
ORIGINAL PAPER

Estimation of Oil Content and Fatty Acid Composition
in Cottonseed Kernel Powder Using Near Infrared Reflectance
Spectroscopy

Alfred Quampah • Zhuang Rong Huang •

Jian Guo Wu • Hai Ying Liu • Jin Rong Li •

Shui Jin Zhu • Chun Hai Shi

Received: 15 January 2011 / Revised: 26 August 2011 / Accepted: 14 September 2011 / Published online: 27 October 2011

� AOCS 2011

Abstract Oil content and fatty acid composition in 444

ground cottonseed kernel samples were analyzed using near

infrared reflectance spectroscopy (NIRS). Calibration

equations were developed for oil and fatty acid contents with

the modified partial least squares (MPLS) regression

method. The correlations between NIRS and reference

values in external validation were in agreement with the

predictions in calibration. Each equation was assessed based

on the relative prediction determinant for external valida-

tion (RPDv). Equations corresponding to total oil content

(RPDv = 11.495) and linoleic acid (RPDv = 5.026) showed

high accuracy. For palmitic acid (RPDv = 1.914), myristic

acid (RPDv = 1.724) and oleic acid (RPDv = 1.999), the

equations were predicted with relatively high accuracy

while those for palmitoleic acid (RPDv = 0.686), stearic

acid (RPDv = 0.792), linolenic acid (RPDv = 0.475) and

1-eicosenoic acid (RPDv = 0.619) were poorly predicted.

The equations for traits with RPDv [ 1.5 could be reliably

used in screening samples for breeding programs.

Keywords Cottonseed kernel � Oil content � Fatty acids �
Near infrared spectroscopy (NIRS) � Inverse multiple

scatter correction (I-MSC)

Introduction

Cottonseed is an important secondary product of the cotton

industry. Its main derivatives are the cake and meal which

are used for making animal feed, and the oil which is used

for both domestic and industrial food preparation. Cot-

tonseed contains between 20 and 23% oil [1] and belongs

to the group of unsaturated vegetable oil seeds that include

safflower, corn, soybean, rapeseed and sunflower. Fats and

oils account for a considerable portion of the calories in

human diet and their nutritional and health impacts on the

human body is of major concern to consumers [2].

Research findings have shown that excessive consumption

of fats and oils contribute significantly to the increased risk

of cardiovascular and other diseases [3]. To address these

concerns, there have been numerous efforts aimed at

developing new profiles in oilseed plants based on the

genetic variability for fatty acid composition, to facilitate

the selection and breeding of lines with desirable nutri-

tional and health as well as flavor and consistency values

[4]. The identification of target traits and profiling often

involves the evaluation of large numbers of seed samples

and the current standard screening methods for oil content

and fatty acid composition seem to be less suitable in this

respect since they are labor-intensive, time consuming and

could limit the scale of a breeding program in most cases.

A rapid, non-destructive and low cost analytical method

would be more preferable for large scale screening. Near-

infrared spectroscopy (NIRS) is one of the most reliable

multi-trait evaluating techniques in agricultural and food

analysis that meets these requirements [5]. It can be used to

analyze a large number of seed samples in small quantities

in the form of whole grains or powders. With NIRS, the

error sources related to laboratory analysis are avoided and

the control of NIRS related errors leads to equations that
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can predict the contents of a sample with high accuracy and

precision. NIRS has been applied to fatty acid profiling in

oil seeds including rapeseed [6], peanut [7], sesame [8],

and shea nut [9]. It has also been used, to study the gos-

sypol content in cottonseed meal [10] and oil content in

cottonseed [11]. However, there seems to be limited

information on its application to fatty acid profiling in

cotton seed. The objective of the current experiment was to

use NIRS to develop prediction models for oil content and

fatty acid composition in cottonseed kernel that could be

applied to breeding programs.

Materials and Methods

Sample Preparation

Cottonseed samples used in this study were harvested from

cotton plants grown in Hangzhou in the Zhejiang province

and Sanya on Hainan island of China in 2007 and 2008.

They included hybrid and breeding materials as well as

materials from the cotton germplasm. An original popula-

tion of 1,179 cottonseed samples was used. Samples meant

for oil and fatty acid content measurement were acid de-

linted and dried under the sun for 2–3 days. Each cotton-

seed shell was slightly cracked on the tip with a nutcracker

before being manually removed and separated from the

kernel. Prior to grinding, dirt and all foreign materials were

manually separated from the kernels. Samples of 200

kernels each, were ground with a Universal High-speed

Grinder DFT-50 (Linda Machinery Company Ltd, Wenlin,

Zhejiang Province, China) six times at 10 s intervals for

each time. Each sample was mixed between grindings to

minimize caking and separation by particle size.

