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and trafficking between mouse strains is an important con-
sideration when carrying out fatty acid metabolic studies.
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Abbreviations
SW	� Swiss Webster
TAG	� Triacylglycerol(s)
FFA	� Free fatty acids
DAG	� Diacylglycerol(s)
Ptd2Gro	� Cardiolipin
EtnGpl	� Ethanolamine glycerophospholipids
PtsIns	� Phosphatidylinositol
PtdSer	� Phosphatidylserine
ChoGpl	� Choline glycerophospholipids
CerPCho	� Sphingomyelin
16:0	� Palmitic acid
20:4n-6	� Arachidonic acid
22:6n-3	� Docosahexaenoic acid
Acox1	� Acyl-CoA oxidase 1
FABP	� Fatty acid binding protein

Introduction

Both C57BL/6 and Swiss Webster (SW) mice have been 
extensively used for decades as general purpose model 
for research and drug safety testing. Interestingly, there 
are several strains of Swiss Webster outbred mice sold by 
various breeders, which over time, these mice may have 
acquired slight genetic drift despite their common ori-
gin. In contrast, C57BL/6 mice are the most widely used 
inbred strain due to its permissive background for maximal 

Abstract  C57BL/6 and Swiss Webster mice are used to 
study lipid metabolism, although differences in fatty acid 
uptake between these strains have not been reported. Using 
a steady state kinetic model, [1-14C]16:0, [1-14C]20:4n-6, 
or [1-14C]22:6n-3 was infused into awake, adult male 
mice and uptake into liver, heart, and brain determined. 
The integrated area of [1-14C]20:4n-6 in plasma was sig-
nificantly increased in C57BL/6 mice, but [1-14C]16:0 
and [1-14C]22:6n-3 were not different between groups. In 
heart, uptake of [1-14C]20:4n-6 was increased 1.7-fold in 
C57BL/6 mice. However, trafficking of [1-14C]22:6n-3 into 
the organic fraction of heart was significantly decreased 
33 % in C57BL/6 mice. Although there were limited dif-
ferences in fatty acid tracer trafficking in liver or brain, 
[1-14C]16:0 incorporation into liver neutral lipids was 
decreased 18  % in C57BL/6 mice. In heart, the amount 
of [1-14C]16:0 and [1-14C]22:6n-3 incorporated into total 
phospholipids were decreased 45 and 49  %, respectively, 
in C57BL/6 mice. This was accounted for by a 53 and 
37  % decrease in [1-14C]16:0 and 44 and 52  % decrease 
in [1-14C]22:6n-3 entering ethanolamine glycerophospho-
lipids and choline glycerophospholipids, respectively. In 
contrast, there was a significant increase in [1-14C]20:4n-6 
esterification into all heart phospholipids of C57BL/6 mice. 
Although changes in uptake were limited to heart, several 
significant differences were found in fatty acid trafficking 
into heart, liver, and brain phospholipids. In summary, our 
data demonstrates differences in tissue fatty acid uptake 

 *	 E. J. Murphy 
	 eric.murphy@med.und.edu

1	 Department of Basic Sciences, School of Medicine 
and Health Sciences, University of North Dakota, 501 N 
Columbia Road, Room 1701, Grand Forks, ND 58203‑9037, 
USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11745-015-4117-6&domain=pdf


550	 Lipids (2016) 51:549–560

1 3

expression of most mutations. Although there are several 
breeder specific strains available, due to this mouse being 
an inbred strain, it generally has less genetic drift between 
commercial sources than SW mice. Genetic variations 
between mouse strains are important and have been shown 
to affect phenotype. Therefore, we are interested in differ-
ences between tissue uptake and trafficking of fatty acids in 
these two commonly used strains.

Metabolism is significantly affected by mouse strain dif-
ferences. Several studies support the hypothesis that dif-
ferent strain variants have an effect on phenotype. Despite 
similar insulin sensitivity and secretion in several inbred 
strains, C57BL/6 mice are the least glucose tolerant of 
mice studied [1, 2]. However, conflicting glucose toler-
ance data was found when C57BL/6 mice are fed a high-
fat diet and compared to a different 129 substrain, 129T2 
compared to 129X1, suggesting that differences in strains 
used to compare to C57BL/6 mice can affect data inter-
pretation [3]. Furthermore, C57BL/6 mice subjected to a 
high-fat diet have increased body fat mass and decreased 
oxygen consumption, coupled with lower endurance capac-
ity and decreased β-oxidation in the liver, which correlates 
to increased obesity compared to other inbred strains [4, 
5]. These data suggest liver and muscle metabolism differ-
ences contribute to physical performance and susceptibility 
to diet-induced obesity.

