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Abbreviations
ACC	� Acetyl-CoA carboxylase
AMPK	� AMP-activated protein kinase
BMR	� Basic metabolic rate
CLA	� Conjugated linoleic acid
CPT	� Carnitine palmitoyltransferase
ERR	� Estrogen-related receptor
FOXO	� Forkhead box O
GLUT4	� Glucose transporter type 4
IL-6	� Interleukin 6
LPL	� Lipoprotein lipase
MEF2	� Myocyte enhancer factor 2
MHC	� Myosin heavy chain
NFκB	� Nuclear factor kappa-light-chain-enhancer of 

activated B cells
NRF	� Nuclear respiratory factor
PGC-1α	� Peroxisome proliferator-activated receptor γ 

coactivator 1α
PPARδ	� Peroxisome proliferator-activated receptor δ
RMR	� Resting metabolic rate
SIRT1	� Silent information regulator two protein 1
TAG	� Triglyceride
TNF-α	� Tumor necrosis factor α
UCP	� Uncoupling protein

Introduction

The presence of conjugated linoleic acid (CLA, conjugated 
octadecadienoic acid) in milk was first reported in the 1930s, 
but it was not until the 1980s that CLA was shown to be a 
bioactive food component [1]. CLA is formed during the 
biohydrogenation of linoleic acid to stearic acid by rumen 
bacteria [2]. In addition, trans-11 vaccenic acid (another 
metabolite of biohydrogenation) is known to be converted 

Abstract  Conjugated linoleic acid (CLA) has garnered 
special attention as a food bioactive compound that pre-
vents and attenuates obesity. Although most studies on the 
effects of CLA on obesity have focused on the reduction 
of body fat, a number of studies have demonstrated that 
CLA also increases lean body mass and enhances physi-
cal performances. It has been suggested that these effects 
may be due in part to physiological changes in the skeletal 
muscle, such as changes in the muscle fiber type transfor-
mation, alteration of the intracellular signaling pathways 
in muscle metabolism, or energy metabolism. However, 
the mode of action for CLA in muscle metabolism is not 
completely understood. The purpose of this review is to 
summarize the current knowledge of the effects of CLA 
on skeletal muscle metabolism. Given that CLA not only 
reduces body fat, but also improves lean mass, there 
is great potential for the use of CLA to improve mus-
cle metabolism, which would have a significant health 
impact.

Keywords  CLA · Conjugated linoleic acid · Skeletal 
muscle metabolism · Obesity · Lean body mass · Physical 
activity

This manuscript is based on work presented at the 2015 AOCS 
Annual Meeting.

 *	 Yeonhwa Park 
	 ypark@foodsci.umass.edu

1	 Department of Food Science, University of Massachusetts, 
102 Holdsworth Way, Amherst, MA 01003, USA

2	 Division of Biotechnology, Korea University, Seoul 136‑713, 
Republic of Korea

http://crossmark.crossref.org/dialog/?doi=10.1007/s11745-015-4115-8&domain=pdf


160	 Lipids (2016) 51:159–178

1 3

to cis-9,trans-11 CLA by Δ9-desaturase in the tissues [3]. 
Thus, the primary dietary sources of CLA are meats and 
dairy products from ruminants, although the overall CLA 
intake from food is not considered substantial [4]. It has been 
reported that CLA content ranges from 0.34 to 1.07 % of the 
total fat in dairy products, and 0.12 to 0.68 % in raw or pro-
cessed beef [4]. In the United States, the average daily intake 
of CLA from food sources is 104–151 mg and 176–212 mg 
for women and men, respectively [5]. Accordingly, studies 
have reported serum CLA levels of approximately 20 μM, or 
0.1 % of total fatty acids, in subjects with low dairy or meat 
consumption [6, 7], and approximately 50 to 180 μM with 
CLA supplementation of 0.8–3.2 g per day for 2 months [7].

There are at least 28 known CLA isomers. Among 
them, the cis-9,trans-11 and trans-10,cis-12 isomers have 
been the focus of studies on various biological effects of 
CLA [8]. The cis-9,trans-11 isomer is a naturally predomi-
nant isomer, accounting for over 80 % of naturally occur-
ring CLA [4]. In addition to the cis-9,trans-11 isomer, the 
trans-10,cis-12 isomer is found at very low levels in nat-
ural foods, but, when CLA is produced by chemical syn-
thesis, this isomer is formed in significant amounts [8–10]. 
Currently, most commercial CLA preparations comprise 
almost equal amounts of cis-9,trans-11 and trans-10,cis-12 
isomers, up to >90 % of total CLA, and these preparations 
are referred to as CLA mixtures or 50:50 mixtures.