Reference Methods

The determinations of oil content and fatty acid composi-

tion were conducted by the Testing and Supervisory Center

of Agricultural Products, MOA (Zhengzhou, Henan Prov-

ince, China) using Soxhlet extraction and gas liquid chro-

matography methods, respectively.

Oil Extraction and Fatty Acid Determination

Oil content in the cottonseed samples was determined

using the Soxhlet extraction method [12] for oil content

determination in cottonseed. Ground cottonseed kernels

(40 g) were weighed into a 43 mm 9 123 mm paper

thimble (Whatman International Ltd., Maidstone, England)

and covered with a piece of cotton wool before placing it in

the Soxhlet extractor. Approximately 300 ml of commer-

cial hexane (40% n-hexane, CAS No. 110-54-3 Ningbo

Samreal Chemical Co. Ltd. China) was used for extrac-

tions. The amount of oil extracted by Soxhlet was con-

sidered to be the total amount of oil available in the sample.

Fatty acids were determined according to the trans-

methylation procedure [1]. A 50-lL amount of the oil

obtained from the Soxhlet method was transferred into a test

tube. To form fatty acid methyl esters (FAME), 200 lL of

0.5 N metallic sodium in methanol (0.5 N methanolic base,

CAS No7440-23-5, PubMed Supelco, Inc., Bellefonte, PA)

was added to the extracted oil and the tube was capped and

heated to 70 �C for 10 min with periodic vortex mixing.

Upon cooling, 1 mL of brine and 1 mL of hexane were

added and the contents were vortex mixed again. After

allowing the phases to separate, 1 mL of the organic phase

containing methyl esters was used for gas chromatography.

Gas Liquid Chromatography

FAME obtained were analyzed according to FAME stan-

dards [13] for fatty acid determination in cottonseed using

gas chromatogram (Agilent 6890N, Agilent Technologies

Inc., Palo Alto CA, USA) with an SP-2560 flexible fused

capillary column (biscyanopropyl polysiloxane Supelco

Bellefonte, PA, USA). The carrier gas was helium at a split

ratio of 50:1 and with a linear velocity of 18 cm/s. A single

injection of 1 lL was made per sample. The temperatures of

the injection port and detector were 250 and 280�, respec-

tively with gas flows of 40 mL/min for hydrogen and

450 mL/min for air. The initial oven temperature of 110 �C

(which was held for 5 min) was increased at 3 �C/min to

215 �C and held again for 24 min. Methyl esters of myristic,

palmitic, palmitoleic, stearic, oleic, linoleic, linolenic and

1-eicosenoic acids (Sigma Chemical Co., St. Louis, DE,

USA) were used for internal standardization of the FAME of

each sample. HP CHEMSTATION software (Agilent

Technologies Inc., Wilmington, D., USA) was used in the

identification and quantification of individual fatty acids

according to their percentage areas on the calibration curve

based on the signals from the detector of the chromatograph.

NIRS Analysis

Spectral Data Collection

Spectral data collection, processing and calibration were

conducted with the WinISI II software (v1.5, FOSS NIR-

Systems, Silver Springs, MD, USA). Spectral measure-

ments were performed using a near infrared scanning

monochromator (NIRS System model 5000 NIRS Systems

Inc, Silver Spring., MD, USA) equipped with a sample

auto-charger. Powdered seed samples (about 3 g/sample)

were placed in a small ring cup of 36 mm (inner diameter),

and then scanned in the diffused-reflectance mode.
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Scanning was performed twice on each sample by rotating

the ring cup to an angle of 90� before the second scan in

order to minimize the effects of particle size. Each spectrum

represented the average of 32 scans and was recorded as the

logarithm of the reciprocal of reflectance (log (1/R)) [14].

Data were stored at every 2 nm interval in the wavelength

range from 1,100 to 2,498 nm to give a total of 700 data

points. The NIR spectra of each sample were transformed

into principal components (which are linear combinations

of the original data) for further chemometric analysis.

Definition of Calibration and Validation Sets

Discriminant analysis was used to define the sample pop-

ulation from which samples for calibration and external

validation were selected solely on the basis of spectral data.