Interestingly, substrain differences in lipid metabo-
lism in C57BL/6J compared to C57BL/6N mice have also 
been observed, with a high-fat diet inducing an increase in 
plasma insulin and blood glucose in the C57BL/6N sub-
strain, resulting in more severe hepatic steatosis and inflam-
mation [6]. Similar results are found in an ob/ob obesity 
model in inbred strains of C57BL/6 mice which more rap-
idly cleared circulating triacylglycerol (TAG), resulting in a 
more severe hepatic steatosis [7]. Another study comparing 
C57BL/6 substrains found a functional deletion in the nico-
tinamide nucleotide transhydrogenase gene in C57BL/6J 
mice [8]. Similarly, a study in 129 substrains found genetic 
variations have a considerable impact on strategies that 
involve targeted mutagenesis [9]. These data support the 
observation that studies between strains cannot be treated 
interchangeably without mention of genetic variations that 
could contribute to alterations in interpretation of results.

SW and C57BL/6 mice are extensively used for the 
study of lipid metabolism. Brain- and heart-fatty acid bind-
ing protein (FABP) were isolated from the brain of SW 
mice [10], while C57BL/6 mice are often used to study n-3 
lipid metabolism and its potential benefits after ischemia 
and spinal cord injury [11–13] Further, hearts of C57BL/6 
mice have decreased incorporation of exogenous radiola-
beled oleic acid as compared to several other inbred strains 
as a result of increased mRNA expression of acyl-CoA 
oxidase 1 (Acox1) [14]. Interestingly, several inbred and 

outbred mouse strains including C57BL/6 and CD-1:SW 
have a mutation in the gene encoding for secretory group 
II phospholipase A2, with C57BL/6 mice having a homozy-
gous frameshift mutation in the sPLA2 gene, while CD-
1:SW mice were heterozygous for this same mutation [15]. 
However, what impact mouse strain has on tissue fatty acid 
uptake and trafficking into specific lipid pools is unknown.

To address this gap in knowledge, we determined the 
impact of strain differences in fatty acid uptake and traf-
ficking in SW and C57BL/6 mouse strains using a steady-
state radiotracer kinetic model [16, 17]. Strain influences 
on [1-14C]16:0, [1-14C]20:4n-6, or [1-14C]22:6n-3 uptake 
and trafficking in liver, heart, and brain in vivo was deter-
mined. These data show for the first time, that mouse strain 
impacts whole body 20:4n-6 metabolism as indicated by 
increased radiotracer in plasma in C57BL/6 mice as com-
pared to SW mice. We also found an increased incorpora-
tion and trafficking of [1-14C]20:4n-6 in a number of heart 
phospholipids of C57BL/6 mice. Further in heart, the 
decreased incorporation of [1-14C]16:0 and [1-14C]22:6n-3 
into the total phospholipid pool was accounted for by a 
profound reduction in esterification into the ethanolamine 
glycerophospholipids (EtnGpl) and choline glycerophos-
pholipids (ChoGpl) in C57BL/6 as compared to SW mice. 
From these data we conclude that there are significant dif-
ferences in lipid metabolism mainly in heart between these 
mice, which suggests that genetic background plays a sub-
stantial role in fatty acid trafficking.

Methods

Surgery and Fatty Acid Infusion

Samples were collected from 3  month old Swiss Web-
ster and C57BL/6 male mice (National Institute of Can-
cer, Frederick, MD, USA) under an approved protocol by 
the University of North Dakota (Grand Forks, ND, USA) 
Animal Care and Use Committee (protocol 0110-1). Dur-
ing catheter insertion mice were anesthetized with (1–3 %) 
Halothane and polyethylene10 catheters were inserted 
into the right femoral vein and artery. Mice were allowed 
to recover from anesthesia for three hours following sur-
gery to allow equilibration of metabolism [18, 19]. After 
recovery, mice were infused with 170  µCi/kg of either 
[1-14C]16:0, [1-14C]20:4n-6, or [1-14C]22:6n-3 at a rate of 
50 µl/min for 10 min to achieve steady state plasma radi-
oactivity. Blood was collected at set intervals and plasma 
separated to assess intravascular radioactivity. Mice were 
then euthanized at 10  min with pentobarbital (i.v.) and 
immediately subjected to head focused microwave irra-
diation to heat denature enzymes in situ [17, 20]. Whole 
brain, liver, and heart were removed, flash frozen in liquid 
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nitrogen, and then pulverized into a homogeneous powder 
under liquid nitrogen conditions. Because of the contribu-
tion of residual blood to tissue radioactivity, whole blood 
was extracted using a two-phase extraction method [21] as 
previously described [22]. Residual blood in liver, heart, 
and brain was estimated to be 17, 22, and 2 %, respectively, 
based upon previously published data [23–26].

Tissue Lipid Extraction

Following pulverization, lipids were extracted from the tis-
sues using a two-phase extraction method [21]. Powdered 
tissue was kept on dry ice until added to a tared Tenbroeck 
homogenizer, to determine the mass (g ww) of the tissue 
added. To the Tenbroeck homogenizer 17 vol. of chloro-
form and methanol (2:1, by vol) was added. Once tissue was 
homogenized, the extract was removed, saved and then the 
homogenizer was washed with 3 vol. of chloroform and meth-
anol (2:1, by vol) and the rinse added to the initial extract. 
The tissue residue was saved for protein quantification. After 
homogenization, 4 vol of 0.9  % KCl was added to extract, 
mixed by vortexing, and allowed to separate into two phases 
overnight at −20 °C under a N2(g) atmosphere. The following 
morning, the top phase was removed and saved. To the lower 
phase, 4 vol. of chloroform, methanol, and water (3:48:47, by 
vol) was added, the sample vortexed, chilled, and subjected to 
centrifugation to facilitate phase separation. The upper phase 
was removed and combined with the previous upper phase to 
determine aqueous fraction radioactivity using liquid scintil-
lation counting (LSC). The lower phase was dried down with 
N2 (g) and dissolved in hexane:2-propanol (3:2, by vol) and 
a portion used to determine organic radioactivity using LSC. 
The unused portion was stored under N2 (g) atmosphere at 
−80 °C in hexane:2-propanol (3:2, by vol).