CLA contains a trans configuration, and as there are 
known negative health issues associated with trans fat, 
some clarification with regard to CLA and  trans fatty acids 
is warranted. The definition of trans fat labeling by the US 
Food and Drug Administration (FDA) is “all unsaturated 
fatty acids that contain one or more isolated double bonds in 
a trans configuration” [11]. It is clear, therefore, that CLA is 
excluded from "trans" fat product labeling, as it has a trans 
double bond that is conjugated, not isolated. Furthermore, 
in July 2008, the US FDA approved CLA mixtures for 
GRAS (generally recognized as safe) status in specific food 
categories, including fluid milk, yogurt, meal-replacement 
shakes, nutritional bars, fruit juices, and soy milk. Thus, it is 
expected that there will be an increase in CLA in foodstuffs, 
resulting in increased CLA intake for human health benefits.

CLA and Body Composition

Since 1997, with the discovery of the effects of CLA on 
body composition in a mouse model [12], numerous studies 
in various mammalian models have reported the effects of 
CLA supplementation on the modulation of body composi-
tion by reducing body fat and/or increasing lean body mass 
[8–10, 13–16]. While most studies in CLA have focused 
on the reduction of body fat, there is significant evidence 
supporting a concurrent increase in lean body mass, body 

proteins, or specific skeletal muscle mass [5, 8, 16, 17]. 
CLA was also confirmed to increase total protein content 
(not only %) as a representation of lean mass in animals 
[12]. Tables  1 and 2 summarize studies that have investi-
gated changes in body composition in rodents. Of the two 
major isomers, the trans-10,cis-12 CLA isomer signifi-
cantly correlates with this effect [18–21]. Some researchers 
have suggested that CLA supplementation causes re-parti-
tioning of the body composition, with fewer adipose depots 
and greater lean mass [22]. This observation was further 
supported in a pig model, where a CLA mixture fed to pigs 
at levels between 0.25 and 2 % of their diet acted as a re-
partitioning agent to induce a reduction in back fat and an 
increase in lean body mass [23–27].

To date, there have been approximately 100 human stud-
ies investigating the regulation of body fat by CLA, and 
Table  3 summarizes only those in which changes in both 
body fat and lean body mass were reported. Compared to 
the results observed in animal models, CLA intervention 
studies in humans has yielded less substantial and more 
inconsistent results (Table  3). Among the clinical trials 
investigating the effects of CLA on both body fat and lean 
mass, five publications reported changes in both [28–32], 
while two studies reported increases in lean body mass 
with no effect on body fat [33, 34]. Schoeller et al. [35] 
performed a meta-analysis of 18 independent clinical stud-
ies assessing the effect of CLA on lean body mass, and 
concluded that CLA supplementation led to a relatively 
rapid onset of increased lean body mass, although the total 
increase was not remarkable (less than 1 %). This conclu-
sion is further supported by a study of CLA in a mouse 
model [36], in which an increase in lean muscle mass pre-
ceded a reduction in fat mass. These observations suggest 
a potentially significant role of the muscle in the effects of 
CLA on body composition.

Mechanism of CLA‑Mediated Change in Body 
Composition

Multiple mechanisms have been suggested to explain the 
effects of CLA on body composition [16, 17, 37]. These 
include CLA-mediated energy modulation, including 
reduced energy intake and enhanced energy expenditure, 
along with the inhibition of fat accumulation in adipose 
tissue.

The balance between energy intake and energy expendi-
ture is important for proper weight regulation. Energy 
intake is from the food consumed, while energy expendi-
ture is the sum of the basal metabolic rate (BMR), thermo-
genesis, and physical activity. First, with regard to CLA and 
energy intake, some studies have demonstrated that CLA-
fed mice ate less food, whereas other studies have reported 
inconsistent results (Tables 1, 2) [38–43]. However, some 
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have suggested that the temporary reduction in food intake 
as seen with a CLA-containing diet may be due to its palat-
ability when CLA is used as a free fatty acid. Moreover, in 
a study using a pair-feeding comparison, changes in body 
composition occurring with CLA were shown to be inde-
pendent of reduced food intake [44], and human clinical 
trials showed no effect of CLA supplementation on food 
intake [29, 30, 45–49]. These human studies all used self-
reported food intake methods, which calls into question 

their validity [50]. Nevertheless, despite the lack of conclu-
sive evidence regarding the relationship between CLA and 
dietary intake in humans, it is unlikely that the reduction in 
food intake is the main mechanism of action for the change 
in body composition seen with CLA.

