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Abstract Food wastes are today considered as a cheap

source of valuable components since the existent technol-

ogies allow the recovery of target compounds and their

recycling inside the food chain as functional additives in

different products. Olive mill wastewater (OMW) is gen-

erated from olive oil extraction systems. It has high added-

value compounds namely phenolics, recalcitrants, pectin,

and some important enzymes. It causes a certain amount of

toxicity/phytotoxicity because of its phenolic compounds.

OMW also has significant impacts when discharged

directly into surface waters. Therefore, the treatment of

olive mill wastewater is very much needed. Several types

of techniques have been investigated for OMW treatment

along with recovery and removal of its phenolic com-

pounds. Among these techniques, physical ones are utilized

for extraction purposes, while chemical and biological

methods are applied in order to diminish organic load. In

this review, current status and recent developments in the

recovery and removal of phenolic compounds from OMW

have been critically examined.

Keywords Olive mill wastewater � Treatment �
Recovery � Phenols

Introduction

Olive oil production is typically conducted with the fol-

lowing extraction processes: (1) a traditional discontinu-

ous press process [1], (2) three-phase centrifugal or (3)

two-phase centrifugal extraction systems (Fig. 1). Olive

mill wastewater (OMW) is the main liquid effluent of the

olive oil production process. This waste stream is gener-

ated in several forms and compositions following the

particular characteristics of the used extraction equipment,

olive variety, season and maturity of the fruit [2]. Pres-

sure and three phase centrifugation systems produce

considerably more liquid effluent than two phase centri-

fugation process [3]. The discontinuous process produces

less but more concentrated wastewater (0.5–1 m3 per

1,000 kg) than the centrifugation process (1–1.5 m3 per

1,000 kg) [4]. Although the liquid waste is reduced in the

two-phase centrifugation system, large amounts of semi-

solid or slurry waste-commonly referred to as two-phase

pomace are discharged [3]. The annual world OMW

production is estimated from 10 to over 30 million m3 [5].

OMW is claimed to be one of the most polluting effluents

produced by the agro-food industries because of its high

polluting load [6]. The high concentration of darkly col-

ored polyphenols in OMW can discolor streams and rivers

and can inhibit plant seed germination. In addition, the

high concentration of reduced sugars can stimulate

microbial respiration, lowering dissolved oxygen con-

centrations [7]. Therefore, it is widely accepted that

OMW treatment is highly necessary. A literature review

shows that the currently employed systems for OMW

treatment can be classified as biological, physicochemical,

and combined processes [8] aiming at either the recovery

or the removal of phenolic compounds from the dis-

charging effluents.
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Physicochemical Characterization and Phenolic

Composition of OMW

The characteristics of OMW are variable, depending on

many factors such as method of extraction, type and

maturity of olives, region of origin, climatic conditions and

associated cultivation/processing methods [4]. OMW is a

dark, acidic matrix made up of water (83–94 %), organic

substances (4–18 g/100 g) including carbohydrates (2–8 g/

100 g), pectins, mucilage, lignin and tannins (which give it

a characteristic dark color [4]) (1.0–1.5 %), lipids

(0.03–1.1 %) and inorganic substances1 (0.4–2.5 %) with

physicochemical characteristics which are listed in

Table 1. Free sugars account for 1–4.5 g/100 g and

comprise glucose, fructose, galactose, mannose and sac-

charose traces [9–11]. Some of the above compounds have

been said to possess advanced functional properties, i.e..

pectin from OMW showed gelling properties that allow

their re-utilization as a fat replacement in meat products

[12, 13]. However, most importantly, OMW contains

phenolic compounds and long-chain fatty acids which are

toxic to microorganisms and plants.

Phenolic compounds (that vary from 0.5 to 24 g/L OMW)

[4] contain typically about 98 % of the phenols present in

olive fruit [14] since only 2 % of them is in the oil phase

during extraction process [15, 16]. Phenolics could exist

inherently in olive fruit or have been generated during the

olive oil production process [17]. Particularly, olive fruit

contains phenolic acids and alcohols, secoiridoids and

flavonoids, whereas today more than 50 and 40 phenolic

compounds have been isolated in OMW and olive oil,

respectively [18, 19]. Phenolic acids include o- and p-cou-

maric, cinnamic, caffeic, ferulic, gallic, sinapic, chlorogenic,

Cold water

Hot water

MECHANICAL 

PRESSING

Press-cake

PHASE

SEPARATION

(DECANTING/

CENTRIFUGATING)

Wastewater

Olive oil

Olive

WASHING
Wastewater

CRUSHING

MALAXING

DECANTING

Wastewater

PHASE

SEPARATION

(CENTRIFUGATING)

Olive oil

Sludge

Cake

Hot water

Hot water

Hot water

Hot water

Discontinuous process

Three-phase centrifugal

Two-phase centrifugal

Fig. 1 Olive oil extraction processes

1 The range of some important metals in OMW are: Pb (6.7–10 lg/

L), Cd (0.03–10 lg/L), Fe (0.45–20 mg/L), Zn (1.7–4.98 mg/L), Cu

(0.49–2.96 mg/L), Mn (0.46–20 mg/L), Mg (0.03–0.17 g/L), Ca

(0.03–0.29 g/L), K (0.73–6.1 g/L), Cl (0.76–1 g/L), Na

(0.03–0.13 g/L).

2 J Am Oil Chem Soc (2014) 91:1–18

123



protocatechuic, syringic, vanillic and elenolic acids [20–23].

The most typical phenolic alcohols are tyrosol and hy-

droxytyrosol [24, 25]. The qualitative and quantitative

HPLC analysis of raw OMW have shown that hydroxyty-

rosol and tyrosol are the most abundant phenolic compounds

[26]. In fact, one liter of crude OMW provides 4 g of dry

extract and 1 g of pure hydroxytyrosol [27].

