regarding individual

FAME was not elucidated using these methods. Identifying

the individual FAME that contribute to the differences in

the biodiesel sources is of interest to those that want to

maximize the energy content in a given biodiesel or

determine the source of biodiesel in an unknown sample

for forensic or environmental purposes [1, 11]. In addition,

since many labs have access to particular biodiesel feed-

stocks, it would be useful for data sets from multiple labs to

be combined.

In this research, several chemometric methods were

utilized to evaluate the FAME content of several biodiesel

feedstocks using GCMS under a variety of experimental

conditions, including column chemistry and temperature

program. The peak areas for each FAME were analyzed

using several unsupervised chemometric methods (PCA,

HCA, and correlation coefficients). The clustering in PCA

and HCA was compared under various operating condi-

tions (column chemistry and temperature program) for

well resolved peaks. In addition, clustering in PCA and

HCA was performed under separation conditions that

yielded unresolved peaks. Data from several conditions

were combined in order to determine the use of chemo-

metric analysis across labs or separation conditions. This

study is the first to use chemometric methods to compare

column conditions to determine (1) if separation condi-

tions contribute to the clustering observed in unsupervised

chemometric methods, (2) the degree of separation that is

needed in order to observe distinct clustering based on

biodiesel feedstock, and (3) if data from various condi-

tions can be combined to yield meaningful chemometric

results.

Experimental Procedures

Chemicals

Biodiesel fuel samples were obtained from various manu-

facturers throughout the United States [Minnesota Soybean

Processors (soybean biodiesel, Minn Soy 2010, 2011),

Western Dubuque Biodiesel (soybean biodiesel, Iowa Soy

2010), Iowa Renewable Energy (soybean biodiesel, canola

biodiesel, tallow biodiesel, IRE Soy, Canola, Tallow 2012),

NIST [Standard Reference Material (SRM) 2772, Soy

SRM, soybean biodiesel from Ag Processing Inc and SRM

2773, Animal SRM, tallow/soybean biodiesel mixture from

Smithfield BioEnergy LLC), ADM Company (canola bio-

diesel, ADM Canola 2010, 2011), TMT Biofuels (waste

grease biodiesel, Waste Grease 2010, 2011), Texas Green

Manufacturing (beef tallow biodiesel, Texas Tallow 2010,

2012), and Keystone Biofuels (unknown biodiesel, Key-

stone 2010)] and stored in their original shipping contain-

ers at 4 �C. Prior to dilution, each biodiesel was gradually

warmed to room temperature and inverted multiple times to

ensure homogeneity. Then, 1 mL of each biodiesel sample

was diluted to 100 mL total volume with methylene chlo-

ride (BDH Chemicals distributed by VWR, West Chester,

PA). 1 mL of 0.30 M tridecanoic acid methyl ester (Fluka)

was added to a 50-mL volumetric flask and diluted to

volume with the 100:1 biodiesel. Tridecanoic acid methyl

ester (C13) was chosen as an internal standard as it was not

present in any of the biodiesel samples originally. All

diluted biodiesel solutions were stored in amber bottles at

4 �C and gradually warmed to room temperature prior to

analysis.

Instrumentation

Separations were performed using an Agilent 6890 gas

chromatograph coupled with an Agilent 5937 mass spec-

trometer (Agilent Technologies, Santa Clara, CA) and have

been presented in detail previously [3].

Evaluation of Biodiesel Feedstock, Effect of Column

Choice and Resolution

The GCMS was equipped with one of four fused-silica cap-

illary columns of dimensions 30 m 9 0.25 mm 9 0.25 lm

[polyethylene glycol (ZB-WAXplus, Phenomenex), nitrote-

rephthalic acid-modified polyethylene glycol (ZB-FFAP,

Phenomenex), 70 % cyanopropyl-modified PDMS (BPX70,

SGE Analytical Science), 35 % phenyl-modified PDMS

(ZB-35, Phenomenex)]. The oven temperature was optimized

for each column as follows: ZB-WAXplus and ZB-FFAP

-60 �C (hold 2 min) to 150 �C at 13 �C/min to 230 �C at

2 �C/min; BPX70 -60 to 150 �C at 13 �C/min to 230 �C at
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1 �C/min; ZB-35 -60 to 150 �C at 13 �C/min to 190 �C at

1 �C/min to 270 �C at 5 �C/min or isothermal at 235 �C.

High purity helium was used as a carrier gas at a nominal flow

rate of 1.5 mL/min (ZB-WAXplus, ZB-FFAP, ZB-35) or

1.0 mL/min (BPX70). A representative chromatogram

showing separation of FAME components in a soybean bio-

diesel from each temperature program is shown in Fig. 1. The

resulting separation on the ZB-FFAP column is almost

identical to that of the ZB-Waxplus and is not shown.