Enhanced energy expenditure is one key to controlling 
body composition. Several animal studies have suggested 
that CLA increases overall energy expended [43, 51–58]. 
In clinical trials, CLA supplementation was shown to 

Table 2   Summary of rat studies on conjugated linoleic acid (CLA) and body composition

a  F female, M male
b  Mixture, a mixed isomer of cis-9,trans-11 and trans-10,cis-12; c9t11, cis-9,trans-11 CLA isomer; t10c12,trans-10,cis-12 CLA isomer
c  Dosage (%) denotes a designated weight percentage of CLA in diet
d  BW body weight, BFM body fat mass, LBM lean body mass; – no change, ↑ increase; ↓ decrease. All changes are based on significant differ-
ences between or within groups as reported in publications
e  TAG triglyceride

References Rat CLA supplementation Resultsd Muscle metabolism

Strain Gendera Formb Dosage 
(%)c

Duration BW BFM LBM Food 
intake

Energy 
expendi-
ture

Biomarkerse

Stangl et al. 
[22]

SD M Mixture 3.0 7 weeks ↓ ↓ ↑

Azain et al. 
[175]

SD F Mixture 0.25/0.5 1, 5 and 
7 weeks

– ↓ – –

Sisk et al. 
[176]

Zucker M Mixture 0.5 5 and 
8 weeks

– – –

Kim et al. 
[177]

SD M Mixture 0.5-1.0 9 weeks – – –

Yamasaki et 
al. [178]

SD M Mixture 1.5 3 weeks – ↓ –

Henriksen et 
al. [179]

Zucker F Mixture/
c9t11/
t10c12

0.42 g/day 3 weeks ↓ by Mix-
ture and 
t10c12

↓ by 
t10c12

– ↓ protein 
carbonyl/

↓ intra-
muscular 
TAG/

↑ glucose 
uptake by 
Mixture 
and 
t10c12

Sanders et 
al. [180]

Zucker F Mixture/
c9t11/
t10c12

0.42 g/day 3 weeks ↓ by Mix-
ture and 
t10c12

– –

Botelho et 
al. [181]

Wistar M Mixture 2.0 6 weeks – ↓ ↑ ↑

Ogborn et 
al. [182]

Han: 
SPRD-
cy

F + M Mixture 1.0/2.0 12 weeks – ↓ –

Roy et al. 
[183]

SD M Mixture 1.0 8 weeks – – –

DeGuire et 
al. [184]

SD F + M Mixture 1.0 16 weeks – – –

de Almeida 
et al. [185]

Wistar M Mixture 1.5 9 weeks – – –
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increase BMR (as resting metabolic rate, RMR) [28, 48, 
59, 60], although other studies found no influence of CLA 
on BMR, regardless of changes in body composition [33, 
61–63].

As part of the increased expenditure of energy, CLA sup-
plementation may increase thermogenesis, as evidenced by 
the upregulation of uncoupling proteins (UCPs) expressed 
in various tissues, such as the adipose, liver, and the skel-
etal muscle in mice and rats [38, 40, 55, 56, 64–66]. UCP1 
through UCP5 are mitochondrial proteins involved in the 
combustion of stored or excess energy into heat. They are 
expressed in distinct tissues in the body, and are responsible 
for adaptive thermogenesis. Thus, an increase in UCPs by 
CLA suggests that CLA may increase energy expenditure 
by enhancing thermogenesis [67]. Likewise, physical activ-
ity also contributes to the overall expenditure of energy. 
Studies in rodents have reported that CLA supplementation 
increased energy expenditure in part by increasing the level 
of physical activity [43, 56, 68], although human studies 
are inconsistent in this regard [59, 61, 69].

In addition, fatty acid β-oxidation may contribute to 
reducing body fat mass by using fat as an energy source, 
rather than storing it in the body. Increased fat oxidation 
in CLA-fed animals has been reported, as measured either 
by reduced respiratory quotient or by increased activ-
ity and/or the expression of carnitine palmitoyltransferase 
1 (CPT-1) in the skeletal muscle [12, 21, 41, 55, 56, 68, 
70–74]. Intriguingly, Close et al. [60] reported that human 
subjects who received supplements with 4 g of CLA mix-
ture for 6 months had significantly increased fat oxidation 
and energy expenditure during sleep. In another study, 
CLA was found to potentiate adipocyte apoptosis, reduce 
fat uptake, and/or modulate adipokine production, all of 
which collectively contributed to the effective reduction 
of fat accumulation [17]. At the same time, CLA increased 
lean mass, which is an important observation, suggesting 
that CLA targets skeletal muscle metabolism. The potential 
effects of CLA on skeletal muscle metabolism, however, 
have been less investigated.