Other phenolic compounds of OMW comprise oleu-

ropein, demethyloleuropein, verbascoside, catechol,

4-methylcatechol, p-cresol and resorcinol [28–30]. OMW

contain also important amounts of secoiridoid derivatives

like di-aldehyde of 3,4-dihydroxyphenyl-elenolic acid,

which is bound to hydroxytyrosol. The two latest com-

pounds are generated by the hydrolysis of oleuropein and

demethyloleuropein during olive fruit malaxation [31, 32].

More recently, two more secoiridoids have been identified:

hydroxytyrosyl acyclodihydroelenolate (HT-ACDE) and

comselogoside [33, 34]. Finally, the most important iso-

lated flavonoids are apigenin, hesperidin, cyanidin flavone,

anthocyanin and quercetin [15, 17, 35, 36].

Bioactivities of OMW Phenolic Compounds

OMW phenols are well known for their unique antioxidant

properties for human health which strongly suggests their

re-utilization as additives in foodstuffs and cosmetics [37].

In particular, one of the most established antioxidant

activities of OMW phenols is their ability to capture free

radicals. This ability has been studied using various radi-

cal-generator compounds like reagent DPPH� (1,1-diphe-

nyl-2-picrylhydrazyl) [38, 39] or ABTS? [2,20-azino-bis(3-

ethylbenzothiazoline-6-sulfonic acid) diammonium salt]

[15] or hyperoxide anion [36, 40]. Another antioxidant

activity is the scavenging ability against hypochlorous acid

(HClO) [41, 42] and the reducing ability of Fe3? or Ferric

Reducing/Antioxidant Power-FRAP) [43, 44]. The anti-

oxidant action of phenols has been studied in biological

systems (in vivo), too. For instance, phenols can inhibit the

oxidation of human lipoproteins of low density (low den-

sity lipoproteins-LDL) that is associated with atheroscle-

rosis [36, 45–47]. In addition, they can limit the oxidation-

destruction of DNA [48–50].

The most bioactive OMW phenols are o-diphenols such

as hydroxytyrosol, oleuropein and tyrosol [51] since they

exert an in vitro protective effect against low-density

lipoprotein (LDL) oxidation [15, 52] as well as being

effective at low concentrations to protect human erythro-

cytes and DNA against oxidative damages [52]. For

instance, several authors have reported studies dealing with

rat heart [53, 54] and have shown the cardio-protective

effect of oleuropein.

On the other hand, hydroxytyrosol is one of the few

nutraceuticals approved by the European Food Safety

Authority for its ability to maintain healthy LDL choles-

terol levels and lipid antioxidation [55]. The antioxidant

ability of hydroxytyrosol has been proven in the plasma

and liver of rats [56, 57], while its cardio-protective effect

has been successfully assayed in human cells [40]. Besides,

Hamden, Allouche, et al. (2009) demonstrated its beneficial

effect as a hypoglycemic and antioxidant agent in allevi-

ating oxidative stress and free radicals as well as in

enhancing enzymatic defenses in diabetic rats. Indeed, the

antioxidant activity of hydroxytyrosol was higher than that

of antioxidants such as ascorbic acid and BHT. Moreover,

the good solubility of hydroxytyrosol in oil and aqueous

media allows its useful application in multi-component

foods [52]. For example, lard with olive phenol can be

considered as a ‘‘novel food’’ that satisfies the modern

consumer’s demand for natural, safe and healthy food.

Table 1 Bibliographic data for the content of olive mill wastewater

Parameter Unit Value References

pH – 4.7–5.7 [16]

Conductivity mS/cm 5–41 [16]

COD g/L 16.5–190 [16]

BOD5 g/L 41.3–46 [16]

Water g/100 g 83–94 [121, 126]

Organic compounds g/100 g 4–18 [121, 122]

Inorganic compounds g/100 g 0.4–2.5 [121–123]

Total solids g/100 g 3.2–30 [124]

g/100 mLa [125]

Fats and oils g/100 g 0.03–1.1 [126, 127]

g/100 mLa 0.03–2.3 [128, 129]

g/100 mLa 0.02–1.0 [123]

Sugars g/100 g 1–4.7 [124, 130]

Carbohydrates g/100 g 2–8 [128]

Pectin g/100 g 1–1.5 [126, 128]

Total phenols g/100 mLa 0.0002–8 [124, 131]

g/100 g 0.6–4.0 [127, 132]

g/100 g 0.5–24 [4]

Nitrogen (N) g/100 mLa 0.03–0.15 [124, 129]

g/100 g 0.58–2 [127, 128]

Potassium (K?) g/100 mLa 0.3–0.8 [129, 131]

Phosphorus (P) g/100 g 0.06–0.32 [127]

g/100 mLa 0.3–1.1 [129]

Calcium (Ca2?) g/100 g 0.32–0.53 [127]

g/100 mLa 0.01–0.08 [129, 131]

Sodium (Na?) g/100 g 0.04–0.48 [127]

g/100 mLa 0.01–0.09 [127, 129]

Magnesium (Mg2?) g/100 g 0.06–0.22 [127]

g/100 mLa 0.01–0.04 [129, 131]

a The density of olive mill wastewater ranges from 1.01 up to 1.10 g/

mL [122]
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Moreover by this application, a significant utilisation of the

olive-mill wastewater is proposed [58].

Finally, hydroxytyrosol can be used as a biological

fungicides against B. cinerea, an ubiquitous plant–patho-

gen generating grey mold on several economically impor-

tant vegetable and fruit crops [59].