Effect of Temperature Program

The GCMS was equipped with a cyanopropyl-modified

PDMS fused-silica capillary column of dimensions

100 m 9 0.25 mm 9 0.20 lm (SP-2560, Supelco). Three

temperature programs were utilized: program 1 -70 to

210 �C at 10 �C/min (hold 30 min), program 2 -140 �C

(hold 5 min) to 290 �C at 4 �C/min, program 3 -80 �C

(hold 1 min) to 160 �C at 20 �C/min to 198 �C at 1 �C/min

to 250 �C at 5 �C/min (hold 15 min). High purity

helium was used as a carrier gas at a nominal flow rate of

1.0 mL/min.

Additional Instrumental Parameters

Each sample was injected via syringe (1 lL injected from a

10-lL syringe, Hamilton Company) with a split ratio of

15:1 (SP-2560), 50:1 (ZB-WAXplus, ZB-FFAP, ZB-35), or

100:1 (BPX70), optimized to provide similar peak widths

for each column. The inlet and transfer line temperatures

were held at 250 and 280 �C, respectively. An electron-

impact ionization source was utilized with a quadrupole

mass analyzer operated in full-scan mode (m/z 20–300)

with a sampling rate of 4.94 scans/s. The mass spectrom-

eter source and quadrupole were held at 230 and 150 �C,

respectively. FAME identification was performed using the
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Fig. 1 Chromatograms displaying separation of FAME components

in a soybean biodiesel for each column chemistry. a BPX70,

b Waxplus, c ZB-35 T program, d ZB-35 isothermal. FAMEs are

labeled on each chromatogram. Asterisk is the C13 internal standard.

Separation conditions as listed in the experimental procedures section
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mass spectra library (NIST mass spectral search program

version 2.0a, Gaithersburg, MD) as well as retention time

comparison to the FAME standards.

Data Processing

The area of each FAME peak was identified via integration

using a common threshold (Enhanced Chemstation

D.03.00.611, Agilent). Peak areas were normalized in

Microsoft Excel 2007 to account for typical variations

arising from manual injection. To do this, the peak area for

each FAME was summed and subsequently divided by the

total area under all FAME peaks, yielding a fraction of the

total area described by that FAME. The average of all

sample areas was calculated and multiplied by each frac-

tion to return the data to the same order of magnitude.

Correlation coefficients were calculated for all biodiesel

pairs using Matlab 7.1. (Natick, MA). Normalized peak

areas were mean-centered in Pirouette 4.5 (Infometrix,

Bothell, WA) prior to subsequent chemometric analysis

(principal component analysis and hierarchical cluster

analysis). Mean-centering is required prior to these che-

mometric techniques as it shifts the plot origin to the center

of the data set without altering the relative inter-sample

relationships, in an effort to more easily consider rela-

tionships between samples [19]. PCA allows simplification

of the original data set by identifying the variables that

contribute to the maximum variation [19]. Typically 2–3

principal components (PC) represent 80–90 % of the var-

iation and as such the remaining PC that represent noise or

other insignificant variation can be eliminated. The scores

for the first two principal component vectors were plotted

in Excel. The 95 % confidence intervals for each category

of biodiesel feedstock were calculated and included on

each plot as ellipses. In HCA, the Euclidean distance

between pairs of samples are examined and represented in

a dendrogram plot using a similarity value [20, 21]. The

similarity is calculated as one minus the Euclidean distance

for each pair/grouping divided by the maximum Euclidian

distance between samples [19, 20]. The samples are

grouped by brackets; those bracketed together first are the

most similar in their chemical properties (similarity * 1)

[20]. Linking continues until all samples in the data set are

linked together; those bracketed together last are the least

chemically similar in the data set (similarity = 0).

Results and Discussion

Evaluation of Biodiesel Feedstock Source

A variety of biodiesel feedstock sources, including soybean

oil, waste grease, canola oil, and animal tallow were

evaluated using chemometric methods. The cyanopropyl

column chemistry (BPX70) was utilized for this investi-

gation, as it provided the most optimal separation of indi-

vidual FAME isomers [3]. The correlation coefficients

between several key pairs of biodiesels, using the six most

abundant peak areas in each biodiesel, are shown in

Table 1. Six peak areas were used as only six components

were identified in the soybean biodiesel [3]. Across the

dataset, the FAMEs included C14, C16, C16:1, C18, C18:1

isomers, C18:2, and C18:3. If a sample did not contain a

given FAME or had a concentration that placed it outside

the most abundant components, a value of zero was used

for that FAME concentration. Correlation coefficients[0.8

typically indicate high correlation, while values between

0.4 and 0.79 indicate medium correlation, and values\0.4

indicate weak correlation [22]. High correlation values are

observed between samples of similar types taken from

different locations/companies (Table 1). Similar samples

(same feedstock and manufacturer, but different year) are

not displayed as they show the same results as those

reported. Additionally, the soybean biodiesels have high

correlation to the waste grease biodiesels, medium corre-

lation to the canola biodiesels, and very low correlation to

the animal biodiesels. The one exception is the higher

correlation of the soybean biodiesels to the Animal SRM.