CLA and Skeletal Muscle Metabolism

Skeletal muscle typically accounts for nearly 40 % of total 
body mass, and acts as a significant regulator in overall 
energy metabolism [75]. Muscle metabolism is a term used 
to describe the complex biochemical reactions associated 
with skeletal muscle function and development.

Overview of Muscle Energy Metabolism

The process of energy production for skeletal muscle is 
tightly regulated by the type, intensity, and duration of 

muscle exercise [76, 77]. Glycolysis is the catabolic pathway 
for glucose in the cytosol under both anaerobic (absence of 
oxygen) and aerobic (presence of oxygen) conditions. Aero-
bic glycolysis is an efficient means of producing adenosine 
triphosphate (ATP) through mitochondrial oxidative phos-
phorylation, while anaerobic glycolysis produces an energy 
supply with a much lower yield (36–38 ATPs produced by 
aerobic glycolysis vs. 2 ATPs by anaerobic glycolysis). Dur-
ing high-intensity exercise, anaerobic metabolic pathways 
are important, as aerobic metabolism alone may not be 
adequate to meet energy demands, especially when there is 
insufficient oxygen supply [78–80]. In contrast, low-inten-
sity endurance exercise (requiring less than 60 % of maximal 
oxygen uptake) such as jogging and swimming consumes 
glucose and fatty acids as the primary energy sources dur-
ing the first hour, and then relies on stored intramuscular 
and adipose tissue triglycerides for energy [81]. Thus it is 
believed that prolonged endurance exercise is the more effi-
cient way to consume stored body fat.

Adaptive Responses of Skeletal Muscle

The skeletal muscle tissue also demonstrates metabolic 
plasticity in response to altered external and internal condi-
tions, such as nutrient deprivation during fasting or calorie 
restriction and contractile activity including exercise [82]. 
One of the adaptive responses of the muscle is the ability 
to change the fiber type to meet energy demands. Muscle 
fiber in humans is composed of three myosin heavy chain 
(MHC) isoforms: MHC I, MHC IIa, and MHC IIx/d or IIb. 
MHC I are slow-twitch type I fibers, which have greater 
mitochondrial content, oxidative capacity, and resistance 
to fatigue, using fatty acids as a main energy source. Fast-
twitch type II fibers (especially type IIb) are classified as 
glycolytic fibers, since they use glucose and phosphocre-
atine as primary energy sources. Type IIa is an intermediate 
type between type I and type IIb [83]. In response to exer-
cise, the skeletal muscle remodels its fiber type between 
oxidative slow-twitch and glycolytic fast-twitch [84] in 
correlation with the contractile properties and the physi-
ological and metabolic characteristics [85]. For example, 
an endurance exercise triggers fiber type remodeling from 
glycolytic fast-twitch to oxidative slow-twitch [84]. These 
adaptations in the skeletal muscle are accompanied by an 
increase in mitochondrial biogenesis, with the alteration 
of mitochondrial volume (content per gram of tissue) and 
composition (protein-to-lipid ratio in the inner mitochon-
drial membrane) [86].

Molecular Responses of Skeletal Muscle Metabolism

A number of regulators participate in the above-described 
adaptive responses in skeletal muscle. Among them, 
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AMP-activated protein kinase (AMPK) is the prime ini-
tial sensor of fuel and energy status in the skeletal muscle 
(Scheme 1) [87]. An increase in intracellular AMP concen-
tration causes a shift to an increased AMP/ATP ratio, and 
AMPK is then activated to provide the needed energy in 
the cell. An activated AMPK deactivates acetyl-CoA car-
boxylase (ACC) by phosphorylation, inhibits the synthe-
sis of malonyl-CoA from two acetyl-CoAs, and results in 
the activation of carnitine palmitoyltransferase 1 (CPT1), a 
rate-limiting enzyme for fatty acid β-oxidation in mitochon-
dria. AMPK also induces metabolic changes including an 
increase in glucose uptake by the induction of glucose trans-
porter type 4 (GLUT4), translocation in the skeletal muscle, 
and a decrease in the rate of glycogen synthesis through 
the phosphorylation of glycogen synthase [82]. Similar to 
AMPK, sirtuin 1 (SIRT1, a conserved nicotinamide adenine 
dinucleotide [NAD]+-dependent deacetylase) acts as a sen-
sor of metabolic stimuli (such as stress, starvation, or calorie 
restriction) [88]. SIRT1 also regulates several transcriptional 
factors (including protein 53, forkhead box O, and nuclear 
factor κ-light-chain-enhancer of activated B cells, NFκB), 
and is known to be involved in longevity [88]. Both AMPK 
and SIRT1 may coherently mediate the response at the cellu-
lar level to the metabolic stimuli in the skeletal muscle [89].