Olive Mill Waste Water Treatment

Many different processes have been proposed to treat the

OMW: lagooning or direct watering on fields, co-com-

posting, physicochemical methods (flotation and settling,

coagulation, oxidation using O3 and Fenton reagent, floc-

culation, filtration, sedimentation, dilution, open evapo-

rating ponds, and incineration), ultrafiltration/reverse

osmosis, chemical and electrochemical treatments and

manufacturing into animal food [4, 60, 61].

In an attempt to categorize the proposed methodologies of

OMW treatment or processing, three categories can be given:

1. Waste reduction via olive production systems conversion

(i.e. 2-phase instead of 3-phase continuous systems).

2. Detoxification methods aiming at the reduction of

impact of the pollution load to the recipient.

3. Recovery or recycling of components from OMW.

Table 2 presents a summary of detoxification technol-

ogies and their characteristics. Physical processes are typ-

ically applied as pre-treatment steps for the removal of

solids. Thermal processes target the condensation or

destruction of the waste material, but they are ineffective

due to the very high operating costs. Although physico-

chemical methods (neutralization, precipitation, etc.) are

relatively cheap, they require further treatment of the

waste. On the other hand, the advanced oxidation methods

are very effective, but they also have high costs. Besides,

the treatment of OMW by a combination of chemical or

physical processes and a biological process has not been

completely successful, and a longer lag phase has been

found to be necessary for biological treatment [62, 63]. In

addition, reuse of the OMW by spreading onto agricultural

soil as an organic fertilizer has been considered [60].

Conclusively, none of the proposed processes has found a

widely accepted application. More recently, researchers have

directed their interests to the recovery of valuable compounds

and recycling of OMW in order to recapture the treatment cost

and find an economically feasible solution. More specifically,

OMW are utilized either as a substrate for the growth of

microorganisms and the production of fertilizers, bio-products

and animal feed, or as a cheap source for the recovery of

components that provide high added-value nutrients.

Table 3 summarizes some of the relative processes. The

productive of fertilizers is accomplished using biological

processes like composting, with or without mixing with

other household or agro-industrial wastes. Besides, bio-

products generated from OMW include biopolymers, bio-

gas, ethanol, microbial polysaccharides (e.g. xanthans) and

bio-detergents. These are produced upon the growth of

suitable microorganism populations on the waste material,

which is usually applied as a substrate. The products are

recaptured with several techniques, i.e. ethanol is recovered

using distillation.

Recovery and Removal of Phenols from OMW

The most popular high added-value ingredients of OMW

are phenols (e.g. simple phenolic compounds, tannins,

flavonols, anthocyanins, etc.), while recently, dietary fiber

(pectin) has also been investigated (Table 3). Processes of

phenols recovery involve typically a condensing step (i.e.

thermal concentration, ultrafiltration or lyophilization)

prior to the carrying out of sequential extraction steps with

organic solvents (e.g. methanol, ethanol or hydro-alcoholic

solutions). Other practices include the application of resin

chromatography, selective concentration by liquid mem-

branes or supercritical fluid extraction [58]. These pro-

cesses aim either to recover a particular phenol (i.e.

hydroxytyrosol) in pure form or in the recovery of a phe-

nols mixture as a crude product.

Bioactivity-guided fractionation combines the use of

bioassay and chromatographic separation for isolation of

potent bioactive compounds from highly complex plant

extracts, such as OMW [64]. Among different extraction

methods, each one with different efficiency and complex-

ity, the liquid–liquid extraction process was preferred for

its simplicity and convenience. In order to develop an

effective (both qualitatively and quantitatively) extraction,

different parameters are optimized: solvent nature, pH of

OMW, volumetric ratio between solvent and OMW,

number of extraction stages [15]. Direct contact membrane

distillation (DCMD), microporous hydrophobic mem-

branes, polyvinylidene fluoride and polytetrafluoroethylene

has also been used for OMW treatment, while OMW

concentrate may represent a source of high added-value

compounds [65].

On the other hand, commercial hydroxytyrosol produc-

tion from OMW is conducted using the following steps: (1)

acid treatment, (2) an incubation process that converts

oleuropein to hydroxytyrosol and then (3), a supercritical

fluid extraction process and (4) finally freeze-drying [66].

Besides, pure hydroxytyrosol (99.5 %) is produced from

OMW using chromatographic columns filled with two

resins [67]. The corresponding product is used as a pre-

servative in bakery products. Finally, a more recent com-

mercial methodology reports the recovery of a phenols

4 J Am Oil Chem Soc (2014) 91:1–18
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mixture. In this case, OMW is defatted and concentrated

prior to the extraction of phenols using ethanol in combi-

nation with an organic acid. Thereafter, separation of

phenols and dietary fibers is conducted by precipitation of

the latter in condensed ethanol [68]. The phenolic extract is

already being used as a healthy additive in chocolates.

Physicochemical Techniques

Membrane (Filtration)

Membrane operations (Table 4) can be considered a valid

approach for the selective removal of polyphenols from

OMW. Many studies indicate that the future direction of

the processes for the recovery of antioxidants from OMW

is presumably towards the utilization of membranes in a

sequential design [3]. Russo used several microfiltration

(MF) and ultrafiltration (UF) membranes to concentrate the

recovered polyphenols from vegetation waters (VW), using

a final reverse osmosis (RO) consisting of a polymeric

hydranautics membrane (composite polyamide). By direct

contact membrane distillation (DCMD) process with

polytetrafluoroethylene (PTFE) membranes, El-Abbassi

et al. [186] were able to separate polyphenols from OMW

by *100 % after operating DCMD for 8 h. Cassano et al.