The CENTER algorithm which is included in the WinISI II

software (v1.5, FOSS NIRSystems, Silver Springs, MD,

USA) was applied to calculate the distances that define the

population [14].This algorithm performs principal compo-

nent analysis by reducing the original spectra information

(Log 1/R values) to a small number of linearly independent

variables, thus making it easy to calculate spectral distances

[15]. These new variables were used to calculate the center

of the sample population and the distance from each sample

in the population from that center (expressed as the

Mahalanobis distance or Global H or GH), as well as the

distance between a sample and its neighbor (expressed as

Neighborhood H or NH). The Global H defines the popu-

lation boundaries of a complete set and the Neighborhood H

defines the boundaries of a subset. In the present study, the

population was defined through a cutoff point of GH = 3,

resulting in a new population of 1,174 samples, after 5

abnormal or extreme samples (considered as outliers) were

removed [14]. The SELECT algorithm which is also

included in the WinISI II software was applied to select

suitable and representative samples for the calibration and

validation sets. It arranges spectral distances of the whole

sample set (from the shortest to the longest distance from

the center of the population), and samples, represented by

their corresponding spectra, are randomly selected to form

the calibration and validation subsets [16]. In this study, a

total subset of 289 samples was constructed by a cutoff of

NH = 0.35. After adding another variant subset of 155

samples, the newly defined population with 444 samples

was randomly split into two sets. One of every 3 samples

was selected for the external validation set (n = 148) and

the remainder were kept as the calibration set (n = 296).

Spectral Signal Pre-Treatment and Calibration

Calibrations were performed to obtain the regression

models for oil and fatty acid contents between spectral data

and laboratory reference values using the modified partial

least squares (MPLS) regression method. In order to avoid

over-fitting of each model, a minimum number of MPLS

terms were selected from each model to perform internal

cross-validation [17].The pre-treatment of spectral data was

done with the CENTER algorithm. Data pre-treatment

algorithms reduce or remove unwanted sources of vari-

ability in the sample data. They include a mathematical

treatment that uses the raw spectra, or their first or second

derivatives (to remove background differences whiles

enhancing spectral differences); combined with gap sizes in

data points over which the derivative is calculated [18]; and

a smoothing algorithm that reduces random noise in the

spectral data [19]. For example in 2,8,8,1, the first number

indicates the order of derivative function (two is the second

derivative of log 1/R); the second number is the gap (length

in nm); the third number represents the number of data

points (segment length) used in the first smoothing and the

fourth number is the number of data points in the second

smoothing which is normally set at 1 for no second

smoothing [17]. Different spectral signal pre-treatment

methods were tried for both calibration and internal cross-

validation on two randomly selected fatty acids, and the best

method was chosen based on the optimum results obtained.

Derivation and smoothing were combined with scatter

correction algorithms which help to reduce differences in

the spectra related to physical characteristics such as par-

ticle size and path length variation among samples [20].

The scatter correction algorithms that were assessed in this

study in order to choose the most suitable were: multiple

scatter correction (MSC), standard normal variate and

detrending (SNV ? D), standard normal variate (SNV),

detrending (DET), standard multiple scatter correction

(S-MSC), weighted multiple scatter correction (W-MSC)

and inverse-multiple scatter correction (I-MSC). Two

passes of outlier elimination were performed. Pre-treated

spectral data was used to develop calibration models for oil

content and the corresponding fatty acids. Calibration

models were assessed using statistics that included the

standard error of calibration (SEC), the coefficient of

determination in calibration (R2), the standard error of

cross-validation (SECV) and the coefficient of determina-

tion in cross-validation (1-VR) [17]. Optimum calibration

equations were obtained based on the highest R2 or 1-VR

and the lowest SEC or SECV values. The SD/SECV ratio

which is also referred to as the relative predictive deter-

minant for calibration (RPDc) was used to evaluate the

performance of the calibration equations [21].

External Validation

The accuracy and precision of the calibration equations

obtained was monitored with the WinISI software using the
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external validation set [21]. The indicators for external

validation were: standard error of prediction (SEP); coef-

ficient of determination in external validation (r2) and the

relative predictive determinant for external validation

(RPD), which is the ratio of the standard deviation (SD) for

the validation samples to the SEP. The RPD statistic pro-

vides a basis for standardizing the SEP [22]. The slope

which is the linear regression of the reference values

against predicted values as well as bias which constitute the

average difference between the reference and predicted

values, were also calculated for each model. A slope value

close to 1 and a bias close to 0 contribute to the predictive

accuracy of a calibration model.