However, the Animal SRM is actually composed of 15 %

soybean biodiesel and 85 % animal fat, so this animal

sample should show somewhat higher correlation to the

soybean feedstocks. The canola feedstocks have moderate

to high correlation to the animal sources, indicating greater

correlation to the animal sources than the other plant

sources (soybean). The Keystone biodiesel is derived from

an unknown feedstock type. It displays high correlation to

both soybean feedstocks as well as the waste grease feed-

stock, yet low to moderate correlation with the canola and

animal sources. Thus, from the correlation values, it seems

likely that the Keystone biodiesel is derived from either a

soybean or waste grease feedstock. It is important to note

that a correlation value of 0.998 or greater was obtained for

replicate trials (not shown), thus illustrating high repro-

ducibility in the method.

PCA was performed using the six most abundant peak

areas (Fig. 2a) as well as all peak areas that could be

identified (Fig. 2b). The soybean samples only contained

six FAMEs, while the waste grease, canola, and tallow

contained more than six FAMEs. However, the extra peaks

included (C14:1, C15, C17, C17:1, C20:1) represented

\5 % of the total peak area in all cases, and in many cases

\2 %. In both PCA plots, biodiesels are clustered together

based on feedstock type (soybean oil, waste grease, canola

oil, animal tallows) with replicate samples showing tight

clustering. The first two PCs describe 99 % of the variation

in the data set, indicating that further PCs would not allow
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further discrimination within the dataset. The first PC

allows for distinct separation between clusters of soybean

oil, waste grease, and canola oil with animal tallows, while

the second PC allows for further separation of the canola

and animal feedstocks. In some cases, the samples load

negatively (negative scores) for one dataset yet load posi-

tively (positive scores) on another. However, the clustering

and absolute magnitude of the loadings is unaltered

between the two plots. The loadings indicate that these

clusters arise based on differences in the C18:1n9c and

C18:2 concentrations for PC1 and differences in the C16

and C18 concentrations for PC2. Thus, these FAME are the

most descriptive chemical components to differentiate this

set of biodiesel fuels.

The similarities between Fig. 2a and b indicate that

additional information is not gained when additional minor

peaks are used. Since these additional peaks are in low

concentration, an autoscale feature could be utilized so that

all peaks are weighted more evenly. If the data is mean

centered only, as was the case in this study, then the most

abundant peaks will be weighted more heavily in the PCA

[19]. However, when the data in this study is autoscaled

(that is, variance scaled in addition to mean-centering), the

clusters become more spread out and no additional clus-

tering is gained (not shown). In fact, the waste grease

samples overlap more with the soybean biodiesel samples

and are more difficult to differentiate. Thus, only the most

abundant peaks will be used for subsequent analyses in this

study.

It is interesting to compare the PCA results to the cor-

relation coefficients. The soybean and waste grease bio-

diesel samples are located more closely in space on the

scores plot, which corresponds to the higher correlation

coefficients observed between these sample types. In

addition, the spread in the animal samples on the scores

plot corresponds to the variation seen in the correlation

coefficients within these samples of the same type. As we

noted in a previous paper, the FAME concentrations are

more similar within plant based biodiesels taken from

various locations and harvest years (soybeans, canolas),

than within animal based biodiesels [3]. Thus, the scores

plots verify what we were able to identify by visual

inspection of each chromatogram. Interestingly, while the

animal feedstocks are more spread in space, the Animal

SRM is the closest animal source to the plant biodiesels,

again, likely due to the mixed nature of the sample. In

addition, the Keystone biodiesel with unknown origin is

grouped very closely to the soybean biodiesels. In fact, the

95 % confidence ellipsoid intersects one of the replicate

analyses of the Keystone. A higher correlation coefficient

was observed between the Keystone and the soybean bio-

diesel samples, and the identity of the Keystone is con-

sistent with a soybean oil feedstock to a greater extent via

PCA.