Lipid Separation by Thin Layer Chromatography

Extracted lipids were separated using thin layer chroma-
tography (TLC) on heat-activated (110 °C) Whatman silica 
gel-60 plates. Neutral lipids were separated into individual 
classes using petroleum either, diethyl ether, and acetic acid 
(75:25:1.3, by vol.)  [27]. Phospholipids were separated 
into individual classes using chloroform, methanol, ace-
tic acid, and water (50:37.5:3:2, by vol.) [28]. Lipids were 
visualized using iodine (phospholipids) or 6-(p-toluidino)-
2-naphthalenesulfonic acid (TNS) (neutral lipids) and 
identified using commercially available standards (Avanti, 
Polar Lipids, Alabaster, AL, USA). Once lipids were visu-
alized, the silica was scraped into glass scintillation vials 
and 0.5  mL ddH2O was added to facilitate desorption of 
lipids from the silica. Then 10 mL of Scintiverse BD cock-
tail (Fisher Scientific, Pittsburgh, PA, USA) was added and 
samples were mixed by vortexing and then allowed to settle 

for 1 h. Samples were counted on a Beckman LS 6500 liq-
uid scintillation counter equipped with low-level detection 
software (Fullerton, CA, USA).

Protein Quantification

Protein content in the tissue residue was quantified using a 
modified dye-binding assay utilizing bovine serum albumin 
as a standard [29]. The tissue residue was dried of residual 
solvent and then subjected to hydrolysis with 0.2 KOH at 
65  °C overnight [30]. Samples were then mixed with dye 
binding reagent and allowed to equilibrate for 10 min prior 
to reading on a spectrophotometer at 595 nm.

Statistics

Statistical analysis was done using the Instat® statisti-
cal program (Graphpad, San Diego, CA). Multiple com-
parisons were assessed using a one-way ANOVA with a 
Tukey–Kramer post hoc test, with p < 0.05 considered as 
significant, n = 3–4. A two-tailed Student’s t test was used 
to determine significance between treatment groups, with 
p < 0.05 considered to be significant, n = 3–4.

Results

Plasma Area Under the Curve was Significantly 
Different for [1‑14C]20:4n‑6 Infusions

The effect of strain differences on fatty acid tracer con-
tent in plasma in SW and C57BL/6 mice was determined 
by incremental plasma sampling during the steady state 
radiotracer infusion. The tracer content in plasma is vital 
for the calculation of the coefficient of incorporation, ki*, 
where radioactivity in a given compartment is divided by 
the integrated area under the curve for plasma radioactiv-
ity for each individual mouse. There was a significant 
difference (p  <  0.05) in plasma curve area, 1334 ±  100 
(n =  4) for C57BL/6 and 1024 ±  121 (n =  4) for SW 
mice (Fig.  1). Plasma areas for [1-14C]16:0, 945  ±  80 
(C57BL/6) versus 925 ± 85 (SW) and for [1-14C]22:6n-3, 
1212 ±  75 (C57BL/6) versus 1154 ±  91 (SW), were not 
significantly different between strains (Fig. 1). The reduced 
[1-14C]20:4n-6 tracer concentration in plasma of SW mice 
could be a result of enhanced uptake of 20:4n-6 into tissues 
in these mice as compared to C57BL/6.

C57BL/6 Mice Have Increased Total Uptake into Heart 
Tissue

Tissue fatty acid uptake and incorporation into the organic 
and aqueous fractions was determined (Table 1). In heart, 
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there was a significant 1.7-fold increase in total uptake of 
[1-14C]20:4n-6, accounted for by a 1.8-fold increase in 
incorporation into the organic fraction of C57BL/6 mice 
(Table  1). Although, the total uptake of [1-14C]22:6n-3 
into heart was not significantly different, the incorpora-
tion into the organic fraction was reduced 33 % in C57Bl/6 
compared to SW mice (Table 1). There was no difference 
in [1-14C]16:0 total uptake or in incorporation into organic 
or aqueous fractions. For all of the fatty acid tracers, there 
was no significant difference in the heart aqueous fraction, 
which represents products of β-oxidation [18, 31, 32].

Liver and brain tissue did not have significant differ-
ences in uptake or incorporation into organic or aqueous 
fractions, suggesting the observed differences between 
strains were specific to [1-14C]20:4n-6 uptake into heart 
tissue and incorporation of [1-14C]22:6n-3 into the organic 
fraction.