Results and Discussion

Variability for Oil Content and Fatty Acid Composition

The results in Table 1 show the relative values for the

means, standard deviations and the range of oil and indi-

vidual fatty acids in the calibration and validation sets. The

diverse sources of the samples as well as the differences in

the years and environments of cultivation contributed to the

high variability in the sample population. The concentra-

tion and scale of variability in oil and fatty acid contents of

the samples used in this study are similar to those reported

by other authors [1, 23, 24]. There was, however, a

reduction in the number of samples for linolenic acid and

1-eicosenoic acid in the calibration and validation sets

because some samples had very low contents and could not

be detected. The values for oil and fatty acid contents

ranged from 0.140 to 61.950% in the calibration set and

from 0.120 to 62.270% in the validation set, indicating

obvious differences within this population. The widest

ranges were observed for oil content (OC), linoleic acid

(C18-2), palmitic acid (C16-0) and oleic acid (C18-1);

followed by linolenic acid (C18-3), stearic acid (C18-0),

myristic acid (C14-0) and palmitoleic acid (C16-1); and the

narrowest range was observed for 1-eicosenoic acid (C20-

1) both in the calibration and validation sets. Variability

within the population as shown by the standard deviation

values ranged between 0.025 and 3.274% in the calibration

set and between 0.024 and 3.162% in the validation set.

The highest variability was observed for oil content, fol-

lowed by linoleic, oleic, palmitic, stearic and linolenic

acids, while palmitoleic, myristic and 1-eicosenoic acids

had the lowest values for variability.

Differences in the means and standard deviations

between the calibration set and the validation set were

minimal. Except for linolenic acid which had a relatively

wider range in the calibration set compared to the valida-

tion set, the ranges for the remaining fatty acids in the

calibration set were similar to those in the validation set.

This indicates that both calibration and external validation

sets were selected properly and could represent the total

variation in the traits of interest, thus, making the popula-

tion suitable for NIRS analysis.

Selection of the Spectral Pre-Treatment Method

Figure 1a shows the original NIRS spectra of all cotton

seed kernels samples used in this study. The original

spectra have broad peaks and considerable baseline shifts

(vertical offsets) There are also parallel shifts between the

spectra caused by scattering of samples [25]. To resolve

broad peaks and eliminate baseline and parallel shifts, a

number of mathematical treatments combined with scatter

correction algorithms were tested on the spectra.

In order to ascertain the best mathematical treatment and

scatter correction procedure to develop the calibration

equations, one saturated fatty acid (palmitic acid) and one

unsaturated fatty acid (linoleic acid) were randomly

selected to conduct a series of calibrations based on the

Table 1 Relative compositions of various fatty acids in cottonseed samples used in calibration and validation

Constituent Calibration set External validation set

Number Min (%) Max (%) Mean (%) SDa (%) Number Min (%) Max Mean SD (%)

Oil content 296 22.680 36.830 31.420 3.274 148 22.300 36.470 31.222 3.162

Myristic acid 296 0.560 1.080 0.828 0.106 148 0.550 1.090 0.822 0.116

Palmitic acid 296 21.910 29.410 25.392 0.977 148 21.770 27.160 25.386 1.087

Palmitoleic acid 296 0.540 0.830 0.647 0.043 148 0.530 0.780 0.645 0.048

Stearic acid 296 2.310 3.720 2.876 0.188 148 2.130 3.400 2.856 0.217

Oleic acid 296 14.420 22.100 17.701 1.456 148 14.780 22.010 17.454 1.548

Linoleic acid 296 51.400 61.950 56.835 2.165 148 50.690 62.270 57.105 2.426

Linolenic acid 104 0.140 4.610 0.286 0.431 50 0.120 0.360 0.250 0.062

Eicosenoic acid 204 0.200 0.410 0.296 0.025 88 0.190 0.370 0.298 0.024

a Standard deviation
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MPLS regression method using different mathematical

treatments combined with scatter correction algorithms.

Calibrations were first performed with nine different

mathematical treatments (0,0,1,1; 1,4,4,1; 1,8,8,1;

1,12,12,1; 1,16,16,1; 2,4,4,1; 2,8,8,1; 2,12,12,1; 2,16,16,1)

without scatter correction on the spectral data of both fatty

acids (Table 2).

