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loss of FABP1 (LKO) correlated with intrinsically lower 
FABP1 level in livers of WT females than males. These 
data show that female mouse brain endocannabinoid levels 
were unchanged (AEA, 2-AG) or decreased (OEA, PEA, 
2-OG) by complete loss of FABP1 (LKO).
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Abbreviations
ACBP	� Acyl-CoA binding protein
ARA	� Arachidonic acid
AEA, anandamide	� Arachidonoylethanolamide
2-AG	� 2-Arachidonoylglycerol
CB1, Cnr1	� Cannabinoid receptor-1
CB2, Cnr2	� Cannabinoid receptor-2
DAGL-α, Dagla	� Diacylglycerol lipase α
DHEA	� Docosahexaenoylethanolamide
EPEA	� Eicosapentaenoylethanolamide
EC	� Endocannabinoid
FAAH, Faah	� Fatty acid amide hydrolase
FABP1, L-FABP	� Liver fatty acid binding protein-1
FABP-3, Fabp3	� Fatty acid binding protein-3
FABP-5, Fabp5	� Fatty acid binding protein-5
FABP-7, Fabp7	� Fatty acid binding protein-7
FAT/CD36	� Fatty acid translocase/thrombospondin 

receptor
FATP-1	� Fatty acid transport protein-1
FATP-4	� Fatty acid transport protein-4
LKO	� Fabp1 gene ablated mouse on 

C57BL/6NCr background
GPCR	� G protein coupled receptor
GRK-2, Adrbk2	� G protein coupled receptor kinase-2
LCFA	� Long chain fatty acid
LCFA-CoA	� Long chain fatty acyl-CoA

Abstract  Although liver fatty acid binding protein 
(FABP1, L-FABP) is not detectable in the brain, Fabp1 
gene ablation (LKO) markedly increases endocannabi-
noids (EC) in brains of male mice. Since the brain EC sys-
tem of females differs significantly from that of males, it 
was important to determine if LKO differently impacted 
the brain EC system. LKO did not alter brain levels of ara-
chidonic acid (ARA)-containing EC, i.e. arachidonoyle-
thanolamide (AEA) and 2-arachidonoylglycerol (2-AG), 
but decreased non-ARA-containing N-acylethanolamides 
(OEA, PEA) and 2-oleoylglycerol (2-OG) that potenti-
ate the actions of AEA and 2-AG. These changes in brain 
potentiating EC levels were not associated with: (1) a net 
decrease in levels of brain membrane proteins associated 
with fatty acid uptake and EC synthesis; (2) a net increase 
in brain protein levels of cytosolic EC chaperones and 
enzymes in EC degradation; or (3) increased brain protein 
levels of EC receptors (CB1, TRVP1). Instead, the reduced 
or opposite responsiveness of female brain EC levels to 
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2-MG	� 2-Monoacylglycerol
MGL, Mgll	� 2-Monoacylglycerol lipase
NAAA, Naaa	� N-Acylethanolamide-hydrolyzing 

acid amidase
NAE	� N-Acylethanolamide
NAPE	� N-Acylphosphatidylethanolamide
NAPE-PLD,  
Nape-pld	� N-Acylphosphatidylethanolamide 

phospholipase-D
OEA	� Oleoylethanolamide
2-OG	� 2-Oleoylglycerol
PEA	� Palmitoylethanolamide
2-PG	� 2-Palmitoyl glycerol
SCP-2, Scp2	� Sterol carrier protein-2
TRVP-1, vanilloid  
receptor-1, Trvp-1	� Transient receptor potential cation 

channel subfamily V member 1
WT	� Wild-type C57BL/6NCr mouse

Introduction

The endogenous cannabinoid receptor (CB) agonists (i.e. 
endocannabinoids, EC) N-arachidonoylethanolamide (AEA) 
and 2-arachidonoylglycerol (2-AG) are both synthesized 
from arachidonic acid (ARA)-esterified to phospholipids 
[1, 2]. Unlike other tissues, however, ability of the brain 
to synthesize ARA is not sufficient to meet needs and thus 
brain ARA is derived primarily from plasma [3, 4]. How-
ever, plasma ARA availability for brain uptake is limited 
by high hepatic clearance [5, 6]. Hepatic ARA clearance is 
associated with high hepatic levels of liver fatty acid bind-
ing protein (FABP1), a cytosolic protein that not only binds 
ARA with high affinity [7, 8] but also facilitates ARA uptake 
[9–12]. Recent findings with male mice have shown that 
ablation of FABP1, a protein not found in the brain [13–15], 
markedly increases serum ARA availability for brain uptake 
concomitant with increasing brain levels of ARA, AEA and 
2-AG [16, 17].

Although most animal studies of the EC system have 
been performed with male rodents, increasing evidence 
indicates that the EC system of female humans and 
rodents differs significantly from that of their male coun-
terparts [18–22]. For example, females have a higher pain 
sensitivity threshold and are more susceptible to cannab-
inoid antinociception [18, 21, 23, 24]. At the same time 
females are also more susceptible to developing cannabi-
noid abuse and dependence, while having more severe 
withdrawal, and are more likely to relapse than males 
[18]. Female brains have fewer CB1 receptor binding 

sites, but their CB1 receptors are more efficient as com-
pared to those in males [21, 23]. Female rat brain hypo-
thalamus and pituitary have higher AEA and 2-AG levels 
than those of males [21, 23], consistent with higher blood 
ARA levels in females as compared to blood ARA levels 
to males [25, 26].