[69] have used UF membranes with regenerated cellulose

membranes and an enhancement of the polyphenols in the

permeate stream was observed in comparison with the feed

solution. Fluoropolymer membranes are also known to

separate successfully hydroxycinnamic acid derivatives

from anthocyanins and flavonols in both streams [70].

Nanofiltration (NF) and reverse osmosis (RO) processes

have been proposed alternatively to concentrate specific

phenol classes [71], although corresponding separation of

phenolic classes was not so successful as in the case of UF

membranes. Besides, a 25-kDa polysulfone UF membrane

has been applied to partially remove the heavier fragments

of hydroxycinnamic acid derivatives and flavonols, and

simultaneously to sustain the antioxidant properties of a

phenol containing beverage derived from OMW [72].

Garcia-Castello et al. [189] used a system including MF

and NF, osmotic distillation [73] and vacuum membrane

distillation (VMD) to recover, purify and concentrate

polyphenols from OMW. In this case, 78 % of the initial

content of polyphenols was recovered in the permeate

stream. El-Abbassi et al. [188] was able to achieve a less

dark (88 %) permeate by rejecting 74 % of polyphenols

using (as) Micellar Enhanced Ultrafiltration (MEUF) in the

presence of an anionic surfactant [sodium dodecyl sulfate

salt (pH \ 2)] and (b) a hydrophobic polyvinylidene fluo-

ride (PVDF) membrane. According to their study, MEUF

process can be efficiently applied for the treatment ofT
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OMW and the recovery of polyphenols in the concentrate

stream. On the other hand, Reis et al. [74] used hydro-

phobic polypropylene membrane contactors with Cyanex

923 for the recovery of phenol from aqueous solutions.

Thus, the use of 2 % Cyanex 923 allowed the almost

quantitative recovery of phenols (97–99 %) in 5–6 min

(contact time) from single solute solutions as well as their

mixtures.

Conventional physicochemical technologies like MF,

UF, NF and RO are generally assumed as being safe and

cheap since most of them have been widely applied in

different food industry and potable water sectors [37, 75,

76]. However, the cost of the process is governed directly

by fouling and restrictions in the cleaning procedure. Thus,

MF has been proposed as the critical step of the process

[32]. MF and UF permeates or RO concentrate can be used

as functional integrators or in pharmacologic compositions.

Adsorption

A physical adsorption method (Table 5) is generally con-

sidered to be the best, effective, low-cost and most frequently

used method for the removal of phenolic compounds [77].

For instance, 95 % removal of phenolic compounds was

achieved using sand filtration and subsequent treatment with

powdered activated carbon in a batch system [78]. On the

other hand, the recovery yield was lower (60 %) using a solid

phase extraction, by employing Amberlite XAD16 resin as

the adsorbent and ethanol as the biocompatible desorbing

phase [79]. Bertin et al. [190] suggested that Amberlite

XAD7, XAD16, IRA96 and Isolute ENV? are the four most

promising adsorption resins. Considering the integrated

adsorption–desorption processes, ENV? achieved the

highest recovery of total phenols from OMW when elution

was performed with acidified ethanol. Indeed, the highest

recovery of hydroxytyrosol (77 %) was achieved when non-

acidified ethanol was used as the desorbing phase. Never-

theless, when the recovery of phenols is carried out with

ENV?, the protocol has to be adjusted from time to time.

Considering the study conducted by Ferri et al. [191], the

highest phenol adsorption (76 %) was achieved using IRA96

polar resin. Conversely, non-polar adsorbents allowed

higher desorption ratios. A purified olive extract rich in

phenolic and oleosidic compounds was prepared from OMW

by adsorption onto an amphoteric polymer resin. The cor-

responding yield was 2.2 % (w/v).

Table 3 Processes for the generation of products and the recovery of valuable compounds from olive mill wastewater

Product type Process Description Notes References

Fertilizers Bio-fertilization Bacteria (Azotobacter) degrade phenols,

sugars and organic acids generating

nitrogen compounds and N2

A prerequisite for the fertilizer is that it

contains nutrients and lower amounts of

phyto-toxic compounds (phenols)

[165, 166]

Composting Controlled aerobic degradation along with

other agro-industrial wastes

At least 2 months are necessary [167–169]

Bio-products Bio-polymer production Production of exo-polysaccharide and

polyhydroxy alkanides (PHA) of specific

microbial cultures

Polysaccharides (pullulan, xanthan)

possess advanced rheological properties

and PHA are appropriate for bio-

degraded plastics

[165, 170–

172]

Bio-detergent

production

Pseudomonas sp. cultures are used in order

to produce Raman-lipids

Sequentially, waste is diluted and NaNO3

is added

[173, 174]

Biogas production Gas of CH3OH/CH4 is produced by

anaerobic fermentation of organic

compounds (up to 80 %). Theoretical

yield equal to 37 m3 CH3OH/m3 of waste

The real yield is much lower due to the

toxicity of the phenols

[175–177]

Ethanol production Conversion of polysaccharides to simple

sugars and ethanol

Recovery of generated ethanol is achieved

via distillation

[178, 179]

Animal feed Components processing Drying and chemical treatment with

NaOH–NH3 targeting the conversion to a

digestible substrate

Potassium and phenols concentration

reduction is demanded

[180]

High added-

value

compounds

Pectin recovery Insoluble residue to ethanol is recovered

prior pectin separation from rest

polymers

Recovery of pectin with advanced gelling

properties that can be applied as fat

replacement in meat products

[12, 13,

68, 72,

181,

182]

Antioxidants recovery

(phenols, tannins,

flavones, flavonoids,

anthocyanins, etc.)