The RPDc was used to assess the robustness of each

equation because it constitutes a standardization of the

SECV and can indicate at a glance, the performance of an

equation. RPDc values that are more than 3 imply equa-

tions with excellent calibration; values between 2 and 3 are

considered equations with very reliable predictions; and

values between 2 and 1.5 imply limited prediction effects,

while values below 1.5 indicate equations with unreliable

correlations [22].

Significant effects on the calibration equations for fatty

acids were observed when the mathematical treatment

0,0,1,1 (used as control) was compared to the other mathe-

matical treatments. Good calibration models for palmitic

acid were developed. They had higher RPDc values with

maths treatment 1,4,4,1 (RPDc = 2.156) and 2,8,8,1

(RPDc = 2.222). With regards to linoleic acid, higher cali-

bration effects were obtained by using various math treat-

ments, e.g. 1,8,8,1 (RPDc = 4.834), 1,12,12,1 (RPDc =

4.631), 2,8,8,1 (RPDc = 4.678) and 2,12,12,1 (RPDc =

4.736). Therefore, although the 1,8,8,1 treatment showed the

highest RPDc value for linoleic acid among all the treat-

ments, the 2,8,8,1 treatment was selected as the one that

produced optimum equations for both palmitic acid and

linoleic acid.

In order to reduce parallel shifts due to scattering of

samples, the 2,8,8,1 treatment was then used to perform

separate calibrations for both fatty acids combined with

MSC, SNV ? D, SNV, DET, S-MSC, W-MSC and I-MSC

as shown in Table 3. Out of all the combinations, the

2,8,8,1 treatment with I-MSC produced the best results for

both palmitic acid (RPDc = 2.272) and linoleic acid

(RPDc = 6.186). This combination, was thus chosen as the

optimum method to fit the spectral data for oil content and

the rest of the fatty acids to their corresponding reference

values. Figure 1b shows the spectra with 2,8,8,1 mathe-

matical treatment where the spectral differences are more

enhanced with more defined absorption peaks, and the

Fig. 1 Pre-processing stages of cotton seed kernel spectra. a Original

spectra of cotton seed kernel samples in the 1,100 to 2,490 nm

wavelength range, b 2,8,8,1 treated spectra of samples in the 1,100 to

2,490 nm wavelength range, c 2,8,8,1 and I-MSC treated spectra of

samples in the 1,100 to 2,490 nm wavelength range
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baseline shift is corrected. The spectra treated with 2,8,8,1

combined with I-MSC are spaced much closer to each

other since scattering has been removed and spectral var-

iation has been greatly reduced as shown in Fig. 1c.

Calibration

Calibration equations developed for the contents of oil and

the remaining fatty acids using the 2,8,8,1 mathematical

treatment and the I-MSC scatter correction method are

shown in Table 4. The coefficients of determination (R2),

standard errors of cross-validation (SECV), standard errors

of calibration (SEC) and coefficients of determination in

cross-validation (1-VR) were determined for all equations

[19]. The equation for total oil content showed high R2

(0.996) and 1-VR (0.995) with low SEC (0.197) and SECV

(0.233) and is considered to be the best equation with the

highest RPDc value (14.06). Oleic acid also had a high

correlation with high R2 (0.891) and 1-VR (0.817), low

SEC (0.462) and SECV (0.602) and a relatively high RPDc

2.329. Myristic acid had an R2 of 0.778, a 1-VR of 0.738,

an SEC of 0.049, an SECV of 0.054 and an acceptable

RPDc of 1.937. Palmitoleic, stearic, linolenic and 1-eicos-

enoic acids had very low R2 (0.481, 0.485,0.233 and 0.526,

respectively) and 1-VR (0.409, 0.453, 0.112 and 0.501,

respectively), and although they also had low SEC (0.027,

0.129, 0.041 and 0.012, respectively) and SECV (0.029,

0.133, 0.044 and 0.013, respectively), their RPDc (1.305,

1.346, 1.062 and 1.391, respectively) were below the limit

for reliable predictability [22].

