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Abstract This investigation was aimed at developing a

rapid analysis method for authentication of Chinese sesame

oils by FTIR spectrometry and chemometrics. Ninety-five

sesame oil samples were collected from the six main pro-

ducing areas of China to include most if not all of the sig-

nificant spectral variations likely to be encountered in future

authentic materials. Two class modeling techniques, the soft

independent modeling of class analogy (SIMCA) and the

partial least squares class model (PLSCM) were investigated

and the data preprocessing techniques including smoothing,

derivative and standard normal variate (SNV) tests were

performed to improve the classification performance. It was

demonstrated that SIMCA and PLSCM can detect various

adulterated sesame oils doped with 3% or more (w/w) of

other cheaper oils, including rapeseed, soybean, palm and

peanut oils. First derivative, second derivative and SNV

tests significantly enhanced the class models by reducing

baseline and background shifts. Smoothing of raw spectra

led to inferior identification performance and proved itself to

be unsuitable because some of the detailed frequency details

were lost during smoothing. The best model performance

was obtained with second derivative spectra by SIMCA

(sensitivity 0.905 and specificity 0.944) and PLSCM (sen-

sitivity 0.952 and specificity 0.937). Although it is difficult

to perform an exhaustive sampling of all types of pure ses-

ame oils and potential adulterations, PLS and SIMCA

combined with FTIR spectrometry can detect most of cur-

rent adulterations of sesame oils on the Chinese market.

Keywords Sesame oil � FTIR � Class modeling

techniques � Soft independent modeling of class analogy �
Partial least squares class model

Introduction

Sesame (Sesamum indicum L.) is one of the oldest domesti-

cated oilseed crops [1]. It is grown in tropical and sub-tropical

areas over 7.54 million hectares worldwide, yielding 3.3

million tons of seed [2].China especially is one of the most

important producers of sesame, accounting for approximately

a 25% share in the world’s total production [3]. Pure and

genuine Chinese sesame oil is dark brown with high contents

of oleic, linoleic, palmitic and stearic acids, as well as low

concentrations of palmitoleic, linolenic and eicosenoic acids

[4, 5]. Sesame oil is highly valued for its unique and pleasant

flavor and high nutrition and health functions. In China, pure

and authentic sesame oil is traditionally regarded as a high-

quality vegetable oil and serves as an important source of

edible and cooking oils. Unfortunately, in the domestic mar-

ket, pure sesame oil is sometimes adulterated with some

cheaper vegetable oils, such as soybean oil, corn oil, rapeseed

oil and palm oil. Therefore, a continuing demand exists for

rapid, inexpensive and effective techniques for routine

authenticity analysis of sesame oil products.
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The quality and chemical composition of sesame oil

depend on various factors, including varieties, fields, pro-

cessing and storage, producing areas, etc. [6–13]. Numer-

ous researches have been devoted to the investigation of

the chemical compositions and properties of sesame oils

influenced by such factors. Such investigations are crucial

for understanding the quality of sesame oils. However, it is

still difficult to find a few marker components that can

unambiguously indicate the origins and species of raw

seeds. In traditional sensory analysis [14, 15], the quality of

oils can be evaluated by professional tasters on a sensory

board. The tasters are experienced specialists who evaluate

product quality based on the flavor, color, and taste of oil.

Because it may take years and is very expensive to train a

skilled oil taster, it would be attractive to evaluate oil

quality by some nonhuman techniques.

In recent years, it has seen increasing interest in applying

spectroscopic and chemometric tools to food authentication

[16–18]. The principle of such techniques is that chemical

compositions of complicated samples are characterized by

multi-channel analytical signals; then useful information

concerning food quality can be extracted by multivariate

analysis methods. Compared with the most widely used near

infrared (NIR) spectroscopy techniques, mid-infrared pos-

sesses some advantages, including similar speed of mea-

surement, moderate instrument cost and relative ease of

sample presentation, especially for liquid and paste samples

[18–21].

This work was aimed at developing a reliable and quick

analytical method for authentication of Chinese sesame oils

by Fourier-transform infrared (FTIR) spectroscopy and

chemometric methods, focusing mainly on the following

aspects. First, the sampling procedure should be represen-

tative and comprehensive to include most if not all of the

significant variations likely to be encountered in the

authentic materials [18, 19]. In this paper, real and pure

sesame oils from the six main producing areas in China

were collected to make up a sufficient training set. Second,

it was pointed out that food authentication can be reduced

to the question of whether an unknown object should be

accepted or rejected by a class of interest. The objective of

a class model is to describe the representative samples

belonging to the class and answer the above question based

on predictions of the unknown objects. In these cases, the

commonly used discriminant analysis (DA) methods

devoted to differentiating two or more predefined classes

are of limited use because food authentication will be

confronted with various known and unknown adulterations

[22]. Therefore, instead of DA, class modeling techniques

(CMT) [22, 23] were used in this paper. Finally, based on

the above two considerations, the objective of data analysis

was to enhance class models to detect even very subtle

signal difference caused by low doping concentrations.