Peroxisome proliferator-activated receptor γ coactivator 
1α (PGC-1α), a downstream target of AMPK and SIRT1, 
regulates several downstream transcription factors, includ-
ing peroxisome proliferator-activated receptor δ (PPARδ), 
nuclear respiratory factor-1 and -2 (NRF), estrogen-
related receptor α (ERRα), and myocyte enhancer factor 
2 (MEF2). These factors are important in initiating mito-
chondrial biogenesis and inducing fiber type transformation 

in the skeletal muscle [90, 91]. Further support for the 
significance of PGC-1α was provided in a study reporting 
that ectopically expressing PGC-1α in the skeletal muscle 
of transgenic mice induced the muscle fiber conversion of 
glycolytic fast-twitch type II fibers into oxidative slow-
twitch type I fibers [92]. In a similar manner, the overex-
pression of PPARδ (a downstream regulator of PGC-1α) 
resulted in the development of slow-twitch type I fibers 
in skeletal muscle [93, 94]. The signaling cascade AMPK 
to PPARδ via PGC-1α is an important metabolic pathway 
involved in adaptive metabolism in the skeletal muscle. 
As such, we have focused primarily on this pathway to 
uncover the potential mechanism of CLA in skeletal mus-
cle metabolism.

Overall Effects of CLA on Skeletal Muscle Metabolism

Previous studies using mouse models have clearly sug-
gested that CLA is associated with a significant quanti-
tative increase in lean mass [12, 95]. In addition, CLA 
supplementation up-regulates CPT1 and UCP2 from the 
skeletal muscle, suggesting that an overall increase in 
energy expenditure and fatty acid oxidation with CLA may 
contribute to the reduction in fat accumulation [52, 56, 95, 
96]. CLA has also been reported to prevent age-associated 
skeletal muscle loss in aged rodents [19, 97]. The preven-
tive role of CLA in muscle is further supported by our 
results in Fig. 1 with animals known to develop inactivity-
induced obesity with muscle dystrophy. When a cognate 
of CLA (conjugated nonadecadienoic acid, known to have 
biological effects similar to those of CLA) was given to 
these animals, we observed an increase in voluntary activ-
ity and a reduction in body fat, as well as an increase in 
muscle size, suggesting that this treatment may have pre-
vented muscle dystrophy typically associated with these 
animals [56, 98].

Effects of CLA on Adaptive Muscle Responses

There is currently limited evidence demonstrating the role 
of CLA in skeletal muscle metabolism [19, 21, 66, 99–
102]. Supplementation of 1.2–2.0  % CLA in the diet of 
pigs was found to significantly increase expression levels 
of oxidative slow-twitch type I fiber, but did not increase 
the expression of glycolytic fast-twitch type IIb and IIx 
fibers in the pig’s skeletal muscle [103]. However, fiber 
type changes are dependent on the growth phase in pigs 
[104]. Similarly, Parra et al. [100] observed no CLA effect 
on PPARδ and muscle fiber change in mice. Given these 
limited studies, it cannot be conclusively stated that CLA 
promotes muscle fiber type transformation. However, along 
with the observation that CLA is linked to improved max-
imum endurance capacity in mice, it is highly likely that 

EXERCISE

AMP:ATP

PPAR

PGC-1

AMPK

Mitochondria 
biogenesis

Lipid 
metabolism

SIRT1

Fiber type  
transformation

CLA

Scheme  1   Proposed mechanism of CLA on muscle metabolism. 
AMPK AMP-activated protein kinase, CLA conjugated linoleic acid, 
SIRT1 silent information regulator two protein 1, PGC-1α peroxi-
some proliferator-activated receptor γ coactivator 1α, PPARδ per-
oxisome proliferator-activated receptor δ (Used with permission of 
UMass Amherst)
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CLA influences muscle fiber type transformation [21, 68, 
105, 106]. The effect of CLA on physical activity is further 
discussed below.