External Validation

With external validation, the predictive abilities of all cal-

ibration equations were assessed (Table 5). As in calibra-

tion and cross-validation, optimum equations were selected

based on low standard errors of prediction (SEP) and high

coefficients of determination for external validation (r2)

[17]. Except for the equations for palmitic and oleic acids

which had relatively high error values, all other equations

had low SEPs. High coefficients of determination were

obtained for the equations for oil content (r2 = 0.993) and

linoleic acid (r2 = 0.963) whiles those for myristic, pal-

mitic and oleic acids (r2 = 0.753, 0.777 and 0.795,

respectively) were relatively high. The lowest values were

obtained for palmitoleic, stearic, linolenic, and 1-eicosenoic

Table 2 Comparative results from calibration equations for palmitic

acid and linoleic acid with different mathematical treatments

Constituent Ma Calibration Cross-validation RPDc
f

SECb R2c SECVd 1-VRe

Palmitic

acid

0, 0, 1, 1 0.467 0.744 0.496 0.714 1.864

1, 4, 4, 1 0.368 0.844 0.433 0.786 2.156

1, 8, 8, 1 0.424 0.786 0.482 0.723 1.898

1, 12, 12, 1 0.424 0.786 0.482 0.723 1.898

1, 16, 16, 1 0.454 0.755 0.510 0.690 1.795

2, 4, 4, 1 0.336 0.871 0.473 0.746 1.977

2, 8, 8, 1 0.334 0.867 0.411 0.798 2.222

2, 12, 12, 1 0.412 0.795 0.467 0.738 1.950

2, 16, 16, 1 0.448 0.764 0.494 0.715 1.870

Linoleic

acid

0, 0, 1, 1 0.427 0.961 0.505 0.947 4.294

1, 4, 4, 1 0.397 0.966 0.471 0.953 4.583

1, 8, 8, 1 0.390 0.967 0.446 0.958 4.834

1, 12 12 1 0.411 0.964 0.465 0.954 4.631

1, 16, 16, 1 0.418 0.963 0.476 0.952 4.556

2, 4, 4, 1 0.386 0.967 0.504 0.944 4.208

2, 8, 8, 1 0.368 0.970 0.456 0.955 4.678

2, 12, 12, 1 0.381 0.969 0.454 0.956 4.736

2, 16, 16, 1 0.453 0.956 0.490 0.949 4.390

a Mathematical treatment
b Standard error of calibration
c Coefficient of determination in calibration
d Standard error of cross-validation
e Coefficient of determination in cross validation
f SD/SECV

Table 3 Statistics on scatter correction algorithms for calibration

equations for palmitic acid and linoleic acid combined with 2,8, 8, 1

mathematical treatment

Constituent Sa Calibration Cross-

validation

RPDc

SEC R2 SECV 1-VR

Palmitic acid SNV ? Db 0.309 0.908 0.466 0.792 2.194

SNVc 0.309 0.908 0.468 0.790 2.186

DETd 0.342 0.887 0.524 0.735 1.947

S-MSCe 0.301 0.908 0.458 0.787 2.172

W-MSCf 0.303 0.907 0.458 0.787 2.174

I-MSCg 0.296 0.923 0.470 0.805 2.272

Linoleic acid SNV ? D 0.220 0.991 0.387 0.974 6.184

SNV 0.219 0.991 0.387 0.974 6.184

DET 0.388 0.973 0.498 0.956 4.765

S-MSC 0.219 0.991 0.387 0.974 6.187

W-MSC 0.219 0.991 0.391 0.973 6.127

I-MSC 0.220 0.991 0.387 0.974 6.186

a Scatter correction algorithm
b Standard normal variance ? detrending
c Standard normal variate
d Detrending
e Standard multiple scatter correction
f Weighted multiple scatter correction
g Inverse multiple scatter correction
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acids (r2 = 0.516, 0.472, 0.101 and 0.224, respectively).

All equations had biases close to ‘0’ and slopes around ‘1’.

The highest RPDvs were obtained from the equations for oil

content (11.495) and linoleic acid (5.026). RPDv values

corresponding to myristic acid (1.724), palmitic acid

(1.914) and oleic acid (1.999) were relatively high while

those for palmitoleic acid (0.686), stearic acid (0.792),

linolenic acid (0.475) and 1-eicosenoic acid (0.619) were

low. All external validation results were in agreement with

the assessment statistics for calibration and internal cross-

validation with minimal differences.