Soft independent modeling of class analogy (SIMCA) [24]

and a recently proposed partial least squares class model

(PLSCM) [25] were used to develop class models. To

remove undesirable factors in the raw data, smoothing [26],

derivatives [26] and standard normal variate (SNV) [27]

were investigated to optimize data preprocessing. For data

analysis, given the performances of different models are

similar or have no significant differences, the models with

least complexity and least preprocessing procedures were

sought to ensure the generalization of models.

Materials and Methods

Sample Preparation

A set of 95 pure and authentic sesame oil samples from the

six most important sesame producing areas of China were

collected from domestic markets, including Henan (18),

Hebei (16), Anhui (18), Hubei (16), Shandong (15) and

Jiangsu (12). All the pure sesame oil samples were obtained

from the cold pressing of sesame seeds. Samples were stored

in a cool, dark area before spectrometry analysis.

Eighteen cheaper and common vegetable oils, including

rapeseed oil (5), soybean oil (6), palm oil (5) and peanut oil

(2) were purchased from domestic markets for adulteration.

Then adulterated sesame oil samples were prepared by

mixing the pure sesame oils with different ratios of the

cheaper oils ranging from 2 to 20%. For each doping level,

a supersaturated design [28] was used to select 18 pure

sesame oil samples, each of which was adulterated with

one of the 18 cheaper oils. Therefore, with doping levels at

2, 3, 4, 5, 8, 10 and 20 percent (w/w), 126 adulterated

sesame oil samples were prepared and used as negative test

samples. The doped samples are stored under the same

conditions as the pure sesame oil samples before spectro-

metric analysis.

FTIR Spectrometric Analysis

The FTIR transmission spectra were measured within

the spectral range from 4,000 to 400 cm-1 on a Nicolet

Avatar 360 infrared spectrophotometer (Thermo Scientific,

Waltham, MA) with a DTGS KBr detector. No further pre-

processing of the oil samples was performed, and the spectra

were measured in a KBr demountable absorption cell

(150 lm) without any solvents. The resolution was 4 cm-1,

and the scanning interval was 1.929 cm-1. Therefore, each

spectrum had 1,868 individual data points for chemometric

analysis. The scanning time was set to be 64, because an

increase in scanning time did not significantly improve the

quality of signal. Some of the raw spectra are demonstrated

in Fig. 1.
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Chemometric Data Analysis

The reliability of class models depends largely on the

representativity of training samples. Therefore, robust

principal component analysis (rPCA) [29, 30] was per-

formed to detect and exclude the outliers. A robust PCA

model can avoid the masking effects caused by the coex-

istence of multiple outliers. For pure sesame oils, the

DUPLEX method [31] was used to split the measured

spectra data into a representative training set and a test set.

DUPLEX selects two samples with largest distance and

puts them in the training set, then selects two other samples

with largest distance among the remaining samples and

puts them in the test set, and so on. By alternatively

selecting the spectral data for the calibration set and the test

set, DUPLEX gives data in the test set with a distribution

almost equal to that of the training set.

Different data preprocessing techniques were investi-

gated to optimize the training and predicting performance of

class models. Smoothing was often used to reduce random

noise in spectral data and enhance the signal-to-noise ratio

(SNR). The polynomial fitting algorithm by Savitzky and

Golay [26] was adopted for this purpose considering its

popularity and simplicity. Moreover, taking derivatives can

enhance spectral resolution and remove baseline and back-

ground, so first and second order derivatives were also

investigated. Because derivatives tend to degrade the SNR

by enhancing noise, the derivative spectra were also com-

puted by polynomial fitting algorithms [26]. Standard nor-

mal variate (SNV) [27] was originally proposed to reduce

scattering effects and was also proved to be effective in

correcting the interference caused by variations of optical

path. Therefore, SNV tests were performed to standardize

the spectral variations caused by different liquid membrane

thickness.

The classical SIMCA [24] and a recently proposed

PLSCM method [25] were used to developing class models

for authentication of pure sesame oils. For one-class prob-

lems, SIMCA describes the structure of the training samples

by the principal components (PC) space spanned by a few

significant PCs. The residual error is then subject to an F test

procedure for estimating the decision region. The residual

error tends to be underestimated when it is computed directly

from PCA of the training samples. It was recognized that

SIMCA could lead to a large number of objects that are

wrongly rejected (a large a-error), therefore, the strategy

suggested in Ref. [24] were adopted. By using scores pre-

dicted by leave-one-out cross-validation (LOOCV) instead

of the original scores obtained after PCA on the class objects,

this procedure was shown to lead to a reduction of the

number of false outliers. PLSCM was demonstrated to have a

comparable performance to SIMCA. It builds a PLS

regression model relating the spectral variables to a response

vector of 1 with all the elements being ones. The vector 1

used as a response vector means all the objects in the same

class should be distributed as close to each other as possible.