Taken together, the above findings suggested that the 
brain EC system of females may respond differently to 
ablation of FABP1 from that observed with male Fabp1 
gene ablated mice. Therefore, this possibility was exam-
ined using female WT and Fabp1 gene ablated mice to 
determine the potential impact of its ablation on brain: 
(1) levels of ARA-containing EC, i.e. AEA and 2-AG; 
(2) levels of non-ARA containing N-acylethanolamides 
and 2-monoacylglycerols; and (3) protein levels and 
expression of proteins in the endocannabinoid system. 
The data show that the brain EC system of female mice 
was not altered (i.e. AEA, 2-AG) or decreased (OEA, 
PEA, 2-OG) in response to Fabp1 gene ablation that was 
opposite of changes previously shown in males [17]. 
This correlated with livers of WT female mice exhibiting 
significantly lower basal FABP1 levels than those of WT 
males.

Materials and Methods

Mice

Female inbred C57BL/6NCr mice were from the National 
Cancer Institute (Frederick Cancer Research and Develop-
ment Center, Frederick, MD). Female Fabp1 gene ablated 
(LKO) mice on the same C57BL/6NCr background were 
backcrossed to C57BL/6NCr to the N10 generation [27]. 
Mice were fed a standard rodent chow mix [5 % calories 
from fat; D8604 Teklad Rodent Diet, Teklad Diets (Madi-
son, WI)] and water ad libitum. Mice were housed in bar-
rier cages on ventilated racks at 12-h light/dark cycle in a 
temperature controlled facility (25 °C), sentinel monitored 
quarterly, and confirmed free of all known rodent patho-
gens. At age 8 week, WT and Fabp1 gene ablated female 
mice were placed on a defined phytol-free [28–33], phy-
toestrogen-free [34, 35] control chow to avoid dietary com-
plications due to their potential impact on hepatic FABP1 
level and/or the EC system. After 4 weeks on the phytol-
free, phytoestrogen-free diet the mice were fasted overnight 
followed by brain removal/flash freezing and storage at 
−80 °C. Mouse experimental protocols were approved by 
the Institutional Animal Care and Use Committee at Texas 
A&M University.
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Extraction and Liquid Chromatography‑Mass 
Spectrometry (LC–MS) Analysis of Brain 
N‑Acylethanolamide (NAE) and 2‑Monoacylglycerol 
(2‑MG)

Arachidonoylethanolamide (AEA), oleoylethanolamide 
(OEA), palmitoylethanolamide (PEA), n-3 docosahexae-
noylethanolamide (DHEA), n-3 eicosapentaenoylethan-
olamide (EPEA), 2-arachidonoylglycerol (2-AG), 2-ole-
oylglycerol (2-OG), 2-palmitoylglycerol (2-PG), AEA-d4, 
OEA-d2, PEA-d4, DHEA-d4, EPEA-d4, and 2-AG-d8 were 
purchased from Cayman Chemical (Ann Arbor, MI). All 
solvents and reagents were highest grade available com-
mercially. Frozen mouse brain (100–200  mg wet weight) 
was homogenized in 1.0  mL of ice-cold homogeniza-
tion buffer containing 2000  pg each of AEA-d4, OEA-d2, 
PEA-d4, DHEA-d4, EPEA-d4, and 2-AG-d8. Lipids were 
extracted from mouse brain essentially as described in 
[36], reconstituted in 100 μL of ice-cold methanol, purged 
with nitrogen, and stored at -80 °C until analysis by liquid 
chromatography-mass spectrometry (LC–MS). The NAE 
(AEA, OEA, PEA, DHEA, EPEA) in the brain lipid extract 
were resolved, identified, and quantified in the Texas A&M 
University Protein Chemistry Laboratory (Dr. Larry Dan-
gott, Director) essentially as described in [37] and modified 
as in [17]. Likewise, the 2-MG (2-AG, 2-OG, and 2-PG) in 
the brain lipid extract were resolved, identified and quan-
tified in the Protein Chemistry Laboratory basically as in 
[38] and as modified in [17]. Brain NAE and 2-MG levels 
are expressed as pmol/g wet weight and nmol/g wet weight, 
respectively.

Antibodies and Proteins for Western Blotting

Rabbit polyclonal anti-SCP2 was prepared as described in 
[39]. Caveolin-1 (CAV1; 610060) polyclonal anti-rabbit 
antibody was from BD Transduction Laboratories (Lexing-
ton, KY). Fatty acid transport protein 1 (FATP-1; sc-25541) 
polyclonal anti-rabbit, fatty acid binding protein-3 (FABP3; 
sc-58275) monoclonal anti-mouse, fatty acid binding pro-
tein-7 (FABP7; sc-30088) polyclonal anti-rabbit, FABP1 
(sc-16064) polyclonal anti-mouse, N-acylethanolamide 
hydrolyzing acid amidase (NAAA; sc-100470) monoclo-
nal anti-mouse, and ß-Actin (sc-47778) monoclonal anti-
mouse were from Santa Cruz Biotech (Santa Cruz, CA). 
Fatty acid binding protein-5 (FABP5; RD181060100) anti-
body was from BioVendor R&D (Asheville, NC). Fatty 
acid translocase/cluster of differentiation 36/thrombos-
pondin receptor (FAT/CD36; RDI-M1537db) monoclo-
nal anti-mouse antibody was from Research Diagnostics 
(Flanders, NJ). Anti-glyceraldehyde-3-phosphate dehydro-
genase (GAPDH; MAB374) monoclonal anti-mouse anti-
body was from Millipore (Billerica, MA). Diacylglycerol 