Metabolic Targeting into Phospholipid and Neutral 
Lipid Pools are Differentially Modulated in Heart

Phospholipid and neutral lipid fractions were separated 
to determine fatty acid targeting differences in SW and 
C57BL/6 mice (Table 2). For liver, [1-14C]16:0, uptake into 
neutral lipids decreased 18 % in C57BL/6 mice (Table 2), 
but no other changes were observed. In heart, there was a 
significant reduction in the incorporation of [1-14C]16:0 
(45  %) and of [1-14C]22:6n-3 (49  %) into phospholipids 
in C57BL/6 compared to SW mice (Table  2). Further-
more, C57BL/6 mice have decreased [1-14C]16:0 (45  %) 
fractional distribution into heart phospholipids (Table  2). 
In contrast, incorporation of [1-14C]20:4n-6 into C57BL/6 
heart phospholipids increased 2.2-fold compared to SW 
mice (Table 2). We observed no difference in 20:4n-6 and 
22:6n-3 trafficking into heart neutral lipids between groups 
(Table 2). There were no significant changes in [1-14C]16:0, 
[1-14C]20:4n-6, or [1-14C]22:6n-3 fatty acid tracer uptake 
or trafficking in brain (Table  2). These data indicate that 
mouse strain impacts specific tissue fatty acid uptake and 
trafficking and predominately impacts targeting into phos-
pholipids in the heart.

Strain Specific Differences in Fatty Acid Targeting 
into Individual Lipid Classes

To determine fatty acid targeting into individual lipid 
classes in SW and C57BL/6 mice, phospholipid and neu-
tral lipid fractions were separated. In liver there was a sig-
nificant 17  % decrease in [1-14C]16:0 incorporation into 
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Fig. 1   Plasma curves for [1-14C]16:0, [1-14C]20:4n-6, and 
[1-14C]22:6n-3 comparing infusion of radiotracer fatty acids into SW 
and C57BL/6J mice. SW (unfilled box) and C57BL/6 (filled circle) 
were infused with [1-14C]16:0 (upper panel), [1-14C]20:4n-6 (mid-
dle panel), and [1-14C]22:6n-3 (lower panel). Values are expressed 
as nCi/mL as found in plasma collected during radiotracer infusion 
and represent mean ± SD (n = 3–4). The asterisk indicates a statisti-
cally significant difference from SW and C57BL/6 strains using one-
way ANOVA and a Tukey–Kramer post hoc test was used for plasma 
curves and a Student’s t test was used to compare the area under the 
curve between strains (p < 0.05)
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triacylglycerol pools (TAG) (Table  3), consistent with the 
reduction observed in the neutral lipid fraction of C57BL/6 
mice compared to SW mice (Table 2). A 1.2-fold increase 

in esterification of [1-14C]20:4n-6 into EtnGpl was found 
in liver but, there were no differences in esterification of 
[1-14C]22:6n-3 into liver between strains (Table 3).

Table 1   Distribution of fatty 
acid tracer into liver, heart, 
or brain organic and aqueous 
fractions in SW and C57BL/6 
mice

Distribution of [1-14  C]16:0, [1-14C]20:4n-6, or [1-14C]22:6n-3 tracer into organic and aqueous fractions 
of liver, heart, and brain. Values represent means ± SD (n = 3–4). The asterisk indicates a statistically sig-
nificant difference between SW and C57BL/6 strains using a Student’s unpaired, two-tailed t test (p < 0.05)

Org organic fraction, Aq aqueous fraction

k* × 10−5 (s−1) Fractional dist. (%)

SW C57BL/6 SW C57BL/6

Mean STD Mean STD Mean STD Mean STD

16:0

 Liver

  Org 1010 156 842 83 85 13 85 8

  Aq 172 27 145 19 15 2 15 2

  Total 1182 183 988 102

 Heart

  Org 166 44 166 30 40 11 39 7

  Aq 245 29 259 21 60 7 61 5

  Total 411 73 425 51

 Brain

  Org 19 5 14 7 47 14 44 22

  Aq 21 1 18 2 53 3 56 7

  Total 40 7 32 9

20:4n-6

 Liver

  Org 804 166 727 205 80 17 77 22

  Aq 199 49 221 28 20 5 23 3

  Total 1003 215 948 234

 Heart

  Org 379 101 679 156* 72 19 76 17

  Aq 145 17 217 67 28 3 24 8

  Total 524 118 895 223*

 Brain

  Org 26 7 24 4 65 18 61 10

  Aq 14 2 15 2 35 4 39 5

  Total 40 9 39 6

22:6n-3

 Liver

  Org 644 258 603 198 76 31 75 25

  Aq 198 50 200 48 24 6 25 6

  Total 842 309 803 246

 Heart

  Org 422 78 284 48* 81 15 77 13

  Aq 96 32 84 15 19 6 23 4

  Total 518 110 368 63

 Brain

  Org 29 13 20 7 78 36 71 26

  Aq 8 2 9 1 22 4 29 5

  Total 37 15 29 9
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Table 2   Incorporation of fatty 
acid tracer into liver, heart, or 
brain phospholipid and neutral 
lipid pools in SW and C57BL/6 
mice