Effects of CLA on Molecular Responses of Muscle 
Metabolism

Several studies have reported the effects of CLA on the bio-
chemical alteration of several molecular markers of mus-
cle metabolism [19, 21, 66, 99–102]. CLA treatment was 
shown to activate AMPK in murine skeletal muscle cells 
[107–110], which negatively regulated ACC and enhanced 
fatty acid β-oxidation [107, 110]. One study reported that 
the cis-9,trans-11 CLA isomer activated AMPK at lower 
concentrations (~50 μM), while the trans-10,cis-12 isomer 
gradually activated AMPK in a dose-dependent manner up 
to 120 μM, and then plateaued [108]. However, the effect 
of CLA on SIRT1 activity in the skeletal muscle is cur-
rently not known [109].

CLA treatment did not affect the activity of PGC-1α, a 
primary regulator in mitochondrial biogenesis, even when 
the mitochondrial content in the human skeletal mus-
cle cells was increased by CLA [101]. Similarly, CLA-
fed mice and rats demonstrated no significant differences 
in PGC-1α compared to control groups [66, 100]. On the 
other hand, CLA treatment significantly up-regulated 
PGC-1α in murine skeletal muscle cells [109], support-
ing the contention that CLA supplementation significantly 
up-regulates molecular biomarkers such as succinate dehy-
drogenase, cytochrome c oxidase, superoxide dismutase 2, 
catalase, and glutathione peroxidase in the skeletal muscle, 

which is related to increased ATP production and thermo-
genesis via improved oxidative phosphorylation and anti-
oxidative capacity in the rodent models [19, 66]. These 
results suggest that further confirmation is needed as to 
whether CLA treatment is associated with mitochondrial 
biogenesis through PGC-1α. Thus, further investigation is 
required, particularly in humans, for a better understand-
ing of the correlation between CLA supplementation and 
muscle fiber type transformation. In addition, CLA—in 
particular, trans-10,cis-12—increased PPARδ expression in 
murine muscle cells and mice [21, 102]. While these results 
suggest that CLA may target muscle metabolism, no mech-
anistic studies have been completed to determine whether 
CLA directly or indirectly influences any of these molecu-
lar targets.

Effect of CLA on Physical Activity

Animal studies using CLA and exercise are summarized 
in Table  4. Studies using mice showed consistent effects 
of reduced body fat or increased lean mass. Moreover, 
there was a significant improvement in the exercise out-
come with CLA treatment (Table  4) [21, 68, 105, 106, 
111]. Specifically, Kim et al. [21] reported that the trans-
10,cis-12 isomer was responsible for this effect, but not 
the cis-9,trans-11 isomer. This is consistent with the role 
of the trans-10,cis-12 isomer as the active isomer in body 
fat reduction [18]. In contrast, studies in rats observed no 
additional or synergistic effects of CLA treatment and exer-
cise training on endurance capacity and lean body mass 
[43, 112]. This discrepancy was previously recognized as 

Fig. 1   A cognate of CLA, conjugated nonadecadienoic acid (CNA), 
significantly prevented muscle dystrophy in animals with inactivity-
induced obesity. a The data show that CNA supplementation (light 
gray bars) resulted in a reduced number of smaller muscles (less than 
700 μm) and increased number of medium-sized muscles (between 
1500 and 2100 μm) compared to controls (black bars). b CNA-fed 
animals had significantly increased average muscle size compared to 
Nhlh-2 knockout controls. *Significantly different at P  <  0.05. Six-
week-old female Nhlh-2 KO mice were fed either a control or CNA-
containing diet (0.1 % w/w of diet) for 8 weeks [semi-purified pow-

der diet, TD07518 (Teklad; Harlan Laboratories/Envigo, Madison, 
WI, USA) with "vitamin-free" tested casein to avoid the naturally 
occurring CLA in casein was used]. The diet consisted of an AIN-93-
based diet with 20 % fat total as soybean oil. The thigh muscle, vas-
tus lateralis, was frozen in liquid nitrogen, and frozen muscles were 
cut into 10-μm section using a Cryotome. The sections were stained 
with hematoxylin and eosin in order to visualize the muscle, and 
muscle size was measured (>500 fibers) with ImageJ software (NIH). 
Numbers are mean ± S. E (n = 3)
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a consequence of the greater sensitivity of mice than of 
rats to CLA, partly due to differences in the administered 
CLA dose on a weight basis and/or differences in the phys-
iology of animals (in particular, male rats continuously 

gain weight, and no significant effects of CLA have been 
reported for body fat) [113].