lipase α (DAGLα; 13626 Cell Signaling, Danvers, MA) and 
2-monoacylglycerol lipase (MAGL; 310212) polyclonal 
antibodies were from Cayman Chemical Co (Ann Arbor, 
MI). Cytochrome C oxidase 4 (COX4, ab16056) polyclonal 
anti-rabbit, antibody to cannabinoid receptor-1 (CB1; 
AB172970), glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH, AB8245), fatty acid amide hydrolase (FAAH, 
AB54615), and N-acylphosphatidylethanolamide phospho-
lipase D (NAPEPLD; AB95397) were from Abcam (Cam-
bridge, MA). Antibody to transient receptor potential cat-
ion channel subfamily V member 1 (TRVP-1: 75j-254) was 
from Antibodies Inc. (Davis, CA). For quantitative West-
ern blotting, recombinant protein standards were purified 
and delipidated as described in the following cited papers: 
murine FABP1 [7, 40], murine acyl-CoA binding protein 
(ACBP) [41, 42], and human sterol carrier protein-2 (SCP-
2) [43–45].

Brain Protein Levels of Enzymes and Other Proteins 
in the Endocannabinoid System

Sodium dodecyl sulfate–polyacrylamide gel electrophore-
sis (SDS-PAGE) and Western blot analysis was performed 
on brain post-nuclear supernatants (PNS) as described ear-
lier [17, 46, 47]. Brain proteins were resolved by 12 % Tris-
SDS-PAGE gel, transferred to 0.2 µm nitrocellulose mem-
brane (162-0112, BioRad Laboratories, Hercules, CA), 
blocked with 3 % gelatin for 1 h, and incubated overnight 
with select primary antibodies followed by species-specific 
Horseradish Peroxidase (HRP) or Alkaline Phosphatase 
(AP) conjugated secondary antibodies for 1–2 h. After rins-
ing nitrocellulose membrane three times for 5 min in TBST 
(10  mM Tris–HCl (pH 8.0), 150  mM NaCl, and 0.05  % 
Tween 20), the HRP conjugated antibodies were exposed 
to the Super Signal West Pico chemiluminescent substrate 
(34077, Pierce, Rockford, IL) or Immuno-star HRP sub-
strate (Bio-Rad, Hercules, CA). Images were obtained with 
an Image Quant LAS 4000 mini (GE Healthcare Life Sci-
ences, Marlborough, MA) or C-DiGiT scanner (Li-COR, 
Lincoln, NE). AP-conjugated antibodies were exposed to 
BCIP/NBT solution (B6404, Sigma Aldrich) and images 
obtained with an Epson Perfection V700 Photo scanner 
(Long Beach, CA). Proteins were quantified by densitomet-
ric analysis using ImageJ software (National Institutes of 
Health, Bethesda, MD). Relative protein levels normalized 
to GAPDH or ß-actin internal gel-loading controls and rep-
resentative cropped Western blot images are inserted into 
figure panels similarly as in earlier publications in which 
individual Western blots are separated by a white line/space 
[48–52]. Quantitative Western blotting of FABP1 was per-
formed using a standard curve with recombinant murine 
FABP1 as in [53–56]. Images of the blots were taken by 
Epson Perfection V700 Photo scanner (Long Beach, CA) 
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and quantified by densitometric analysis with ImageJ soft-
ware (NIH, Bethesda, MD) as described earlier [57].

QrtPCR Reagents for Analyzing Brain mRNA of Genes 
in the Endocannabinoid System

TaqMan® RNA-to-CT™ 1-Step PCR Master Mix Reagent 
kit was purchased from Life Technologies™ (Carlsbad, 
CA). The following gene-specific TaqMan® PCR probes 
and primers were obtained from Life Technologies™ 
(Carlsbad, CA) to determine brain mRNA levels of: G pro-
tein coupled receptor kinase-2 (Adrbk2, Mm00622042_
m1); cannabinoid receptor-1 (Cnr1, Mm01212171_s1); 
cannabinoid receptor-2 (Cnr2, Mm02620087_s1); dia-
cylglycerol lipase α (Dagla, Mm00813830_m1); diacyl-
glycerol lipase β (Daglb, Mm00523381_m1); fatty acid 
amide hydrolase (Faah, Mm00515684_m1); 2-mono-
acylglycerol lipase (Mgll, Mm00449274_m1); fatty acid 
binding protein-3 (Fabp3, Mm02342494_m1); fatty acid 
binding protein-5 (Fabp5, Mm00783731_s1); fatty acid 
binding protein-7 (Fabp7, Mm01246302_m1); N-acyletha-
nolamide hydrolyzing acid amidase (Naah, Mm01341699_
m1); N-acylphosphatidylethanolamide phospholipase D 
(Napepld, Mm00724596_m1); transient receptor poten-
tial cation channel subfamily V member 1 (Trvp-1, 
Mm01246302_m1).