While SIMCA projects the data onto a few PCs explaining

most of the data variances, PLSCM considers both the

explained variances and compactness of a class. The pre-

dicting error of the response variable is assumed to have a

normal distribution and used to deduce the decision region.

Because PLSCM can be performed in the framework of

multivariate calibration, the determination of the model

Fig. 1 FTIR spectra of pure and adulterated sesame oil; the doping

levels ranged from 2 to 20%
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complexity and the decision region for PLSCM seems more

straightforward than for SIMCA. More details concerning

the optimization of parameters in SIMCA and PLSCM will

be presented later.

Results and Discussion

As shown in Fig. 1, the spectra of adulterated and pure

sesame oils [32] have very similar absorbance bands in the

range of 400–4,000 cm-1. Peak assignments for spectra of

pure sesame oil as shown in Fig. 1 are listed in Table 1.

Smoothing, first and second S-G derivatives and SNV were

used to preprocess the raw spectra. Some of the raw and

preprocessed spectra of pure and adulterated sesame oil are

demonstrated in Figs. 2, 3. A significant difference

between pure and adulterated sesame oil is the absorbance

at 3,423 cm-1, however, the difference becomes very

subtle with low doping concentrations. This can be further

seen from the spectra of adulteration by peanut oils ranging

from 2 to 20 percent in Figs. 2, 3. Therefore, class models

are necessary to extract the detailed information from

spectral data for characterizing pure sesame oils.

Because the FTIR spectral data were high-dimensional

(for the raw spectra, p = 1,868), the improved rPCA [30]

was used, which was shown to be numerically more stable

for high-dimensional data and had a much lower compu-

tational cost. According to the computed score distance

(SD) and orthogonal distance (OD), an rPCA diagnosis plot

classifies the samples into four groups: regular data (with

small SD and small OD), good PCA-leverage points (with

large SD and small OD), orthogonal outliers (with small

SD and large OD), and bad PCA-leverage points (with

large SD and large OD). Outlier detection was performed

on the raw spectra by rPCA with a significance level of

0.05. The number of PCs was determined by robust pooled

predicted residual sum of squares (PRESS) values. Because

the first seven PCs accounted for 95.35% of the total data

variance, rPCA used seven PCs for outlier detection. The

rPCA diagnosis plot of the 95 pure sesame oil samples is

shown in Fig. 4. OD is a measure of the distance from the

sample to the model space spanned by selected PCs and SD

describes the sample dispersion in the class projected onto

the model space. Therefore, both orthogonal outliers and

bad PCA-leverage points should be excluded from the

training set. Because the pure sesame oil samples came

from different producing areas, there might be considerable

difference in the contents of different chemical compo-

nents. Therefore, good PCA-leverage points should be

reserved to represent the spectral variations among the pure

sesame oil samples from different producing areas. In

Fig. 4, four orthogonal outliers were detected and

Table 1 Peak assignments for pure sesame oil

No. Peak

(cm-1)

Assignment Remarks

1 3,423 –OH Stretching of phenolic O–H

2 3,008 –CH Stretching of unsaturated –CH

3 2,925 –CH Stretching of unsaturated –CH

4 2,854 –CH Stretching of saturated –CH

5 1,747 –C=O Stretching of C=O

6 1,631 Phenyl Phenyl skeletal frequency

7 1,593 Phenyl Phenyl skeletal frequency

8 1,466 –CH2 CH2 bending (*1,480 cm-1)

9 1,379 –CH3 Methyl symmetric bending

10 1,350 –CN Stretching of –CN in aromatic amines

11 1,240 C–O–C Asymmetrical stretching vibration

12 1,163 C–H In-plane bending of aromatic C–H

13 723 –(CH2)n– Out-of-plane rocking

Table 2 Results by SIMCA and PLSCM with different data preprocessing methods

Model Preprocessing TP FN TN FP Sensitivity Specificity

SMICA Raw data (9) 17 4 103 23 0.810 0.817

Smoothing (10) 16 5 106 20 0.762 0.841

First derivative (7) 18 3 112 14 0.857 0.889

Second derivative (7) 19 2 119 7 0.905 0.944

SNV (7) 18 3 117 9 0.857 0.929

PLSCM Raw data (10) 15 6 102 24 0.714 0.810

Smoothing (9) 17 4 109 17 0.810 0.865

First derivative (7) 18 3 114 12 0.857 0.905

Second derivative (6) 20 1 118 8 0.952 0.937

SNV (8) 18 3 113 13 0.857 0.897

Here ‘‘positive’’ and ‘‘negative’’ denote pure and adulterated sesame oil, respectively. Numbers in parentheses indicate numbers of PLSCM or

SIMCA components

TP number of true positives, FN number of false negatives, TN number of true negatives, FP number of false positives
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excluded. The DUPLEX algorithm was then used to split

the remaining 91 pure sesame oil samples into a training set

with 70 samples and a test set of 21 samples. Therefore, the

test set had 21 positive samples and 126 negative samples.