Targeting of [1-14  C]16:0, [1-14C]20:4n-6, or [1-14C]22:6n-3 tracer to phospholipid (PL) and neutral lipid 
(NL) fractions into liver, heart, and brain. Values represent means ± SD (n = 3–4). The asterisk indicates 
a statistically significant difference from SW and C57BL/6 strains using a Student’s unpaired, two-tailed t 
test (p < 0.05)

PL phospholipid pool, NL neutral lipid pool

k* × 10−5 (s−1) Fractional dist. (%)

SW C57BL/6 SW C57BL/6

Mean STD Mean STD Mean STD Mean STD

16:0

 Liver

  PL 178 55 156 47 18 5 18 6

  NL 833 101 686 35* 82 10 82 4

  Total 1010 156 842 83

 Heart

  PL 78 22 43 10* 47 13 26 6*

  NL 88 21 123 19 53 13 74 12

  Total 166 44 166 30

 Brain

  PL 16 4 13 6 84 20 88 45

  NL 3 2 2 1 16 9 12 4

  Total 19 5 14 7

20:4n-6

 Liver

  PL 310 64 276 35 39 8 38 5

  NL 494 102 450 170 61 13 62 23

  Total 804 166 727 205

 Heart

  PL 193 54 416 117* 51 14 61 17

  NL 186 47 263 39 49 12 39 6

  Total 379 101 679 156*

 Brain

  PL 24 7 22 4 92 26 94 15

  NL 2 1 2 0.5 8 2 6 2

  Total 26 7 24 4

22:6n-3

 Liver

  PL 337 114 248 66 52 18 41 11

  NL 307 145 355 132 48 22 59 22

  Total 644 258 603 198

 Heart

  PL 227 28 116 36* 54 7 41 13

  NL 195 50 168 11 46 12 59 4

  Total 422 78 284 48*

 Brain

  PL 24 12 17 6 83 40 84 28

  NL 5 2 3 2 17 6 16 9

  Total 29 13 20 7
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In heart, esterification of [1-14C]16:0 into ethanola-
mine glycerophospholipids (EtnGpl) and choline glycer-
ophospholipids (ChoGpl) was reduced by 53 and 37 %, 
respectively (Table 4). A 51 % reduction in targeting of 
[1-14C]16:0 into the diacylglycerol (DAG) fraction sug-
gests a rapid esterification of DAG into TAG, which is 
consistent with the 1.5-fold increase in [1-14C]16:0 tar-
geting to TAG in C57BL/6 mice compared to SW mice 
(Table 4). Esterification of [1-14C]20:4n-6 into heart was 
significantly increased in C57BL/6 mice. Increased tar-
geting of [1-14C]20:4n-6 into phospholipids is consist-
ent with increased uptake into heart (Table  1) and into 
the phospholipid fraction (Table  2). Esterification of 
[1-14C]20:4n-6 into all major phospholipids were signifi-
cantly increased in heart of C57BL/6 mice; cardiolipin 

(Ptd2Gro) 2.4-fold, EtnGpl 1.9-fold, phosphatidylinosi-
tol (PtdIns) 2.9-fold, phosphatidylserine (PtdSer) 3.6-
fold, ChoGpl 2.1-fold, and sphingomyelin (CerPCho) 
2.1-fold (Table  4). Esterification of [1-14C]20:4n-6 into 
TAG was also increased 1.4-fold in heart of C57BL/6 
mice (Table 4). In heart there was a significant decrease 
in esterification of [1-14C]22:6n-3 into EtnGpl and 
ChoGpl, 44 and 52  % in C57BL/6 mice compared to 
SW mice, respectively, similar to that observed for 16:0 
(Table 4).

There were no significant differences in esterification of 
[1-14C]16:0 or [1-14C]22:6n-3 into any brain lipid pools. 
However, esterification of [1-14C]20:4n-6 into brain DAG 
pool was decreased 43  % in C57BL/6 mice compared to 
SW mice (Table 5).

Table 3   Targeting of fatty acid 
tracer into individual liver lipid 
classes in SW and C57BL/6 
mice

Esterification of [1-14  C]16:0, [1-14C]20:4n-6, or [1-14C]22:6n-3 into individual phospholipid and neu-
tral lipid classes of liver tissue. Values represent means ± SD (n = 3–4). The asterisk indicates a statisti-
cally significant difference from SW and C57BL/6J strains using a Student’s unpaired, two-tailed t test 
(p < 0.05)

k* × 10−5 (s−1) Fractional dist. (%)