Pre-treatment with membrane technology

prior to sequential extraction steps with

organic solvents or resin/activated

carbon adsorption or liquid membranes

Important parameters include pH

adjustment, solvent type, solvent/waste

ratio and number of stages for the

recovery and the clarification of

antioxidants

[36, 87,

90, 128,

183–

185]
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Ena et al. [142] stated that granular activated carbon can

be more efficient than Azolla (vegetable matrices) in terms

of phenols adsorption and desorption. The recaptured

powder contained hydroxytyrosol in concentrations 3.5-

fold higher than those of Azolla (3.23/1.51 % matrix).

Singh et al. [80] investigated the adsorption of both phenol

and 2,4-dichlorophenol through the acid treatment of

coconut shells (ATSAC) and the results show higher

monolayer adsorption capacity for both compounds. Achak

et al. [77] used banana peel as a low-cost solution biosor-

bent for removing phenolic compounds from OMW.

According to the results, by increasing banana peel dosage

from 10 to 30 g/L, phenolic compounds adsorption was

significantly increased from 60 to 88 %. Desorption studies

showed that a low pH value was efficient for the desorption

of phenolic compounds.

Zeolite, compared to other substrates (clay soil and

bentonite), appeared to be a useful mineral in reducing the

organic load of OMW. In addition, the regeneration of

zeolite was easy after treatment either by simple settling or

light centrifugation procedures. Besides, the low tempera-

ture ashing-procedure appears to be a very interesting eco-

friendly technique since it is capable of reducing poly-

phenols and COD from OMW [81].

Extraction

Conventional solvent extraction conditions (i.e., pH value,

time, solvent type, and concentration) can be very critical

for the activity of phenolic extracts obtained from OMW

[73]. Phenols include one or more hydroxyl groups (polar

part) attached directly to an aromatic ring (non-polar part)

and are often found in plants as esters or glycosides, rather

than as free molecules [82]. This stereochemistry distin-

guishes them according to their polarity variance. For

example, phenols are generally solubilized easier in polar

protic media like alcohols (ethanol and methanol), but

gallic, cinnamic and coumaric acids prefer water, dichlo-

romethane and acetone, respectively. For this reason,

recovery of phenols is proposed to be carried out initially

with a polar protic solvent (hydro-ethanolic mixture) prior

to progressing sequentially extraction steps with solvents

of reducing polarity, with a final purpose of separating the

target compounds in each case [83, 84]. Indeed, hydro-

ethanolic mixtures have been selected as the most

appropriate solvents for the extraction of phenolic com-

pounds from OMW due to their food grade nature.

Besides, a hydroethanolic mixture of 85 % ethanol has

been shown to preserve phenol compounds and antioxi-

dant activities for 18 weeks [85]. Takaç and Karakaya [3]

used ethanol up to 70 % and an organic acid in the range

of 0.5 % to 3 % to extract polyphenols from OMW. Other

Table 4 Summary of membrane techniques for OMW treatment

Membrane technique Results References

Direct contact membrane

distillation/

polytetrafluoroethylene

membranes

100 % phenol separation [186]

Ultrafiltration membranes

with regenerated

cellulose membranes/

nanofiltration/reverse

osmosis

0.5 and 30 g/L total

polyphenols

concentrated

[71]

Liquid membrane with

2 % Cyanex 923

90–97 % phenol was

extracted

[187]

Micellar enhanced

ultrafiltration/anionic

surfactant (sodium

dodecyl sulfate salt,

SDS)/hydrophobic

polyvinylidene fluoride

membrane

74 % polyphenols was

rejected

[188]

Nanofiltration/

microfiltration/osmotic

distillation osmotic

distillation/vacuum

membrane distillation

Recovery of 78 % the

initial content of

polyphenols

[189]

Filtration/lime treatment For 1 % lime

concentration 60 %

phenol reduction and for

2 % lime concentration

63 %

[26]

Microfiltration/

ultrafiltration/reverse

osmosis consisting of a

polymeric hydranautics

membrane

Retentate containing

464.870 mg/L free low

MW polyphenols

[137]

Table 5 Summary of adsorption technique for OMW treatment

Adsorbent Results References

Granular activated

carbon (GAC)

Polyphenols 3.23 % matrix [142]

Amphoteric polymer

resin

99 % hydroxytyrosol was

absorbed

[14]

Amberlite XAD16

resin/ethanol

Recovery of 60 % polyphenols [79]

Amberlite XAD7,

XAD16, IRA96/

Isolute ENV?

Recovery of 77 %

hydroxytyrosol

[190]

IRA96 polar resin 76 % phenol was adsorbed/

60 % phenols recovered

[191]

Banana peel Increased the phenolic

compounds adsorption rates

from 60 to 88 %

[77]

Powdered activated

carbon

Removal of 95 % of the

phenolic compounds

[78]

Liquid

chromatography

Recovery of phenolic

compounds 90–100 %

[192]
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studies [15, 27, 58] reported that ethyl acetate is the most

convenient solvent for the extraction of low and medium

molecular weight phenolic monomers, as a corresponding

recovery percentage of up to 90 % [86]. High yield

(85.46 %) recovery of hydroxytyrosol from OMW has

been achieved using a three-stage continuous counter-

current liquid–liquid extraction unit. In this case, hy-

droxytyrosol was extracted at 1.225 g/L of OMW [87].

More studies showed that super critical-CO2 extraction

can be an efficient technology for the recovery of phenolic

compounds from OMW with relatively high antioxidant

activity [73]. For instance, it has been deduced that OMW

storage facilitates the continuous extraction procedure and

improves the extraction yield of hydroxytyrosol from 85.5

to 96.8 % [88].