mRNA Extraction and QrtPCR to Determine mRNA 
Levels of Genes in the Brain Endocannabinoid System

Brain total RNA was isolated and purified with the RNeasy 
mini kit (Qiagen, Valencia, CA) using the manufacturer’s 
standard protocol. Concentration and quality of mRNA 
were determined by a NanoDrop 1000 Spectrophotometer 
(Thermo Scientific, Waltham, MA). Samples were stored at 
−80  °C. QrtPCR expression patterns were analyzed with 
an ABI PRISM 7000 sequence detection system (Applied 
Biosystems®, Foster City, CA) using TaqMan® RNA-to-
CT™ 1-Step PCR Master Mix Reagent kit, gene-specific 
TaqMan PCR probes and primers. The thermal cycler pro-
tocol was as follows: 48 °C for 30 min, 95 °C for 10 min, 
95 °C for 0.15 min and 60 °C for 1.0 min, repeated a total 
of 40 cycles. TaqMan® gene expression assays to determine 
brain mRNA transcript levels of the genes listed above. 
Two replicates of each sample reaction (20 µL total volume 
each) were performed on 96 well plates (Applied Biosys-
tems®, Foster City, CA). The threshold cycle from each 
well was established with ABI Prism 7000 SDS software 
(Applied Biosystems®, Foster City, CA) and QrtPCR data 
normalized to the housekeeping gene 18S RNA for mRNA. 
Expression of Adrbk2, Arrb2, Cnr1, Cnr2, Dagla, Daglb, 
Faah, Mgll, Fabp3, Fabp5, Fabp7, Naah, Nape-pld, and 
Trvp-1 were relative to the control female mouse group.

Brain Cytokine Levels

Mouse LINCOplex kit (MADPK-71  K) and mouse LIN-
COplex kit (MADPCYT-72  K) from LINCO Research 
(St. Charles, MO) were used to determine brain levels of 
insulin, resistin, leptin, adiponectin, monocyte chemoat-
tractant protein-1 (MCP-1), plasminogen activator inhibi-
tor-1 (PAI-1), interleukin-6 (IL-6), and tumor necrosis fac-
tor α (TNFα) according to the manufacturer’s instructions. 
Samples were detected with a Luminex 100IS microsphere 
analyzer (Luminex Corp., Austin, TX) and analyzed with 
Luminex 100 version 2.1 software supplied by the manu-
facturer using 5-parameter data reduction.

Statistical Analysis

Values represent the mean ±  standard error of the mean 
(SEM). Statistical analysis was performed by one-way 
analysis of variance (ANOVA) followed by the Student–
Newman–Keuls post hoc test. Statistical significance was 
assigned to values with p < 0.05.

Results

Fabp1‑Gene Ablation (LKO) Differentially Impacts 
Brain Levels of Arachidonic Acid (ARA)containing 
versus non‑ARA‑containing Endocannabinoids (EC)

Brain contains three major classes of endocannabinoids: 
(1) ARA-containing (2-AG  ≫  AEA) EC are the major 
endogenous ligand activators of cannabinoid (CB) recep-
tors [4, 38, 58–62]; (2) non-ARA-containing ‘potentiat-
ing’ EC (OEA, PEA, 2-OG, and/or 2-PG) that enhance the 
activity of ARA-containing EC by increasing their affinities 
for CB receptors or decreasing their enzymatic degradation 
[63–68]; (3) non-ARA-containing antagonistic EC (DHEA, 
EPEA) that displace ARA from membrane phospholipids 
and decrease ARA containing phospholipid synthesis to 
thereby lower AEA and 2-AG production [69].

Arachidonoylethanolamide (AEA) levels were not dif-
ferent between groups (Fig.  1a), levels of potentiating 
endocannabinoids OEA and PEA were nearly 2-fold higher 
in the WT than LKO mice (Fig. 1b, c). LKO differentially 
impacted brain levels of potentiating, but not antagonistic 
non-ARA containing, EC. LKO did not significantly alter 
brain levels of AEA (Fig. 1a) or 2-AG (Fig. 2a). In contrast, 
brain levels of potentiating OEA and PEA (Fig. 1b, c) and 
2-OG (Fig. 2b) were decreased. In contrast, LKO did not 
significantly alter the brain levels of antagonistic DHEA or 
EPEA (Fig. 1d, e).

Consistent with the literature, WT brain levels of the 
antagonistic DHEA (Fig.  1d) and even more so EPEA 
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(Fig.  1e) were lower. WT brain levels of the other major 
ARA-containing EC, i.e. 2-arachidonoylglycerol (2-AG) 
(Fig.  2a) were 3 orders of magnitude higher than those 
observed for AEA, but WT brain levels of the potentiating 
2-monoacylglycerols (2-MGs) 2-OG and 2-PG (Fig. 2b, c) 
were 2-4 fold lower than those of 2-AG (Fig. 2a). Never-
theless the WT brain levels of 2-OG and 2-PG (Fig. 2b, c) 
were still markedly higher than those of AEA (Fig. 1a).