SW C57BL/6 SW C57BL/6

Mean STD Mean STD Mean STD Mean STD

16:0

 TAG 785.2 89.90 650.4 31.1* 94.9 10.9 95.1 4.5

 DAG 41.90 9.60 33.4 2.7 5.1 1.2 4.9 0.4

 Ptd2Gro 7.31 6.75 5.5 5.8 4.1 3.8 3.5 3.7

 EtnGpl 27.16 9.31 19.96 9.12 15.3 5.2 12.8 5.9

 PtdIns 3.45 2.18 1.84 0.84 1.9 1.2 1.2 0.5

 PtdSer 1.68 0.52 1.36 0.77 0.9 0.3 0.9 0.5

 ChoGpl 124.66 35.34 115.95 29.28 70.2 19.9 74.4 18.8

 CerPCho 13.28 1.38 11.21 1.56 7.5 0.8 7.2 1.0

20:4n-6

 TAG 469.60 95.60 431.80 161.1 95.6 19.5 96.3 35.9

 DAG 21.50 5.50 16.60 8.4 4.4 1.1 3.7 1.9

 Ptd2Gro 4.90 1.88 4.87 2.18 1.6 0.6 1.8 0.8

 EtnGpl 29.34 5.06 36.14 1.98* 9.5 1.6 13.1 0.7*

 PtdIns 15.07 5.97 14.23 4.11 4.9 1.9 5.2 1.5

 PtdSer 5.73 1.56 5.71 1.39 1.9 0.5 2.1 0.5

 ChoGpl 234.51 41.14 199.54 20.15 75.7 13.3 72.2 7.3

 CerPCho 20.08 8.48 15.71 5.32 6.5 2.7 5.7 1.9

22:6n-3

 TAG 209.80 137.1 269.80 105.9 68.5 44.7 76.1 29.9

 DAG 96.70 7.30 84.70 25.30 31.5 2.4 23.9 7.1

 Ptd2Gro 35.97 23.18 24.72 24.82 10.7 6.9 10.0 10.0

 EtnGpl 143.04 47.67 123.17 7.06 42.4 14.1 49.6 2.8

 PtdIns 16.04 6.17 10.09 3.64 4.8 1.8 4.1 1.5

 PtdSer 14.09 5.19 10.00 5.89 4.2 1.5 4.0 2.4

 ChoGpl 89.91 18.78 56.70 16.39 26.7 5.6 22.8 6.6

 CerPCho 38.27 12.64 23.53 8.57 11.3 3.7 9.5 3.5
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Discussion

Although, resting metabolic rate and tissue turnover are 
not different between several strains of mouse [33], the 
impact of mouse strain on tissue fatty acid uptake and traf-
ficking is poorly understood. Our results clearly indicate 
both similarities and differences in the uptake and traf-
ficking of fatty acids into tissues of two commonly used 
mouse strains. Although there is a significant difference in 
fatty acid uptake and trafficking in heart between these two 
strains, surprisingly only minor differences were observed 
in brain and liver. Appreciating differences in characteris-
tics between mouse strains to leverage the advantages and 

minimize potential pitfalls is an important consideration in 
experimental design [34]. For instance, C57BL/6 mice are 
commonly utilized in a substantial share of the scientific lit-
erature and are often used to study lipid metabolism, includ-
ing studies on the efficacy of n-3 fatty acids on inflamma-
tion and injury [11, 12, 14, 35, 36]. On the other hand, SW 
mice are have been used in the pharmacology of fatty acid 
metabolism such as effects of pyridine exposure and high-
fat diets on lipid metabolism [37–39]. Thus, we determined 
the differences in fatty acid uptake and trafficking in three 
tissues commonly used in experimental design using three 
fatty acids commonly found at the sn-1 position (16:0) and 
sn-2 position (20:4n-6 and 22:6n-3) of phospholipids.

Table 4   Targeting of fatty acid 
tracer into individual heart lipid 
classes in SW and C57BL/6 
mice

Esterification of [1-14  C]16:0, [1-14C]20:4n-6, or [1-14C]22:6n-3 into individual phospholipid and neu-
tral lipid classes of heart tissue. Values represent means ± SD (n = 3–4). The asterisk indicates a statisti-
cally significant difference from SW and C57BL/6J strains using a Student’s unpaired, two-tailed t test 
(p < 0.05)

k* × 10−5 (s−1) Fractional dist. (%)