Cloud point extraction methodology is a clean technol-

ogy since it only requires 4–12 % surfactant volumes of the

liquid sample. This procedure is a useful tool for the pre-

concentration of phenolic compounds [89]. Total phenol

recovery by simple and successive cloud point extraction

of OMW with Genapol X-080 was up to 89.5 %. The

complete recovery of tocopherols has also been shown to

be possible with this technology [90]. Katsoyannos et al.

[89] was able to achieve individual phenol recovery rates

(from the water phase) higher than 96 % with one or more

successive cloud point extraction steps using a total of

4–6 % Triton X-114 (Table 6). Other emerging technolo-

gies (i.e. laser ablation, high voltage electrical discharge

and pulsed electric field) applied to the extraction of nu-

traceuticals from agricultural wastes [91] have not been

studied for the case of OMW yet.

Oxidation

The advanced oxidation processes (AOPs) (Table 6),

which promote the formation of highly oxidizing species

such as hydroxyl radical (OH�), have been successfully

investigated for the removal of a wide variety of recalci-

trant or toxic compounds and the improvement of biode-

gradability. Moreover, iron-based coagulation coupled with

H2O2 (thus simulating a Fenton2 reaction) was investigated

as a pre-treatment step of OMW with a final aim of

enhancing organic matter degradation. Due to the acidic

pH value of OMW and the satisfying efficiency in phenols

removal, Fenton and Photo-Fenton processes have been

considered as proper technologies for OMW treatment.

Photocatalysis is an AOP that has been applied in water

and wastewater treatment to remove organic and inorganic

pollutants as well as for system disinfection [92]. AOPs

(O3/UV, H2O2/UV) remove over 99 % of both COD and

total phenols, while a sludge without color is generated [93,

94]. The technique entitled ‘‘photo-Fenton’’ is a homoge-

neous photocatalytic oxidation or a heterogeneous photo-

catalytic oxidation using a UV/semi-conductor catalyst

(such as TiO2, ZrO2 and FAZA). Under the optimum

conditions, the photo-Fenton process can achieve COD,

TOC, lignin (total phenolic compounds) and total sus-

pended solids (TSSs) removal values of 87, 84, 97.44 and

98.31 %, respectively [95]. The electro-Fenton [96–98]

approach is conducted either by adding ferrous iron or by

reducing ferric iron electrochemically with a simultaneous

Table 6 Summary of extraction, oxidation, and coagulation tech-

niques for OMW treatment

Technique Classification Results References

Extraction Liquid–liquid

extraction/ethyl

acetate

Recovery of over

90 % phenolic

molecules

[15, 27,

58]

Recovery of

85.46 %

hydroxytyrosol

[193]

Cloud Point

Extraction

(CPE)/Genapol

X-080

Total phenol

recovery was

89.5 %

[90]

Cloud Point

Extraction

(CPE)/Triton

X-114

Phenol recovery

rates (from the

water phase) was

higher than 96 %

[89]

Oxidation Fenton-like

reaction using

FeCl3 as catalyst

Removal of 99.8 %

of total phenols

[194]

AOPs (O3/UV,

H2O2/UV)

Over 99 % phenol

removal

[93, 94]

Photo-Fenton 100 % phenols

reduction

[99]

Photo-Fenton Removal of

97.44 % total

phenolic

compounds

[95]

Wet hydrogen

peroxide

photocatalytic

oxidation

(WHPCO)

Reduction of 86 %

caffeic acid and

70 %

hydroxytyrosol

[98]

Ozonation process 80 % phenol

removal

[195]

Coagulation Electrocoagulation/

NaCl

Removal of 97 %

phenol

[103]

Electrocoagulation/

aluminium

electrodes

Removal of 91 %

polyphenols

[104]

2 Fenton oxidation is achieved from the reaction between H2O2 and a

ferrous salts under acidic conditions according to the following

reaction:

Fe2
? ? H2O2 ? Fe3? ? OH- ? OH� [1]

The UV radiation can improve the Fenton reaction, according to the

reaction [2]:

H2O2 ?h_ ? 2OH�[2].
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production of H2O2 upon the reduction of O2 on several

electrodes.

It has been reported that phenols are removed more

efficiently by photo-Fenton treatment than by biological or

enzymatic treatments. For instance, treatment by laccase

was able to reduce 4–70 % of phenols whereas treatment

by photo-Fenton oxidation was responsible for 100 %

phenols reduction [99].

Important percentages of phenol abatement after the wet

hydrogen peroxide photocatalytic oxidation (86 % for o-

diphenols and 70 % for caffeic acid and hydroxytyrosol) have

been achieved in 24 h [98]. A complete abatement of the

toxicity was achieved when the catalytic treatment effectively

reduced the concentration of monomeric phenols [100].

Phenolic compounds present in OMW react strongly

with ozone. Ozonation is more selective than advanced

oxidation processes [101]. Karageorgos et al. [199] were

able to achieve phenol and color removal of more than

80 % in OMW treatment. Moreover, a fast and selective

degradation of phenols was described due to the direct

electrophilic attack by molecular ozone (ozonolysis).

Coagulation

Electrocoagulation (Table 6) is based on the in-situ for-

mation of the coagulant as the sacrificial anode corrodes

due to an applied current. Simultaneously, hydrogen

evolution at the cathode allows the pollutant removal by

flotation [102], while several parameters like pH, operat-

ing time, current density, initial phenol concentration and

NaCl addition play a significant role. Phenol removal

during electrocoagulation has been achieved due to the

combined effect of sweep coagulation and adsorption

[103]. Consequently, electrocoagulation is considered as a

suitable alternative technology to existing methods or it

can be applied as a pre-treatment step of a biological

process for OMW treatment. Besides, the application of

electrocoagulation with aluminium electrodes permitted

higher removal of pollutants (76 % COD [102], 91 %

polyphenols and 95 % of dark color) by assaying either

fresh or stored OMW, just after 25 min treatment [104].