There are currently 17 CLA human intervention studies 
reporting on CLA with exercise, as summarized in Table 5. 

Table 4   Summary of studies using conjugated linoleic acid (CLA) and exercise regimen in animals

a  F female, M male
b  Mixture, a mixed isomer of cis-9,trans-11 and trans-10,cis-12; c9t11, cis-9,trans-11 CLA isomer; t10c12,trans-10,cis-12 CLA isomer
c  Dosage (%) denotes a designated weight percentage of CLA in diet
d  BW body weight, BFM body fat mass, LBM lean body mass; – no change, ↑ increase, ↓ decrease. All changes are based on significant differ-
ences between or within groups as reported in publications
e  EE energy expenditure, RER respiratory energy ratio, ↔ no change
f  CPT1 carnitine palmitoyltransferase 1, LPL Lipoprotein lipase, PPARδ peroxisome proliferator-activated receptor δ, UCP2 uncoupling protein 
2

References Animal CLA supplementation Resultsd Exercise 
type

Muscle metabolism Exercise 
outcome

Strain Gendera Formb Dosagec Duration BW BFM LBM Energy 
expendi-
turee

Biomark-
ersf

Mizunoya 
et al. [68]

BALB/c
Mice

M Mixture 0.5 % 1 week – ↓ – Endurance 
(swim-
ming and 
running)

↓ RER
↑ Fat 

oxida-
tion

↑ LPL ↑

Bhattacha-
rya et al. 
[57]

BALB/c
Mice

M Mixture 0.4 % 14 weeks ↓ ↓ ↑ Endurance 
(running)

↔ EE

Di Felice 
et al. 
[197]

ICR Mice M Mixture 0.425 mg/
day

6 weeks – ↑ Endurance 
(running)

↑ Muscle 
hyper-
trophy

Banu et al. 
[198]

C57BL/6 
Mice

F Mixture 0.5 % 10 weeks ↓ ↓ ↑ Endurance 
(running)

Zhang et 
al. [199]

ICR Mice M Mixture 0.5 % 18 weeks ↓ Endurance 
(swim-
ming)

↔

Kim et al. 
[105]

BALB/c
Mice

M Mixture 1.0 % 10 weeks ↓ Endurance 
(running)

↑

Kim et al. 
[21]

129 Sv/J
Mice

M c9t11/
t10c12

0.5 % 6 weeks ↓ ↓ ↑ Endurance 
(running)

↑ CPT1/↑ 
UCP2/↑ 
PPARδ

↑ by t10c12

Hur et al. 
[111]

ICR Mice F Mixture 1.0 % 6 weeks ↓ ↓ Endurance 
(running)

↑

Barone et 
al. [106]

BALB/c
Mice

M Mixture 0.5 % 6 weeks ↓ ↑ Endurance 
(running)

↑ Testos-
terone

↑

Shen et al. 
[200]

129 Sv/J
Mice

M t10c12 0.1 % 7 weeks ↓ ↓ Endurance 
(running)

Mirand et 
al. [201]

Wistar 
Rats

M Mixture/
c9t11/

t10c12

1.0 % 6 weeks – – – Endurance 
(running)

Faulcon-
nier et al. 
[202]

Wistar 
Rats

M Mixture/
c9t11/

t10c12

1.0 % 6 weeks – ↓ Endurance 
(running)

Mirand et 
al. [43]

Wistar 
Rats

M Mixture/
c9t11/

t10c12

1.0 % 6 weeks – ↑ by 
Mix-
ture

Endurance 
(running)

Salgado et 
al. [112]

Wistar 
Rats

F + M Mixture 0.5 % 10 weeks ↓ ↓ ↑ Endurance 
(swim-
ming)
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Among them, ten studies tested exercise outcomes [46, 
61, 114–122]. Overall, the effect of CLA supplementation 
on exercise outcome varied across studies; six reported 
positive results [46, 61, 114, 116, 117, 120], while oth-
ers reported no difference [115, 118, 119, 121, 122]. Four 
clinical trials evaluated the effect of CLA supplementation 
on physical activity, without a regular exercise regime [30, 
48, 123, 124]. Among them, one study reported improved 
physical activity with CLA treatment over a period of 
3  months [123]. In general, the studies were relatively 
short-term in nature (with the exception of two, they were 
less than 12 weeks in length), and thus no conclusion can 
be drawn as to whether the lack of effect was due to the 
limited supplementation periods or the ineffectiveness of 
CLA.

