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predisposed to hypoglycemia and exhibit a higher fat mass 
percentage.
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Abbreviations
BTHS  Barth syndrome
TAZ   Tafazzin
Ptd2Gro  Cardiolipin
2-[3H]DG  2-[1,2-3H(N)]deoxy-d-glucose
GLUT1  Glucose transporter-1
GLUT3  Glucose transporter-3
DAG  1,2-Diacyl-sn-glycerol
DGAT-2  1,2-Diacyl-sn-glycerol acyltransferase-2
TAG  1,2,3-Triacyl-sn-glycerol
PtdGro  Phosphatidylglycerol
PtdCho  Phosphatidylcholine
PtdEtn  Phosphatidylethanolamine
PtdSer/PtdIns  Phosphatidylserine/phosphatidylinositol

Introduction

Ptd2Gro is a key phospholipid required for mitochondrial 
energy production [1, 2]. BTHS is a rare X-linked genetic 
disease caused by mutations in the TAZ gene [3]. The TAZ 
gene produces the enzyme tafazzin that transfers fatty acyl 
groups from phospholipids such as phosphatidylcholine 
(PtdCho) to produce primarily unsaturated tetra-acyl spe-
cies of Ptd2Gro [4]. In BTHS, dramatically reduced lev-
els of Ptd2Gro and tetralinoleoyl-Ptd2Gro are observed 
[3]. Historically regarded as a cardiac disease, BTHS is 
now considered a multi-system disorder. A previous study 
determined that BTHS patients exhibited a 43% greater 

Abstract Barth syndrome (BTHS) is an X-linked genetic 
disease resulting in loss of cardiolipin (Ptd2Gro). Patients 
may be predisposed to hypoglycemia and exhibit increases 
in whole-body glucose disposal rates and a higher fat 
mass percentage. We examined the reasons for this in 
BTHS lymphoblasts. BTHS lymphoblasts exhibited a 
60% increase (p < 0.004) in 2-[1,2-3H(N)]deoxy-d-glu-
cose uptake, a 40% increase (p < 0.01) in glucose trans-
porter-3 protein expression, an increase in phosphorylated-
adenosine monophosphate kinase (AMPK) and a 58% 
increase (p < 0.001) in the phosphorylated-AMPK/AMPK 
ratio compared to controls. In addition, BTHS lympho-
blasts exhibited a 90% (p < 0.001) increase in d-[U-14C]
glucose incorporated into 1,2,3-triacyl-sn-glycerol (TAG) 
and a 29% increase (p < 0.025) in 1,2-diacyl-sn-glycerol 
acyltransferase-2 activity compared to controls. Thus, 
BTHS lymphoblasts exhibit increased glucose transport 
and increased glucose utilization for TAG synthesis. These 
results may, in part, explain why BTHS patients exhibit 
an increase in whole-body glucose disposal rates, may be 
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insulin-stimulated glucose disposal rate per kilogram 
fat-free mass and a higher fat mass percentage compared 
to age-matched controls [5]. The mechanism for these 
effects was unknown. Here we show that glucose uptake 
and its utilization for TAG synthesis is increased in BTHS 
lymphoblasts.

Materials and Methods

All cell culture reagents and PCR primers were obtained 
from Invitrogen (Burlington, ON, Canada), and culture 
flasks and dishes from Corning, Inc. (Corning, NY, USA). 
Lipid standards were from Serdary Research Laboratories 
(Englewood Cliffs, NJ, USA). Thin-layer chromatography 
plates (silica gel G, 0.25-mm thickness) were obtained 
from Fisher Scientific (Winnipeg, Manitoba, Canada). 
Ecolite(+)TM Liquid Scintillation was obtained from ICN 
Biochemicals (Montreal, Quebec, Canada). Unlabeled 
lipids and fatty acid-free bovine serum albumin (BSA) 
were from Sigma–Aldrich (Oakville, ON, Canada). 2-[1,2-
3H(N)]Deoxy-d-glucose (2-[3H]DG), d-[U-14C]glucose, 
[1-14C]oleoyl-CoA and [1-14C]acetate were obtained from 
PerkinElmer (Woodbridge, ON, Canada) or American 
Radiolabeled Chemicals (St. Louis, MO, USA). Primary 
and secondary antibodies for GLUT1 (sc-1603), GLUT3 
(sc-74399), pAMPK(Thr172) (sc-33524), and AMPK (sc-
398861) were from Santa Cruz Biotechnology Inc. (Dallas, 
TX, USA). Primary and secondary antibodies for cyclophi-
lin B were from abcam (ab178397; Cambridge, MA, USA). 
Western blotting analysis system was from GE Healthcare 
Life Sciences (Missisauga, ON, Canada). All other bio-
chemicals were certified ACS grade and were from Fisher 
Scientific (Winnipeg, Canada).