Nevertheless, optimum removal was obtained after 15 min

treatment after the addition of 2 g/L NaCl to the waste-

water and the application of 250 A/m2 as current density

[102]. Results showed that a remarkable phenols’ removal

(97 %) can be reached after 2 h of treatment at high

current density and solution pH 7. Indeed, the maximum

removal rate was attained at 30 mg/L phenol concentra-

tion [103].

Biological Techniques

Since phenol removal (particularly the low biodegradable

lignin-like polymer) meets several problems with conven-

tional treatment methods (chemical coagulants, hydrogen

peroxide and filtration), biological processes (Table 7)

have been alternatively suggested to be more appropriate

[1, 105]. Thereby, a number of different microorganisms

(Archaea, Bacteria and fungi) and processes (aerobic or

anaerobic bioreactors, composting) have been tested to

treat OMW. Aerobic bacteria have been primarily assayed

as an approach for the removal of phytotoxic compounds.

On the other hand, fungi have proved to be effective for

COD and toxicity elimination [7]. Nevertheless, yeasts

strains show higher concentrations than fungi and bacteria

in OMW. For example, among the 105 yeast strains iso-

lated from OMW, around 20 are able to grow on all kinds

of OMW [106]. Selectivity of microorganisms can be

obtained following the consumption of total phenols and

total organic load. Thereby, the most effective yeast strains

have been shown to be in the following sequence: Phan-

erochaete chrysosporium [ Aspergillus niger [ Aspergil-

lus terreus [107].

Table 7 Biological techniques for OMW treatment

Technique Classification Results References

Anaerobic

and

aerobic

Rhodotorula

mucilaginosa CH4

and Aspergillus

niger P6

Removal of

83.45 % and

94.58 %

polyphenolic

compounds

respectively

[196]

Two-phase

anaerobic digester

reactors

Phenol removal

70–78 %

[109]

Aerobic treatment/

cheese whey’s

(CW),

Lactobacillus

paracasei

22.7 % phenol

reduction

[111]

Aerobic treatment/

pre-treatment by

Candida tropicalis

Biodegradation of

54 % phenol

[110]

Enzymatic Laccase of Trametes

versicolor

Reduction of 89 %

polyphenols

[197]

Laccase of several

Pleurotus spp.

strains

Removal of

69-70 %

phenolic

compounds

[115]

Laccase from the

white-rot fungus

Lentinula edodes

Reduction of 90 %

polyphenols

[113]

Phenol oxidase

produced by the

white-rot

basidiomycete

Pleurotus ostreatus

Reduction of 90 %

polyphenols

[112]
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Anaerobic and Aerobic

Anaerobic digestion [108] is a complex process consisting

of a series of microbial transformation of organic materials

into methane and volatile fatty acids such as acetate, pro-

pionate, butyrate, isobutyrate, valerate and isovalerate [86].

Generally, it can reduce COD, but it is sensitive to phen-

olics. Thereby, anaerobic digestion cannot deal with the

high organic load of OMW yet and it needs to be diluted

several times prior to treatment. The latest parameter

increases the cost dramatically and has environmental

implications. Besides, the presence of some inhibitors and

toxic compounds (i.e. polyphenols and lipids) makes OMW

inappropriate for direct biological treatment. Thus, pre-

treatment methods aimed at decreasing the concentration of

phenolics have been developed in an effort to make OMW

more amenable to anaerobic digestion [60, 96].

For instance, OMW pretreatment with sand filtration and

activated carbon can partially remove phenols [78].

Alternatively, by using two-phase anaerobic digester

reactors operated at mesophilic temperature, phenol and

color removal efficiencies accounted for 70–78 % and in

24–55 %, respectively [109]. On the other hand, aerobic

digestion can degrade phenols by 45 and 23 %, when whey

is used as a co-substrate, yeast Candida tropicalis [110] or

Lactobacillus paracasei [111] is selected, respectively.

Enzymatic

As is well known, white rot basidiomycetes are the most

efficient lignin degraders by means of oxidative reactions

catalyzed by phenol oxidases and peroxidases [1, 112]. The

treatment of OMW with immobilized laccase from the

white-rot fungus Lentinula edodes led to a partial decol-

orization as well as to significant polyphenols reduction

(90 %) [113]. Another white-rot fungus Panus tigrinus

CBS 577.79 was used to remove organic load, color and

phenols from OMW and the results showed that 4-hydroxy-

substituted monophenols were completely removed [114].

Treatment of OMW with purified phenol oxidase produced

by the ‘‘white-rot’’ basidiomycete Pleurotus ostreatus

showed a significant reduction in phenolic content (90 %),

too, but no decrease in its toxicity was observed by

applying Bacillus cereus. Otherwise, OMW processing

with the entire microorganism resulted in a noticeable

detoxification with concomitant abatement of the phenol

content [112]. High laccase activity of several Pleurotus

spp. strains caused *70 % phenols reduction, while the

color changed from black to yellow. However, the

remaining phenols and some of the laccase oxidation pro-

ducts were more toxic than the original phenolic com-

pounds [115]. The use of Trametes trogii broth culture

showed an oxidation of phenolic compounds due to its high

laccase activity. Contrarily, Funalia trogii demonstrated

the best production of laccase (27,000 U/g), whereas Tra-

metes versicolor appeared to be a good pollutant degrader

by reducing phenols by up to 87 %. Finally, Bouzid et al.

[52] performed an enzymatic treatment (Table 7) [107,

113, 116] (culture broths of Aspergillus niger enriched in

cinnamoyl esterases) in order to release large amounts of

free hydroxytyrosol from OMW. Particularly, they recov-

ered hydroxytyrosol (1.4 g/kg dry OMW) with a purity of

85 % using a two-step chromatographic treatment with HP-

20 resin and Sephadex LH-20.