Fabp1 Gene Ablation (LKO) Does Not Affect Brain 
Protein Levels of Membrane Fatty Acid Transport/
Translocase Proteins

WT brain contains several membrane associated pro-
teins (CD36/FAT, CAV1, FATP1 and FATP4) that facili-
tate translocation/uptake of long chain fatty acids such as 
ARA as well as other non-ARA fatty acids (e.g. palmitic or 
oleic acid) [3]. As shown by Western blotting, LKO did not 
alter expression of CD36/FAT, CAV1, FATP1, or FATP4 
(Fig. 3a–d). The lower levels of OEA, PEA, and 2-OG in 
LKO brain (Figs. 1, 2) did not correlate with decreased lev-
els of membrane fatty acid uptake proteins.

Impact of Fabp1 Gene Ablation (LKO) on Brain Levels 
of Proteins Involved in NAE and 2‑MG Synthesis 
and Degradation

Brain levels of NAE and 2-MG are determined in part both 
by synthetic enzymes in the plasma membrane (NAPEPLD 
and DAGLα) and degradative membrane enzymes (FAAH, 
NAAA, MAGL) localized in intracellular sites [70–72]. 
Thus, it was important to examine if LKO-induced altera-
tion in brain EC levels was attributable to altered levels of 
these key enzymes.

Western blotting showed that Fabp1 gene ablation did 
not alter expression of the NAE synthetic enzyme NAPE-
PLD (Fig.  4a) or the 2-MG synthetic enzyme DAGLα 
(Fig.  4b). With regards to the NAE degradative enzymes, 
LKO did not alter that of the major one, i.e. FAAH 
(Fig.  4c), but decreased that of NAAA (Fig.  4d). Protein 
levels of the 2-MG degradative enzyme MAGL were not 
altered by LKO (Fig. 4e). Finally, Western blotting showed 
that LKO did not alter protein levels of the AEA and 2-AG 
receptor CB1 (Fig.  4f), but did reduce protein levels of 
TRVP1 in the brain (Fig. 4g).
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Fig. 1   Impact of FABP1 gene ablation (LKO) on brain N-acyletha-
nolamide (NAE) levels. Female WT and LKO (8 week old) were fed 
phytol-free, phytoestrogen-free control diet for 4 weeks, fasted over-
night, brains removed/flash frozen and stored at −80  °C, and NAE 
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analysis as described in Materials and Methods to determine con-
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Impact of Fabp1 Gene Ablation (LKO) on Brain Levels 
of Cytosolic NAE and 2‑MG ‘Chaperone’ Proteins

Due to their highly hydrophobic nature, not only ARA but 
even more so NAE and 2-MG, require cytosolic ‘chaper-
one’ proteins for intracellular transport/targeting to meta-
bolic organelles. These roles are served by the brain cytosolic 
FABPs 3, 5, and 7 [13, 46, 73–79] and SCP-2 [17, 45, 80, 81]. 
Therefore, it was important to determine the impact of LKO 
on brain proteins levels of these lipidic ligand ‘chaperones’.

As shown by Western blotting, LKO differentially 
impacted the expression of the cytosolic ‘chaperone’ pro-
teins. Brain protein level of FABP3 was significantly 
increased by LKO (Fig. 5a). Concomitantly, brain protein 
levels of the other ‘chaperones’ were either significantly 
decreased, e.g. SCP-2 (Fig. 5d) or did not change (FABP5, 
FABP7) (Fig. 5b, c).

Ablation/inhibition of cytosolic ‘chaperones’ is known 
to decrease NAE and 2-MG targeting for degradation 
which in turn increases their level [38, 47, 79]. Since 
LKO decreased brain levels of non-ARA NAE and 2-MG, 
this would suggest that the concomitant upregulation of 
FABP3 may have exerted a larger impact than downregula-
tion of the other cytosolic ‘chaperones’ which were either 
decreased or unchanged.

Role of Transcriptional Regulation on the Impact 
of Fabp1 Gene Ablation (LKO) on Brain Protein Levels 
of Proteins And Enzymes in the Endocannabinoid 
System

LKO-induced changes in protein levels of some, but not 
most, brain proteins were attributable in part to altered 
mRNA levels. The decreased protein level of the NAE 
degradative enzyme NAAA (Fig.  4d) was consistent with 
decreased Naaa mRNA level (Fig.  6e). LKO-induced 
decreased or unaltered protein levels of brain cytosolic 
‘chaperones’ such as FABP5 and SCP2 (Fig.  5b, d) was 

Fig. 3   FABP1 gene ablation (LKO) impact on protein levels of 
brain membrane proteins involved in fatty acid uptake. Female WT 
and LKO mice (8 week old) were fed phytol-free, phytoestrogen-free 
control chow for 4 weeks, overnight fasted, brains removed/flash fro-
zen and stored at −80 °C, and aliquots of brain homogenate proteins 
examined by SDS-PAGE and subsequent Western blot analysis as 
described in Materials and Methods. a CD36/FAT, b CAV1, c FATP1, 
and d FATP4. Insets show representative Western blot images of the 
respective protein (upper blot) and the gel-loading control protein 
β-Actin (lower blot). Relative protein levels were normalized to gel-
loading control protein; values were compared to WT set to 1. Data 
represent the mean ± SEM (n = 7); *p < 0.05 for LKO vs WT

Fig. 4   Impact of FABP1 gene ablation (LKO) on protein levels of 
brain proteins involved in endocannabinoid synthesis anInsets show 
representatived degradation and associated receptors. All conditions 
were as in legend to Fig.  3 except that Western blot analysis was 
performed to determine protein levels of a NAPEPLD, b DAGLα, c 
FAAH, d NAAA, e MAGL, f CB1, and g TRVP1. Insets show rep-
resentative Western blot images of the respective protein (upper blot) 
and the gel-loading control protein (GAPDH or β-Actin, lower blot). 
Relative protein levels were normalized to the gel-loading control 
protein; values were compared to WT set to 1. Data represent the 
mean ± SEM (n = 7); *p < 0.05 for LKO vs WT
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consistent with decreased or unaltered Fabp5 and Scp2 
mRNAs (Fig. 7b, d).