SW C57BL/6 SW C57BL/6

Mean STD Mean STD Mean STD Mean STD

16:0

 TAG 73.84 18.08 113.76 13.57* 84.1 20.6 92.4 11.0

 DAG 13.99 3.19 9.41 5.89 15.9 3.6 7.6 4.8*

 Ptd2Gro 2.26 0.56 1.36 1.06 2.9 0.7 3.2 2.5

 EtnGpl 4.86 1.63 2.27 0.86* 6.2 2.1 5.3 2.0

 PtdIns 0.94 0.70 0.40 0.35 1.2 0.9 0.9 0.8

 PtdSer 0.55 0.88 0.28 0.22 0.7 1.1 0.7 0.5

 ChoGpl 31.49 0.92 19.90 2.26* 40.2 1.2 46.6 5.3

 CerPCho 38.17 17.48 18.49 5.40 48.8 22.3 43.3 12.6

20:4n-6

 TAG 168.65 42.45 241.50 32.62* 91.4 23.0 92.1 12.4

 DAG 15.93 2.82 20.84 6.04 8.6 1.5 7.9 2.3

 Ptd2Gro 4.40 2.11 10.46 4.06* 2.3 1.1 2.5 1.0

 EtnGpl 12.90 4.25 23.96 7.38* 6.7 2.2 5.8 1.8

 PtdIns 9.78 4.94 28.23 7.98* 5.1 2.6 6.8 1.9

 PtdSer 3.02 1.16 10.74 5.73* 1.6 0.6 2.6 1.4

 ChoGpl 148.15 39.11 312.41 85.41* 76.8 20.3 75.1 20.5

 CerPCho 14.55 2.40 30.05 6.07* 7.5 1.2 7.2 1.5

22:6n-3

 TAG 158.46 34.69 145.85 8.45 81.3 17.8 87.4 5.1

 DAG 36.51 14.87 21.02 1.42 18.7 7.6 12.6 0.9

 Ptd2Gro 5.12 1.38 2.44 1.13 2.3 0.6 2.1 1.0

 EtnGpl 37.89 4.20 21.19 3.94* 16.7 1.9 18.2 3.4

 PtdIns 3.23 1.00 2.29 1.20 1.4 0.4 2.0 1.0

 PtdSer 2.87 0.56 1.58 1.86 1.3 0.2 1.4 1.6

 ChoGpl 159.52 19.18 76.98 22.79* 70.3 8.5 66.2 19.6

 CerPCho 18.29 1.79 11.89 5.35 8.1 0.8 10.2 4.6
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In our study, one important observation is the differ-
ences between strains in the integrated plasma curve area 
in [1-14C]20:4n-6 infused mice, but not for [1-14C]16:0 
and[1-14C]22:6n-3. Such an observation using this steady-
state kinetic model is not without precedence. In H-FABP 
(Fabp3) gene-ablated mice on a 129 × Balb/c background, 
there is a significant increase in average integrated plasma 
area of 16:0 in the gene-ablated mice, consistent with the 
profound reduction in 16:0 uptake into the heart [18] and 
presumably muscle tissue where H-FABP is also highly 
expressed [40, 41]. These data suggest that H-FABP can 
affect total body metabolism for fatty acids commonly 
used in β-oxidation, which is consistent with the reduced 
targeting of 16:0 into heart neutral lipids, e.g. TAG [18]. 
In rodents, 16:0 incorporation and turnover in TAG is very 
rapid indicating its use in β-oxidation [42]. Further, in rat 
lipid metabolism, 16:0, a saturated fatty acid, is mainly 
targeted towards β-oxidation [19, 43], whereas 20:4n-6 is 
mainly esterified into phospholipids [19], suggesting sub-
stantially different roles in the heart. Although we did not 
examine H-FABP levels between strains, the lack of change 
in the plasma curve for [1-14C]16:0 does not suggest a 

difference in H-FABP levels as a potential mechanism, 
especially as the differences observed are for only 20:4n-6. 
However, a global change in 20:4n-6 metabolism, similar 
to that observed for 16:0 in H-FABP gene-ablated mice, 
may occur between mouse strains.

In C57BL/6 mice there is a homozygous disruption in 
the secretory group II phospholipase A2 gene, while in CD-
1:SW mice this is a heterozygous mutation when compared 
to several other normal genotype inbred mouse strains; 
including BALB/c, C3H/HE, DBA/1, DBA/2, NZB/B1N, 
and MRL lpr/lpr mice [15, 44]. This frameshift mutation 
occurs in the Ca2+ binding domain, rendering the group 
II sPLA2 enzymatically inactive in C57BL/6 mice. The 
sPLA2 family, I/II/V/X and otoconin-90, are closely related 
enzymes with a highly conserved Ca2+ binding loop that 
hydrolyze sn-2 fatty acids from phospholipids [45–47]. 
sPLA2 enzymes are vital in signal transduction as they 
often release 20:4n-6, which is enriched in the sn-2 posi-
tion of phospholipids [48–50].

Although, group II sPLA2 are sn-2 esterified fatty 
acid specific, they are not intrinsically 20:4n-6 specific 
[48, 51, 52]. Therefore, the preponderance of 20:4n-6 at 

Table 5   Targeting of fatty acid 
tracer into individual brain lipid 
classes in SW and C57BL/6 
mice

Esterification of [1-14  C]16:0, [1-14C]20:4n-6, or [1-14C]22:6n-3 into individual phospholipid and neu-
tral lipid classes of brain tissue. Values represent means ± SD (n = 3–4). The asterisk indicates a statisti-
cally significant difference from SW and C57BL/6J strains using a Student’s unpaired, two-tailed t test 
(p < 0.05)

k* × 10−5 (s−1) Fractional dist. (%)