PLSCM and SIMCA were applied to model the pure

sesame oil samples. For SIMCA, the decision region pro-

posed in [24] was adopted to reduce the risk of having a large

number of objects wrongly rejected. Cross validation was

performed to evaluate the number of significant PCs, the

criterion of 95% total explained variances was also consid-

ered. For PLSCM, Monte Carlo cross validation (MCCV)

[33] with 10% samples left out was used to determine the

number of PLS components and the sampling time was 100.

The PRESS values by MCCV were subject to the F test

proposed in [34, 35]. As suggested, a significance of 0.25 was

adopted to select the least number of latent variables with a

PRESS value not significantly larger than the minimum

value according to the F test. Sensitivity and specificity were

used to evaluate the performance of different models and

preprocessing options. The prediction results of test samples

by SIMCA and PLSCM were summarized in Table 2. Seen

from Table 2, preprocessing generally improved the classi-

fication performance in terms of sensitivity and specificity.

However, the models based on smoothed spectra had inferior

performance, which might be attributed to the possible loss

of detailed frequency information [36]. First derivative,

second derivative and SNV significantly enhanced the class

models by reducing the baseline and backgrounds. The

model complexity of SIMCA and PLSCM models based on

such preprocessing was less than those based on the

smoothed and the raw spectra. For both PLSCM and SIMCA,

the best class models were obtained by taking second

derivative spectra and the prediction results were demon-

strated in Figs. 5, 6. In Figs. 5b, 6b, the adulterated sesame

oil samples were arranged according to an ascending doping

Fig. 2 FTIR spectra of sesame oil adulterated with different levels of

peanut oil; the difference in absorbance at 3,423 cm-1 becomes very

difficult to distinguish with the naked eye with low doping

concentrations

Fig. 3 Preprocessed spectra of sesame oil adulterated with peanut oil

of different levels by smoothing, taking derivatives and SNV
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concentration, namely 2, 3, 4, 5, 8, 10, and 20%. The wrongly

accepted samples (false positives) had a doping concentra-

tion of 2% and all the adulterated samples with a doping

concentration equal to or higher than 3% were correctly

detected. Moreover, as expected, the distance of an adul-

terated sample to the critical value increases with doping

concentration, indicating the identification of a doping level

over 3% was straightforward. The comparison of different

preprocessing methods demonstrated that the spectral vari-

ations caused by scattering effects and baseline shifts played

a more important role than an inferior SNR.

Conclusions

This paper has demonstrated that FTIR combined with

chemometric class models provide a reliable and practical

method for detecting adulterated sesame oils. Although it is

difficult to perform an exhaustive sampling of all types of

pure sesame soils and potential adulterations, PLS and

SIMCA proved themselves to be successful at authenti-

cating pure sesame oil samples from the six main pro-

ducing areas in China. Moreover, the data pretreatments of

derivatives and SNV were effective in reducing the influ-

ence of spectral variations caused by baseline shifts and

scattering effects. The combination of FTIR and class

modeling methods were able to detect adulterations with

doping concentrations over 3%, which is enough to identify

most of the current adulterations in Chinese markets.

Wavelength selection might be useful to further enhance

the class models to detect even lower levels of adulteration,

however, care should be taken when performing a

Fig. 4 Robust PCA outlier diagnosis plots for 95 pure sesame oil

samples from Henan (18), Hebei (16), Anhui (18), Hubei (16),

Shandong (15) and Jiangsu (12) of China

Fig. 5 Predictions of test samples by second derivative SIMCA with

6 PCs for a 21 pure sesame oils and b 126 adulterated sesame oils in

an ascending order of doping levels

Fig. 6 Predictions of test samples by second derivative PLSCM with

7 components for a 21 pure sesame oils and b 126 adulterated sesame

oils in an ascending order of doping levels
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wavelength selection. Because too few spectral variables

would fail in characterizing oils sufficiently, the use of a

class model would be restricted. How to make a tradeoff

between sufficient characterization of samples and proper

variable selection/reduction will be the focus of our future

investigations. Moreover, because the diverse origins of

samples can increase model complexity and degrade model

performance, we will attempt to combine clustering

methods with class models to tackle this problem.
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