Table 1 Correlation

coefficients for biodiesel

feedstock types on BPX70

column

Minn 
Soy
10

Iowa 
Soy
10

IRE 
Soy
12

Key 
stone

10

Waste 
Grease

10

ADM
Canola

10

IRE 
Canola

12

Texas 
Tallow

10

IRE 
Tallow

12

Animal 
SRM

1.00 1.00 1.00 1.00 0.94 0.49 0.49 0.08 0.39 0.72
Minn 
Soy
10

1.00 1.00 1.00 0.94 0.51 0.51 0.09 0.40 0.73
Iowa 
Soy
10

1.00 1.00 0.94 0.48 0.49 0.09 0.39 0.72
IRE 
Soy
12

1.00 0.92 0.45 0.45 0.04 0.35 0.69
Key 

stone
10

1.00 0.75 0.75 0.38 0.66 0.90
Waste 
Grease

10

1.00 1.00 0.65 0.81 0.81
ADM

Canola
10

1.00 0.65 0.80 0.81
IRE 

Canola
12

1.00 0.93 0.73
Texas 
Tallow

10

1.00 0.92
IRE 

Tallow
12

1.00 Animal 
SRM
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HCA was used to analyze the biodiesels according to

feedstock as well. As can be seen in Fig. 3, samples were

clustered first by sample (replicates together) then by bio-

diesel feedstock type (soybeans together, canolas together,

etc.). According to the dendrogram, the waste grease

samples are most similar (0.962), followed closely by the

canola (0.952) and soybean (0.942). The animal samples

are the most variable within a feedstock type (0.453), being

clustered together last, with very little similarity in com-

parison to the other samples. In fact, the soybean and waste

grease samples are more similar (0.640) than most of the

animal samples are to one another. Another point of note is

the Animal SRM is linked to the other animal samples and

is not linked to the soybean samples separately even though

it is a mixture. If only 100 % animal biodiesels are eval-

uated, the samples are considered more similar to one

another, yet still more variable than the plant based sources

(0.659). Interestingly, the dendrogram links the canola and

tallow samples (0.127) before linking all four feedstock

groups together. Thus, despite canola being a plant source,

it is considered to be more chemically similar to the animal

sources than to the other plant sources. In addition, the

Keystone biodiesel is linked to the soybean biodiesels,

again indicating consistency in the identity of the feedstock

type.

Effect of Column Choice

Various polar column chemistries were used for the

analysis of FAMEs in the biodiesels. We have reported

that polar columns separate the FAME isomers well and

any polar column chemistry would likely be a good

choice to determine the biodiesel feedstock [3]. Here,

PCA was performed on the peak areas from each
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Fig. 2 PC scores plots showing analysis of biodiesel feedstock using

various column chemistries. a Most abundant FAME peak areas on

BPX70 column. b All peak areas recorded on BPX70 column. c Most

abundant FAME peak areas on ZB-Waxplus column. d Most

abundant FAME peak areas from all three polar columns (BPX70,

ZB-Waxplus, ZB-FFAP) combined. The percent variance explained

by each PC is shown in parentheses
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column chemistry. The clustering that is observed is

consistent to that seen for the BPX column regardless of

the column chemistry (ZB-Waxplus or ZB-FFAP) that is

used (Fig. 2c). In some cases, the samples load nega-

tively (negative scores) for one column yet load posi-

tively (positive scores) on another. However, the

clustering and absolute magnitude of the loadings is

unaltered. In addition, the same FAMEs (C18:1n9c and

C18:2 for PC1, C16 and C18 for PC2) contribute to the

loadings on all columns.

In addition, the peak areas from each column set

were combined and normalized in an effort to under-

stand similarities and differences in the column chem-

istries. Many labs run analysis with different column

chemistries, so a direct comparison can be difficult.

However, if the data can be pooled, then additional

analyses can be performed to better classify the feed-

stock type. The use of peak areas rather than using the

raw data (intensity at each retention time), can be easier

to extract from the data and used in a combined way

across labs. Using raw data requires additional data

alignment [23], which would introduce more difficult

challenges in terms of sensitivity, etc. across data col-

lected from multiple labs/instruments. PCA was used to

analyze the combined peak areas (Fig. 2d). The samples

clustered based on feedstock type alone. That is, there is

not clustering based on column chemistry. This result

shows that PCA could be used to cluster samples based

on feedstock type, when analyses are performed with

different column chemistries, perhaps even from dif-

ferent labs.