In contrast, other brain EC system protein levels did not 
correlate with the respective mRNAs in LKO mice. The 
protein levels of the synthetic enzymes NAPEPLD and 
DAGLα were unaltered (Fig.  4a, b) despite significantly 
decreased Napepld and Dagl mRNA levels (Fig.  6a–c). 
The protein levels of the degradative enzymes FAAH and 
MAGL were unaltered (Fig. 4c, e) despite increased Faah 
and Mgll mRNA levels (Fig.  6d, f). The protein level of 
FABP3 was increased (Fig.  5a) but the Fapb3 mRNA 
decreased (Fig. 7a). Finally, the protein level of FABP7 was 
unchanged (Fig.  5c); however, FABP7 mRNA level was 
decreased in LKO (Fig. 7c).

Hepatic FABP1 Expression is Sexually Dimorphic

Since LKO did not alter brain AEA and 2-AG lev-
els in females (Figs.  1a, 2a), but significantly 
increased that in males (AEA: MWT  =  15  ±  2  pmol/g 
brain, MLKO  =  24  ±  2  pmol/g brain; 2-AG: 
MWT =  16 ±  2 nmol/g brain, MLKO =  44 ±  3 nmol/g 
brain) [17], the possibility that this might be attributed at 
least in part to sex-differences in hepatic FABP1 expression 

in WT mice was examined by quantitative Western blotting 
using a standard curve with purified recombinant murine 
FABP1 as described in Materials and Methods. As shown 

Fig. 5   FABP1 gene ablation (LKO) alters protein levels of brain 
cytosolic ‘chaperone’ endocannabinoid binding proteins. All con-
ditions were as in legend to Fig. 3 except that Western blot analysis 
was performed to determine protein levels of a FABP3, b FABP5, 
c FABP7, and d SCP-2. Insets are representative Western blot 
images of the respective protein (upper blot) and gel-loading control 
(GAPDH or β-Actin, lower blot). Relative protein levels were nor-
malized to the gel-loading control protein; values were compared to 
WT set to 1. Data represent the mean ± SEM (n = 7); *p < 0.05 for 
LKO vs WT

Fig. 6   Effect of FABP1 gene ablation (LKO) on brain levels of 
mRNAs encoding proteins for endocannabinoid synthesis and deg-
radation. Female WT and LKO mice (8 week old) were fed phytol-
free, phytoestrogen-free control chow for 4 weeks, overnight fasted, 
brains removed/flash frozen and stored at −80  °C, and aliquots of 
brain homogenate used for qrtPCR to determine mRNA levels of a 
Napepld, b Dagla, c Daglb, d Faah, e Naaa, and f Mgll as described 
in “Materials and Methods”. Levels of mRNA were normalized to an 
internal control (18S RNA); values were compared to WT set to 1. 
Data represent the mean ± SEM (n = 7); *p < 0.05 for LKO vs WT

Fig. 7   FABP1 gene ablation (LKO) alters brain levels of mRNAs 
encoding cytosolic ‘chaperone’ endocannabinoid binding proteins. 
All conditions were as in legend to Fig. 6 except that qrtPCR was per-
formed to determine mRNA levels of a Fabp3, b Fabp5, c Fabp7, and 
d Scp-2 as described in “Materials and Methods”. Levels of mRNA 
were normalized to an internal control (18S RNA); values were 
compared to WT set to 1. Data represent the mean ± SEM (n = 6); 
*p < 0.05 for LKO vs WT
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in multiple separate experiments, FABP1 was more highly 
expressed in livers of male than female mice fed a phytol-
free, phytoestrogen-free diet (Fig. 8).

FABP1 Gene Ablation (LKO) Impact on Brain 
Inflammatory Cytokine Levels

LKO had no significant impact on brain concentrations of 
insulin (Fig. 9a). LKO did modestly increase brain levels of 
inflammatory cytokines MCP-1 (Fig. 9e), PAI-1 (Fig. 9f), 
IL-6 (Fig.  9g), and TNFα (Fig.  9H). LKO also increased 
brain levels of adiponectin (Fig. 9b), resistin (Fig. 9c), and 
leptin (Fig. 9d); however, these cytokines are not normally 
associated with inflammation in the brain. Taken together, 
the lack of major changes in inflammatory cytokine levels 
correlated with the lack of change in brain AEA and 2-AG 
levels in LKO mice.