SW C57BL/6 SW C57BL/6

Mean STD Mean STD Mean STD Mean STD

16:0

 TAG 1.24 0.81 0.81 0.34 42.5 27.7 47.2 19.8

 DAG 1.68 0.80 0.91 0.21 57.5 27.4 52.8 12.5

 Ptd2Gro 0.05 0.08 0.18 0.36 0.7 1.1 3.1 6.1

 EtnGpl 1.36 0.61 0.90 0.84 18.9 8.5 15.3 14.2

 PtdIns 0.12 0.11 0.36 0.50 1.7 1.5 6.1 8.5

 ChoGpl 5.68 0.20 4.46 1.26 78.8 2.8 75.6 21.4

20:4n-6

 TAG 0.50 0.27 0.62 0.04 24.1 13.1 41.1 2.6

 DAG 1.57 0.30 0.89 0.45* 75.9 14.5 58.9 29.8

 Ptd2Gro 0.44 0.17 0.58 0.41 2.6 1.0 3.2 2.3

 EtnGpl 1.99 0.73 1.87 0.30 11.9 4.4 10.4 1.7

 PtdIns 6.67 0.75 6.31 0.57 39.8 4.5 35.1 3.2

 ChoGpl 7.65 1.00 9.23 0.58 45.7 6.0 51.3 3.2

22:6n-3

 TAG 1.74 0.76 0.90 0.76 36.1 15.8 27.3 23.0

 DAG 3.08 1.02 2.40 1.05 63.9 21.2 72.7 31.8

 Ptd2Gro 0.42 0.60 0.75 0.37 3.2 4.5 6.8 3.3

 EtnGpl 6.03 1.96 5.53 1.26 45.4 14.7 50.0 11.4

 PtdIns 1.17 0.76 0.49 0.40 8.8 5.7 4.4 3.6

 ChoGpl 5.67 1.62 4.29 0.44 42.7 12.2 38.8 4.0
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the sn-2 position may result in less fatty acid turnover in 
the C57BL/6 mice. We did not however, see a significant 
reduction of esterification into C57BL/6 mouse heart phos-
pholipids in any of the fatty acids observed as one would 
expect due to the lack of specificity toward esterified fatty 
acids in group II sPLA2. While the reduction in targeting 
of [1-14C]16:0 and [1-14C]22:6n-3 to EtnGpl and ChoGpl 
may be a result of reduced sPLA2 activity, the lack of a 
reduction in 20:4n-6 incorporation into these mice sug-
gest the decreased activity of sPLA2 may not be critical for 
the changes observed between strains. However, in dener-
vated rat heart, a reduction in general PLA2 activity results 
in decreased 20:4n-6 turnover, which causes a reduction 
of 20:4n-6 incorporation into stable lipid compartments 
[42]. This is in contrast to our data as we observed a broad 
increase in esterification of 20:4n-6 into heart phospholip-
ids in C57BL/6 mice, suggesting the difference in uptake 
and incorporation are not a result of this mutation in sPLA2. 
However, because of the selective processes for the uptake 
of 20:4n-6 from plasma into heart phospholipids [19], we 
might have observed the significant increase in esterifica-
tion into heart phospholipids due to increased 20:4n-6 
availability in the plasma (Fig.  1). Therefore, changes in 
expression of some other gene may be altering uptake and/
or metabolism of 20:4n-6, resulting in the observed differ-
ences between C57BL/6 and SW mice.

C57BL/6 mice are the most commonly used mouse 
strain to study metabolic diseases and they are one of the 
most susceptible to the development of diet-induced obe-
sity and insulin resistance [53–55]. While insulin resist-
ance is most associated with glucose intolerance, lipid 
metabolism is severely affected by this disease. Interest-
ingly, when 129S6 mice are fed a high-fat diet there is 
increased obesity, hyperlipidemia, enhanced insulin secre-
tion, glucose intolerance and fatty liver relative to control 
diet fed mice. However, BALB/c mice fed the same diet 
did not result in disease, but these mice had both enhanced 
insulin secretion and significantly improved glucose toler-
ance, suggesting insulin levels between strains can have a 
significant impact on phenotype [56]. Furthermore, when 
129S6 are fed a high-fat diet, gene expression of acyl-
CoA oxidase 1 (Acox1) is reduced, a protein which traffics 
fatty acids towards β-oxidation, however, under the same 
dietary conditions in BALB/C mice there is no change in 
expression [56]. Interestingly, in an ex vivo working heart 
model, C57BL/6 mice had increased Acox1 expression as 
compared to 129/SvEvTac mouse heart, and as a result had 
decreased incorporation of oleic acid into TAG pools and 
more was utilized for β-oxidation than in 129/SvEvTac 
mouse heart [14]. Collectively, these studies demonstrate 
that observations in one mouse strain are not directly appli-
cable to another strain, and support our supposition that for 

lipid metabolism, observations between mouse strains are 
not interchangeable.

Prior to this study, it was unknown what impact, if any, 
the strain of mouse had on tissue fatty acid uptake and traf-
ficking into individual lipid classes. Hence, we report that 
two commonly used strains of mice had significant differ-
ences in heart fatty acid uptake and trafficking. While each 
of the fatty acids used were altered, the major effect was 
on the uptake and trafficking of 20:4n-6. This is important 
as 20:4n-6 is an important signaling molecule in the heart 
[57–61]. This is an important consideration because there 
is an enormous body of literature in which these mouse 
strains have been used interchangeably. Our data suggest 
that investigators must be careful when comparing results 
involving lipid metabolism between these strains and this is 
more likely applicable for studies involving lipid metabo-
lism between different mouse strains in general.
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