Epstein-Barr virus-transformed BTHS lymphoblasts 
from 4 to 9 year old males and male age-matched control 
lymphoblasts were obtained from Dr. Richard Kelly (John 
Hopkins University, Baltimore, MD, USA) and Coriell 
Institute for Medical Research (Camden, NJ. USA). Cells 
were cultured in RPMI 1640 medium containing 10% fetal 
bovine serum (FBS) and 1% antimycotic and antibiotic 
solution. Cells were incubated at 37 °C in 5% CO2 until 
required for studies.

Glucose uptake assay using 0.1 mM 2-[3H]DG (0.5 µC/
ml) was performed as described previously [6]. For deter-
mination of glycerolipid synthesis, cells were incubated 
with 0.1 mM d-[U-14C]glucose (10 μCi/ml) for 24 h, and 
neutral lipids [1,2-diacyl-sn-glycerol (DAG); TAG] and 
glycerophospholipids were separated and radioactivity 
determined as previously described [7]. In some experi-
ments, cells were incubated for 24 h with 0.1 µM [1-14C]
acetate (10 μCi/ml) and radioactivity incorporated into TG 
determined as above.

Western blot analysis was performed as described [8]. 
CL mass and species composition were determined as 
described [9]. DGAT-2 enzyme activity was determined 
using [1-14C]oleoyl-CoA as previously described [8]. 
Protein was determined by the Bradford method using 
the Bio-Rad Bradford protein assay M kit [10]. All data 
were expressed as mean or mean ± standard deviation. 
Differences between two means were analyzed by Stu-
dent’s t test. p < 0.05 was considered to be statistically 
significant.

Results and Discussion

Age-matched control and BTHS lymphoblasts were incu-
bated with 2-[3H]DG and uptake into cells determined. 
BTHS lymphoblasts exhibited a 60% increase (p < 0.004) 
in 2-[3H]DG uptake compared to age-matched control 
cells (Fig. 1a). The major detectable lymphoblast Ptd2Gro 
molecular species for the control and BTHS lymphoblasts 
used in this study are shown in Table 1. In BTHS lymph-
oblasts, total Ptd2Gro mass was reduced to 5% of control 
cells. In addition, tetralinoleoyl-Ptd2Gro (C18:2)4 levels 
in BTHS lymphoblasts were reduced to 0.7% of controls. 
Lymphoblasts express both GLUT1 and GLUT3 glucose 
transporter proteins, and expression of these may be reg-
ulated differently [11–13]. The GLUT1 protein level was 
unaltered in BTHS lymphoblasts compared to controls 
(Fig. 1b). In contrast, GLUT3 protein levels were increased 
40% (p < 0.01) in BTHS lymphoblasts versus controls 
(Fig. 1c). A previous study showed that knockdown of 
tafazzin in neonatal ventricular fibroblasts increased phos-
phorylation and activation of AMPK [14]. AMPK acti-
vation may stimulate glucose uptake through increased 
GLUT3 expression [15]. P-AMPK was elevated approxi-
mately 100% (Fig. 2a), and the ratio of pAMPK(Thr172) 
to AMPK increased 58% (p < 0.05) in BTHS cells com-
pared to control cells, which would explain the increased 
GLUT3 expression in BTHS lymphoblasts. If an increase 
in glucose transport is mirrored in other tissues, this may, in 
part, explain why BTHS patients exhibit increased rates of 
glucose disposal and may be predisposed to hypoglycemia 
[5, 16]. The increased rate of glucose disposal observed in 
BTHS patients is likely due to the requirement for alterna-
tive sources of adenosine triphosphate (ATP), as mitochon-
drial oxidative phosphorylation is greatly compromised due 
to loss of Ptd2Gro. A previous study indicated that the basal 
extracellular acidification rate in cardiomyocytes from 
tafazzin knockdown mice was higher than that in controls, 
consistent with an increased reliance on glycolysis [17]. In 
that study it was hypothesized that the metabolic shift away 
from aerobic respiration and toward glycolysis in Ptd2Gro-
deficient cardiomyocytes was a compensatory mechanism 
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Fig. 1  2-[3H]DG incorporation and GLUT1 and GLUT3 expression 
in control and BTHS lymphoblasts. a Control and BTHS lympho-
blasts were incubated with 0.1 mM 2-[3H]DG for 10 min, and radi-
oactivity incorporated into cells was determined. *p < 0.01, n = 3. 