Four studies in humans evaluated the effects of co-
supplementation of CLA with other supplements, such as 
creatine monohydrate, chromium picolinate, whey protein, 
or amino acids, along with exercise training [46, 117, 118, 
125]. Two of these studies used CLA and creatine mono-
hydrate for short- (5 weeks) or long-term (6 months) dura-
tions, accompanied by resistance training, and reported 
increased lean body mass and improved strength compared 
to the control group [46, 117].

Interestingly, Macaluso et al. [126] conducted a clini-
cal trial to investigate the effect of CLA with resistance 
training on serum testosterone levels. The authors reported 
significantly increased serum testosterone and resistance 
exercise capability with CLA supplementation, with no 
significant change in body weight, fat mass, or lean body 
mass. Others have reported that testosterone can improve 
mitochondrial biogenesis and total energy expenditure, and 
that CLA supplementation was found to promote endur-
ance capacity in trained mice via the upregulation of tes-
tosterone biosynthesis [106, 127]. Thus, it is possible that 
CLA improves exercise outcome by modulating testoster-
one; however, the Macaluso et al. [126] study may have 
been too short to have observed changes in body composi-
tion due to CLA. Generally, indications are that CLA may 
influence muscle metabolism, but mechanistic studies are 
currently lacking.

Potential Health Concerns of CLA

Based on the results of animal and human studies, four 
aspects of CLA supplementation are of concern: insulin 
sensitivity, oxidative stress, maternal milk fat, and liver 
function. These topics have been previously reviewed in 
detail [5, 14, 15]. Among these potential health concerns, 
the effects of CLA on glucose metabolism may affect the 
potential role of CLA in skeletal muscle metabolism, and 

effects are inconsistent in both animal and human studies. 
However, evidence suggests that the long-term use of CLA, 
particularly as a mixture of the two main isomers, will 
likely have no adverse influence on glucose metabolism [5, 
45, 128].

Other health concerns associated with CLA do not 
directly involve the skeletal muscle metabolism, although 
this aspect is important in understanding the health impact 
of CLA. Reports of human studies have consistently 
linked CLA supplements to increased oxidative markers, 
particularly isoprostanes, but not to other biomarkers [5, 
129, 130]. It has been suggested that CLA itself might be 
metabolized to structurally similar isoprostanes that cannot 
be distinguished from the isoprostanes used as oxidative 
markers [131, 132].

CLA is known to reduce body fat, and CLA supplemen-
tation has been reported to significantly reduce milk fat, 
particularly in cows [133, 134]. A limited number of human 
studies have reported none or minimal change in milk fat 
content after short-term CLA supplementation (less than 
5  days) [135–137], and in light of the primary difference 
in milk fat origin between ruminants and humans, CLA is 
expected to have minimal effects on human milk fat [133, 
134]. The long-term effects of CLA on human milk fat 
have yet to be determined.

In animal studies, there have been consistent obser-
vations of an enlarged liver with CLA feeding, but mini-
mal changes have been reported in human studies [8, 65, 
138–142]. While it is likely that the effect of CLA on the 
enlarged liver is specific to rodents, three human cases of 
hepatitis have been associated with CLA [143–145]. Thus, 
close monitoring of CLA supplementation with regard to 
the health of the liver will be important, particularly with 
long-term use.

Conclusion

To date, most mechanistic studies of the effects of CLA 
on body composition have focused on lipid metabo-
lism in the adipose tissue. At the same time, a growing 
number of studies have highlighted the importance of 
CLA with respect to skeletal muscle metabolism, with 
effects including increased energy expenditure and 
enhanced physical activity. However, mechanistic stud-
ies investigating the mechanism by which CLA modu-
lates skeletal muscle metabolism are very preliminary, 
and further investigation of the mechanistic effects of 
CLA on the skeletal muscle metabolism, including mito-
chondrial biogenesis and muscle fiber type transforma-
tion, is needed. We expect that knowledge of the effect 
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of CLA on muscle metabolism will help to elucidate the 
preventive effects of CLA on obesity, along with current 
knowledge of its effects on adipose tissue. This knowl-
edge will also support the potential application of CLA 
in the prevention of age-associated muscle loss, such as 
sarcopenia.
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