Discussion

Behavioral and other studies suggest considerable sexual 
dimorphism in the brain endocannabinoid (EC) system of 
both humans and rodents [18–23]. However, little is known 
concerning the molecular details on which these differ-
ences are based—especially with regards to factors outside 
the brain that influence brain endocannabinoid levels. For 
example, liver fatty acid binding protein (FABP1) is not 
detectable in the brain [13–15], but its ablation (LKO) in 
male mice markedly increases brain levels of arachidonic 
acid (ARA)-containing EC (e.g. AEA: MWT = 15 pmol/g 

brain vs MLKO = 24 pmol/g; 2-AG: MWT = 16 nmol/g 
vs MLKO = 44 nmol/g) and non-ARA-containing EC (e.g. 
OEA: MWT = 72 pmol/g brain vs MLKO = 190 pmol/g; 
PEA: MWT = 80 pmol/g vs MLKO = 150 pmol/g; 2-OG: 
MWT  =  5  nmol/g vs MLKO  =  18  nmol/g) [16, 17]. 
Whether a similar effect is seen in the female brain EC sys-
tem is unknown. The studies presented herein with female 
LKO mice presented new insights into the impact of sexual 
dimorphic FABP1 expression on the brain EC system.

First, there are a number of known differences in the 
brain EC system between males and females. For exam-
ple, ARA-containing EC (AEA, 2-AG) levels were near 
40  pmol/g and 60  nmol/g brain, respectively, in female 
brains (shown herein)—several fold higher than those 
observed in the brains of male mice (AEA, 15  pmol/g 
brain; 2-AG, 16  nmol/g brain) [16, 17]. Consistent with 
these findings, female rat brain hypothalamus and pituitary 
have higher AEA and 2-AG levels than those of males [21, 
23]. In the rat, the higher AEA and 2-AG level in female 
brain is attributed to the higher plasma availability of ARA 
in females [25, 26]. This is important because most brain 

Fig. 8   Hepatic FABP1 expression is sexual dimorphic. C57BL/6  N 
male and female mice (8 week old) were fed phytol-free, phytoestro-
gen-free control chow for 4 weeks, overnight fasted, livers removed 
and frozen at −80 °C. Quantitative Western blotting was performed 
on livers to determine FABP1 protein level compared to standard 
curve of pure recombinant FABP1 as described [53–56]. FABP1 lev-
els (ng L-FABP/μg total protein) are shown from four separate exper-
iments, each presented as mean ±  SEM (n =  3–10); *p  <  0.05 for 
LKO vs WT
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Fig. 9   Impact of FABP1 gene ablation on brain cytokine lev-
els. Brain homogenate levels of a insulin, b adiponectin, c resis-
tin, d leptin, e MCP-1, f PAI-1, g IL-6, and h TNFα were quanti-
fied as described in “Materials and Methods”. Data represent the 
mean ± SEM (n = 8); *p < 0.05 for LKO vs WT
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ARA is derived from plasma for uptake into brain and 
rapid esterification into phospholipids from which AEA 
and 2-AG are derived [3, 4]. Finally, the markedly higher 
levels of AEA and 2-AG in brains of female vs male mice 
correlated with the significantly lower basal FABP1 levels 
in livers of female vs male mice (shown herein). The pos-
sibility that lower hepatic FABP1 levels in females con-
tributed to higher brain EC levels is supported by earlier 
studies showing that: (1) FABP1 has high affinity for ARA 
[7, 9, 17, 82]; (2) native FABP1 isolated from liver is pref-
erentially enriched with endogenously-bound ARA [8]; (3) 
hepatic FABP1 concentration is at least 20-fold higher than 
that of all the FABP (FABP 3, 5, 7) in the brain combined 
[83–90]; (4) FABP1 overexpression enhances ARA uptake 
[9–12].

In contrast, very little is known with respect to differ-
ences in the non-ARA containing EC between males and 
females. Although brain can synthesize sufficient non-ARA 
fatty acids such as oleic acid and palmitic acid needed 
for incorporation into phospholipids from which non-
ARA-containing EC are derived [3, 4], brain can take up 
non-ARA fatty acids from the blood [3, 74, 91]. Thus, it 
was difficult to predict a priori the net impact of sex on 
brain levels of non-ARA-containing EC. The data pre-
sented herein showed that female brain basal levels of non-
ARA containing EC (OEA, PEA, 2-OG, and 2-PG near 
125 pmol/g brain, 135 pmol/g, 22 nmol/g, and 11 nmol/g, 
respectively) were significantly higher than those in male 
brains (OEA, 70  pmol/g brain; PEA, 80  pmol/g; 2-OG, 
5 nmol/g; 2-PG, 6 nmol/g) [16, 17]. This may be attributed 
at least in part by: (1) females’ lower hepatic FABP1 level; 
(2) FABP1 also binding non-ARA fatty acids with high 
affinity, albeit less than that for ARA [7, 92–94]; (3) non-
ARA fatty acids palmitic acid and oleic acid comprising 
the most common, i.e. 10 and 30  %, respectively, endog-
enously-bound fatty acids in native FABP1 isolated from 
liver [8]; (4) enhancement of non-ARA fatty acid uptake by 
FABP1 overexpression and in direct proportion to FABP1 
level in cloned human HepG2 liver cells [10, 12, 95–98].