Combined Techniques

Combined techniques are applied in order to maximize

phenols removal, but on the other hand the increasing

number of steps can dramatically increase the total cost of

the applied process. Thereby, the combination of settling,

centrifugation, filtration and activated carbon adsorption

(Table 8) leads to a maximum phenol (94 %) and organic

matter (83 %) removal [4]. Combination of biological and

Table 8 Summary of combined techniques for OMW treatment

Technique Results References

Pleurotus sajor caju and

Trametes versicolor,

adsorption,

biodegradation, diffusion

Reduction of total

phenolic content from

85.3 to 88.7 %

[198]

Photocatalytic degradation

(TiO2) and adsorption

processes (powdered

activated carbon sorbent)

Removal of 87 % of

total polyphenols

[120]

Electro-Fenton, anaerobic

digestion, ultrafiltration

Removal of 95 %

monophenolic

compounds

[96]

Filtration, adsorbent resins

(XAD16 and XAD7HP),

evaporation

Reduction of 99.99 %

polyphenols

[199]

Settling, centrifugation,

filtration and activated

carbon adsorption

94 % phenol removal [4]

Electro-Fenton process,

anaerobic digestion

Reduction of 100 %

total polyphenolic

compounds

[200]

Lime treatment,

coagulation/flocculation/

sedimentation/filtration

62–73 % phenol

removal

[4]

Phanerochaete

chrysosporium,

ultrafiltration

Depolymerization [201]

Anaerobic digestion,

ozonation

Reduction of total

phenolic compounds

[202, 203]

Ozone-UV radiation Disappearance of total

phenolics

[119]
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UV/O3 oxidation process (advanced) has also been applied

to reduce COD [8]. Catalytic wet oxidation and microbial

technologies [(Al–Fe) PILC/H2O2], the system operating at

50 �C reduced considerably the COD, color and total

phenolic contents in another approach [117]. Besides,

oxidizing agents such as monosulfuric acid and MnO2 have

been proposed as enhancing phenol removal from OMW

[104].

Khoufi et al. [200] demonstrated that the electro-Fenton

process removed total phenols by * 66 % and subse-

quently decreased OMW toxicity by up to 100 %. The

latest process improved the performance of anaerobic

digestion. Later, Khoufi et al. [96] developed a process on a

pilot scale for the treatment of OMW by combining elec-

tro-Fenton, anaerobic digestion and ultrafiltration. Appli-

cation of the electro-Fenton procedure in semi-continuous

mode permitted high removal monophenolic compounds

(95 %). The use of ultrafiltration technology as a post-

treatment can completely detoxify the anaerobic effluent

and subsequently remove phenols of high molecular mass.

An economic calculation of this treatment revealed that a

surplus of energy of 73.5 kWh can be recaptured after the

treatment of 1 m3.

In another study, the combination of ozonation and aer-

obic degradation for the treatment of OMW was investi-

gated, and an improvement in the removal of the organic

material was obtained [118]. Treatments with UV in com-

bination with ozone–UV radiation [119] caused the

destruction of OMW-organic material, which was followed

by the disappearance of the COD and total phenols. Duarte

et al. [198] suggested a three-step process (adsorption,

fungal biodegradation, and diffusion of the biodegraded

products. Pleurotus sajor caju and Trametes versicolor

were applied, while the second biocomposite was the most

effective and responsible for the reduction in color (up to

45 %), COD (up to 64 %), and total phenols (up to 89 %)

after 29 days of treatment. Lime treatment on various

OMW after a classic coagulation/flocculation/sedimenta-

tion/filtration process, resulted in 62–73 % phenol removal

depending on the process used for olive oil extraction. More

than 40 % COD and 95 % oil removal were also observed

[4]. Agalias et al. [199] has investigated the treatment

system of OMW consisting of three main successive sec-

tions: filtration, adsorbent resins (XAD16 and XAD7HP)

and thermal evaporation. The results of these procedures

was an odorless yellowish OMW with a quantitative

removal of phenols and COD, an extract rich in polyphenols

and lactones with high antioxidant activity. The latter

contained coloring substances of the olive fruit, and pure

hydroxytyrosol. The synergetic effect between photocata-

lytic degradation (TiO2) and adsorption processes (pow-

dered activated carbon sorbent) at a medium phenolic

concentration caused the removal of the latter compounds

by 87 %, compared to 58 % COD removal after 24 h

exposure to 365 nm UV light [120]. Finally, Ceccon et al.

[192] acidified OMW to pH 2 in order to precipitate pro-

teins. Thereafter, acetone and hexane were added to elim-

inate the colloidal fraction and lipidic substances,

respectively. Finally, filtering and injection through a liquid

chromatography system led to the recovery of 9 individual

phenolic compounds ranging from 20 to 2,000 mg/L.

Conclusion

OMW represents a relevant source of biophenols having a

wide range of biological activities. This literature review

shows that the recovery of important phenols is possible by

physicochemical processes such as membrane techniques

and resin adsorption. Biosorbents such as banana peel and

coconut shell can be used for this purpose, too, since they

are available as a cheap source along with extraction pro-

cesses. The combination of different physicochemical

techniques (especially the physical ones) can cause a high

level of phenol recovery. Biological processes are useful

for the removal of phenols although they are typically

applied as a pretreatment method. Oxidation and coagula-

tion methods can remove phenols, too. Following the high

importance of phenolic compounds which are abundant in

OMW, researchers should pay more attention to recovering

them from OMW using economically feasible and envi-

ronmental friendly techniques.
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