Each column chemistry was also inspected using HCA

(not shown). Similar linkages occurred for each column

chemistry; that is, groups of samples are linked based on

feedstock type. HCA was also used for the combined data

set (not shown). In HCA, the biodiesels are clustered first

by sample (replicates together) and then feedstock type,

regardless of column chemistry. In some cases within each
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Fig. 3 HCA dendrogram showing analysis of biodiesel feedstock using BPX70 column
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feedstock type there is some clustering based on column

chemistry, but for the most part this is not observed. For

example, within the soybean biodiesel cluster, Minnesota

Soy 2010 and 2011 are linked with Iowa Soy 2010 on the

BPX70 column but they are not linked directly with the

ZB-Waxplus and ZB-FFAP column. However, within

the canola biodiesel cluster there is no clustering based on

column type. Thus, HCA can be used to link together

feedstock types when similar, but not exact, column

chemistries are used.

Effect of the Temperature Program

The effect of the temperature program on the scores plot

in PCA was also examined. Three different temperature

programs that yielded ideal separations (most peaks

baseline resolved), were evaluated using a longer

cyanopropyl column (SP-2560) with a fewer number of

the biodiesel samples. Each set of analyses yielded

similar scores plots when analyzed with PCA (one of

which is shown in Fig. 4a); that is, groups of samples

are clustered based on feedstock type. The data from all

three programs were then combined, normalized, and

analyzed together (Fig. 4b). Clustering is again based on

feedstock rather than temperature program. This ana-

lysis proves that data derived from various experimental

parameters can be used together to understand complex

data sets. However, it should be noted that these tem-

perature programs all yielded separations that would be

acceptable for quantitative applications (resolution of

most peaks [1.5). Thus, it is assumed that as long as the

same peaks can be identified in each program, then the

data can be combined together.

Effect of Resolution

The results from the preceding studies indicate that clus-

tering and linking of feedstock type can occur under vari-

ous experimental conditions, including differing column

chemistry and temperature program, as long as the sepa-

ration is adequate. However, these studies do not indicate

at what point this clustering based on feedstock does not

occur. To investigate, a moderate polarity column (ZB-35)

was used for the separation of FAMEs. The temperature

program that allowed separation of the majority of the

components in the biodiesels still caused some overlap of

isomers (e.g. C16 and C16:1, C18:1 and C18:2). The PCA

for this ‘‘best’’ program is shown in Fig. 5a. Clustering is

still observed based on feedstock type, despite the decrease

in resolution on this phase. As the isomers are still sepa-

rated on this column with this temperature program, the

same FAMEs (C18:1n9c, C18:2, C16, and C18) contribute

to the loadings in PC1 and PC2. Using the same column

chemistry, a temperature program that caused severe

overlap of many components was utilized (isothermal at

235 �C). This program allowed separation of different

chain lengths (C16, C17, etc.) but the individual isomers of

each chain length were not baseline resolved (seen in

Fig. 1d). The scores plot for this less than ideal program is

shown in Fig. 5b. Here, the soybean and waste grease

biodiesel samples are not separated at all in space (their

ellipsoids are completely overlapping) and much informa-

tion is lost in the second dimension. The loadings here

indicate that C16 and C18 contribute to the clustering

observed in PC1, however, all discrimination provided by

the isomers is absent due to the lack of resolution in these

FAME peaks. In fact, the percent variance that is explained
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FAME peak areas from all three temperature programs combined.
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in the first and second dimensions is notably different when

going from the best separation (BPX70, PC1 = 74 %

PC2 = 25 %) to a middle separation (ZB-35 best program,

PC1 = 82 % PC2 = 18 %) to the worst separation (ZB-35

isothermal, PC1 = 99 % PC2 = 0.7 %). Thus, it can be

concluded that as the efficiency of the separation is

decreased (e.g. a decrease in resolution of the FAME iso-

mers), the ability to associate biodiesels based on feedstock

type is also decreased. This result is due to the limited

chemical information that can be determined when the

resolution is not ideal. Thus, a decrease in resolution can

still afford some clustering based on feedstock type, but if

the decrease is too severe, discriminating power will be

lost.

Conclusion

In this study, various biodiesel feedstocks were evaluated

using GCMS and the importance of chromatographic

parameters, such as temperature program and column

polarity, was examined with respect to the clustering that is

observed using PCA and HCA. Biodiesel samples were

clustered or linked based on feedstock type (soybean oil,

canola oil, animal tallow, etc.) regardless of temperature

program or column type, as long as FAME isomers were

separated from one another. As the resolution of the sep-

aration was decreased, the ability to cluster the biodiesels

based on feedstock also decreased, showing that separation

efficiency is paramount in associating sample types. In

addition, the minor components in the sample did not

provide improved clustering and thus did not need to be

included in order to determine the feedstock type. The

results from this study demonstrate the potential use of

chemometric methods on data sets derived from similar

samples across laboratories using different columns and

column properties.
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