GLUT1 (b) and GLUT3 (c) expression in control and BTHS lympho-
blasts was determined. Representative Western blots are depicted. 
*p < 0.01, n = 3

Table 1  The Ptd2Gro content 
and major molecular species 
composition in control and 
BTHS lymphoblasts

Data represent the mean n = 3

Ptd2Gro cardiolipin, BTHS Barth syndrome

Control BTHS

Total Ptd2Gro (ng × 106 cells) 35.88 1.83

% Total % Total

Ptd2Gro (C18:2)3(C18:3) 7.87 43.99

Ptd2Gro (C18:2)4 21.76 4.23

Ptd2Gro (C18:2)3(C18:1) 41.43 20.76

Ptd2Gro (C18:2)2(C18:1)2 21.69 28.39

Ptd2Gro (18:2)3(20:4) 5.22 1.32

Ptd2Gro (18:2)2(18:1)(20:4) 2.03 1.31
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to maintain cellular energy homeostasis in the setting of 
dysfunctional mitochondria.  

A previous study had shown that de novo synthesis of 
Ptd2Gro was unaltered in BTHS fibroblasts [18]. In support 
of this, incorporation of d-[U-14C]glucose into most glycer-
ophospholipids including Ptd2Gro was unaltered in BTHS 
lymphoblasts compared to controls after 24 h of incubation 
(Fig. 2b). A small but significant 12% increase (p < 0.034) 
in incorporation into phosphatidylcholine (PtdCho) was 
observed. Interestingly, in the hearts of tafazzin knockdown 
mice, accumulation of specific choline diacyl glycerophos-
pholipid molecular species containing linoleic acid was 
observed [17]. In addition, metabolome profile analysis of 
plasma from BTHS patients revealed an increase in the Ptd-
Cho/lysoPtdCho ratio [19]. In contrast, D-[U-14C]glucose 
incorporation into TAG was increased 90% (p < 0.001) and 
into DAG was reduced 28% (p < 0.01) in BTHS cells com-
pared to controls (Fig. 2c). The increase in TAG synthesis 
was specific, since total d-[U-14C]glucose incorporation 
into cells was unaltered (control, 4.18 ± 0.23 dpm × 105/
mg protein; BTHS, 4.21 ± 0.38 dpm × 105/mg protein), 
indicating that at least a portion of glucose taken up may 

be preferentially channeled into TAG. In cells incubated 
with [1-14C]acetate, the percentage of total cellular dpm 
of [1-14C]acetate incorporation into TAG was increased 
120% (p < 0.001) in BTHS cells compared to control cells 
(Fig. 3a), confirming increased TAG synthesis. In addition, 
DGAT-2 activity was increased 29% (p < 0.025) in BTHS 
cells versus controls, which would explain the increased 
TAG synthesis (Fig. 3b). If an increase in TAG synthesis 
is mirrored in other tissues, this may explain why BTHS 
patients exhibit a higher fat mass percentage than controls 
[5].

Caution should be used in interpreting our observa-
tions. The lymphoblasts used in our studies are transformed 
cells and utilize primarily glucose for their cellular energy 
source. This could have a differential impact on metabolic 
aspects that might be observed in primary cells. In addition, 
the presence of abundant glucose in the culture medium, 
combined with a minimal demand for “work”, may mask 
the effects of Ptd2Gro loss on substrate utilization, fat accu-
mulation, or glucose disposal. We recently showed that a 
reduction in Ptd2Gro in human brain endothelial HCMEC/
D3 cells led to increased glucose uptake and glycolysis 

Fig. 2  Phosphorylation and 
expression of AMPK and 
D-[1-14C]Glucose incorporation 
into glycerolipids in control 
and BTHS cells. a AMPK, 
pAMPK(Thr172) and cyclophilin 
expression was determined in 
control and BTHS lympho-
blasts. *p < 0.001, n = 3. Rep-
resentative Western blots are 
depicted. b, c d-[U-14C]glucose 
incorporation into glycerolipids 
was determined in control and 
BTHS lymphoblasts. b Phos-
pholipids: Ptd2Gro, cardiolipin; 
PtdGro, phosphatidylglycerol; 
PtdCho, phosphatidylcholine; 
PtdEtn, phosphatidylethanola-
mine; PtdIns/PtdSer, phosphati-
dylinositol/phosphatidylserine. 
Control, solid bars; BTHS, 
open bars. *p < 0.034, n = 3. c 
Neutral lipids. Solid bars, DAG; 
open bars, TAG. **p < 0.012, 
***p < 0.001, n = 3
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[20]. In summary, we show that BTHS lymphoblasts 
exhibit increased glucose uptake and TAG synthesis from 
glucose.
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Fig. 3  Incorporation of [1-14C]acetate into TAG and DGAT-2 activity 
in BTHS lymphoblasts. a Cells were incubated with [1-14C]acetate, 
and percentage incorporation into TAG was determined in control 
and BTHS lymphoblasts. **p < 0.001, n = 3. b DGAT-2 activity was 
determined in control and BTHS lymphoblasts. **p < 0.025, n = 3
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