Second, although Fabp1 gene ablation (LKO) mark-
edly increased brain levels of both ARA-containing 
(AEA: WT = 15 pmol/g brain, LKO = 24 pmol/g; 2-AG: 
WT = 16 nmol/g brain, LKO = 44 nmol/g) and non-ARA 
containing (OEA: WT = 72 pmol/g, LKO = 190 pmol/g; 
PEA: WT  =  80  pmol/g, LKO  =  150  pmol/g, 2-OG: 
WT = 5 nmol/g, LKO = 18 nmol/g; 2-PG: WT = 7 nmol/g, 
LKO = 9 nmol/g) EC in males [16, 17], its impact in the 
female brain was not known. The data presented herein 
showed for the first time that (LKO) did not alter brain lev-
els of AEA or 2-AG in females, while the levels of the non-
ARA containing EC (OEA, PEA, 2-OG) were decreased by 
20–50 %. While this was consistent with the already much 
lower level of hepatic FABP1 in WT females as compared 

to WT males, there is a paucity of literature regarding the 
impact of hepatic FABP1 level on sex differences in the 
brain EC system.

Third, the Fabp1 gene ablation induced decreases in 
brain EC were not attributable to marked alteration in pro-
teins levels of: (1) plasma membrane proteins for fatty acid 
uptake in the brain; (2) membrane enzymes in synthesis/
degradation of non-ARA-containing EC; or (3) protein lev-
els of cytosolic chaperones that would enhance non-ARA-
containing EC cytosolic transport and targeting for degra-
dation. Furthermore, the lack of compensatory changes in 
the brain EC system proteins in response to FABP1 gene 
ablation was not attributable to lack of changes in respec-
tive mRNA levels—many of which were significantly 
altered. While the lack of correlation between brain EC 
system protein levels and mRNA transcripts is not known, 
a similar lack of correlation in liver EC system protein lev-
els and mRNAs has been attributed to specific micro RNA 
(miRNA) that inhibit mRNA translation [99–101].

With regards to physiological impact of these findings 
on brain function, an important function of endocannabi-
noids such as AEA is on analgesia [38]. Lower hepatic 
FABP1 level in females (shown herein) vs males [16, 17] 
correlate with females having higher brain levels of AEA 
and potentiating OEA and PEA (enhancers of AEA activity 
on CB receptors). Higher AEA level in brains of females 
is associated with lower sensitivity to pain as compared to 
males [18, 21, 23, 24]. Conversely, elevated liver FABP1 
levels in human lipid disorders such as obesity [102], alco-
holic fatty liver disease (AFLD) [103, 104], and nonalco-
holic fatty liver disease (NAFLD) [105–108] are associ-
ated with increased pain sensitivity in obesity [118–120], 
AFLD [121, 122], and NAFLD [123] reported in these 
lipid disorders. While expression of a SNP in the human 
Fabp1 gene coding region results in a T94A substitution 
also increases hepatic total FABP1 and is associated with 
NAFLD [109–111], another relatively common SNP in the 
human Fabp1 gene promoter region (rs2919872) decreases 
FABP1 promoter transcriptional activity to decrease 
FABP1 [110]. However, the impact of these SNP on pain 
sensitivity is not known. Resolving this issue is important, 
especially since the SNP leading to the Fabp1 T94A variant 
is highly prevalent in the human population, occurring with 
26–38 % minor allele frequency and 8.3 ± 1.9 % homozy-
gosity (MAF for 1000 genomes in NCBI dbSNP database; 
ALFRED database) [109, 112–117]. Taken together these 
studies would suggest that FABP1 reduction or Fabp1 gene 
ablation may impact pain sensitivity much less in females 
than males—a possibility to be tested in future studies 
beyond the scope of the present investigation.

Another major physiological effect regulated by brain 
endocannabinoids is the desire for food intake. Elevated 
AEA increases desire for food intake [124], while increased 
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OEA, PEA, or 2-OG decrease the desire for food intake 
[69, 125, 126]. Thus, the female brain’s higher AEA level 
(shown herein) as compared to that in the brain of males 
[16, 17] would suggest higher food intake by females. 
Conversely, the female brain’s higher OEA, PEA and less 
so 2-OG content would tend to decrease food intake. The 
overall net effect led to less food intake in females versus 
males in control chow fed mice [127–131]. With regards 
to the impact of loss of FABP1, LKO did not alter female 
brain AEA level, but decreased OEA and PEA by about 
50 %, and less so 2-OG (shown herein). As a result of the 
unaltered AEA and much smaller difference in potentiating 
EC, the LKO female mice had unaltered or only slightly 
altered control chow food intake [127, 128, 131, 132].

In summary, wild-type mouse brain EC levels in females 
(shown herein) differed significantly from those of males 
[16, 17]. This differential level of endocannabinoids adds 
a new level of understanding of our previously published 
studies demonstrating a reduction in food intake in female 
mice compared to males [127–131]. Our studies further 
extend the impact of sex-differences on the content of 
endocannabinoids in the brain, demonstrating a higher level 
in female mice as compared to male mice. Finally, female 
brain EC levels were much less responsive to Fabp1 gene 
ablation (shown herein) as compared to their male FABP1 
gene ablated counterparts [16, 17]. This diminution of 
responsiveness of female brain EC levels to loss of FABP1 
was associated with intrinsically lower FABP1 level in liv-
ers of WT females than males. This was in marked contrast 
to males wherein lower brain EC levels correlated with 
higher liver FABP1 such that loss of FABP1 upon ablation 
markedly increased brain EC levels [16, 17], approaching 
the levels observed in female brains.
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