As shown on the regression plots of reference versus

predicted (NIRS) values for oil and fatty acid contents

(Fig. 2) not all external validation results obtained in the

prediction of individual constituents were accurate. The

regression plots for oil content showed a high accuracy in

the estimation of this trait with an r2 of 0.993 and an SEP

of 0.273. This was followed by the regression plot for

linoleic acid (r2 = 0.963, SEP = 0.470). There was how-

ever less accuracy in the prediction of the remaining fatty

acids including myristic acid (r2 = 0.753) and palmitic

acid (r2 = 0.777). According to the guidelines for the

interpretation of RPDv which are similar to those for RPDc

[22], the equations for total oil content and linoleic acid are

good enough to be used for quality assurance and research

applications as well sample screening for breeding pro-

grams. Those for myristic, palmitic and oleic acids can be

used only for screening whiles those for stearic, palmitoleic

and 1-eicosenoic acids are unusable for now.

The highest performances in calibration equations for

individual contents corresponded to the traits for total oil

and linoleic acid contents, both of which had high vari-

ability as shown by their standard deviations in the cali-

bration set (3.274 and 2.165, respectively) and external

validation set (3.16 and 2.43, respectively) (Table 1). This

suggests that the variability for oil and fatty acid compo-

sition is a major factor that contributes to achieving excel-

lent calibration equations [26]. In addition to the effect of

fatty acid concentration on predictions, the failure to

accurately determine certain individual fatty acids could

also be due to similarities in their NIR absorption patterns

since different fatty acids have the same absorbing molec-

ular group [27]. An improvement in the filtering of spectral

data could help reduce this problem. Another option could

Table 4 Statistics on calibration equations representing the contents of oil and the remaining fatty acids in cottonseed kernel samples with

2,8,8,1 mathematical treatment and I-MSC scatter correction method

Constituent N SD Range Calibration Cross-validation RPDc

SEC R2 SECV 1-VR

Oil content 290 3.279 21.601–41.277 0.197 0.996 0.233 0.995 14.062

Myristic acid 289 0.105 0.516–1.144 0.049 0.778 0.054 0.738 1.937

Palmitoleic acid 286 0.037 0.534–0.757 0.027 0.481 0.029 0.409 1.305

Stearic acid 293 0.179 2.338–3.413 0.129 0.485 0.133 0.453 1.346

Oleic acid 284 1.403 13.484–21.901 0.462 0.891 0.602 0.817 2.329

Linolenic acid 99 0.047 0.101–0.380 0.041 0.233 0.044 0.112 1.062

Eicosenoic acid 191 0.018 0.245–0.352 0.012 0.526 0.013 0.501 1.391

Table 5 External validation statistics of NIRS predictive equations for oil content and fatty acid composition in cottonseed kernel

Constituent Number SD Bias r2 a SEPb Slope RPDv
c

Oil content 148 3.138 -0.019 0.993 0.273 1.004 11.495

Myristic acid 148 0.100 -0.003 0.753 0.058 1.007 1.724

Palmitic acid 148 0.982 0.035 0.777 0.513 0.976 1.914

Palmitoleic acid 148 0.024 0.000 0.516 0.035 1.411 0.686

Stearic acid 148 0.126 0.001 0.472 0.159 1.182 0.792

Oleic acid 148 1.403 -0.067 0.795 0.702 0.984 1.999

Linoleic acid 148 2.362 0.058 0.963 0.470 1.008 5.026

Linolenic acid 50 0.029 0.019 0.101 0.061 0.684 0.475

Eicosenoic acid 88 0.013 0.000 0.224 0.021 0.858 0.619

a Coefficient of determination in external validation
b Standard error of prediction
c Relative predictive determinant of external validation
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also be the application of alternative regression methods,

although the MPLS methods have provided reliable results

in the evaluation of most agricultural products [28–30]. In a

comparative study of fatty acids in soybean using linear and

non-linear regression methods [31], a superior performance

of non-linear methods based on their respective RPD values

was observed, although the sensitivity of the non-linear

methods to outliers was also acknowledged.

Conclusion

The sample population used in the present study had a wide

range of variability due to the differences in origin as well

as the years and environments in which they were grown.

The comparative analysis of mathematical treatments

combined with different scatter correction methods were

necessary to improve upon the accuracy of the predictions.

The predictive abilities of the calibration equations were in

line with their respective assessments in external validation.

In the current experiment, oil content and linoleic acid

showed high RPDv (11.495 and 5.026, respectively), whiles

myristic, palmitic and oleic acids showed acceptable RPDv

(1.724, 1.914 and 1.999, respectively). These results sug-

gest that, for now, NIRS could be suitably used as a standard

screening method for the contents of these five traits in large

scale cotton breeding programs where the use of conven-

tional screening methods may be a limiting factor.
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