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Abstract Investigations on the biosynthesis of bacterial

triterpenoids of the hopane series led to the unexpected

discovery of an alternative mevalonate independent path-

way for the formation of isoprene units. Methylerythritol

phosphate, already presenting the C5 branched isoprene

skeleton, is the key intermediate. This pathway was inde-

pendently characterized in ginkgo embryos for the

formation of diterpenoids. It is present in most bacteria and

in the plastids of all organisms belonging to phototrophic

phyla. The key steps of the discovery and elucidation of

this metabolic route are presented in this review.
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Abbreviations

DMAPP Dimethylallyl diphosphate

DX 1-Deoxy-D-xylulose

DXP 1-Deoxy-D-xylulose 5-phosphate

HMBPP (E)-4-Hydroxy-3-methylbut-2-enyl diphosphate

IPP Isopentenyl diphosphate

ME 2-C-methyl-D-erythritol

MEcPP 2-C-methyl-D-erythritol 2,4-cyclodiphosphate

MEP 2-C-methyl-D-erythritol 4-phosphate

MVA Mevalonic acid

Introduction

It was a great honor for me to be selected as a recipient

of the George Schroepfer Jr. Award. I met George

Schroepfer only once. This was in Japan in August 1996

at an International Symposium on Isoprenoid Bio-

chemistry at Zao, in the mountains close to Sendai.

I remember well the discussion we had on the use of

silver ion high-performance-liquid chromatography for

sterol separation that he pioneered with spectacular

results [1]. We had previously corresponded regularly

concerning topics of mutual interest. When I started my

PhD thesis in 1970, I was working with Guy Ourisson

and Pierre Benveniste on sterol 1 (Fig. 1) biosynthesis in

maize [2], in the non-photosynthetic euglenoid Astasia

longa [3] and in parasitic non-phototrophic higher plants

such as broomrape and dodder [4]. At that time, Geor-

ge’s work in the field of sterol isolation, identification

and biosynthesis was quite familiar to me. Since this

early work, I kept my interest in this field during my

post-doctoral work with Carl Djerassi on sterols from

marine organisms [5–7] and later in Mulhouse, my first

professor position, when we were working on the poorly

investigated sterol biosynthesis in lower eukaryotes, such

as the soil amoebae Acanthamoeba and Naegleria [8, 9]

or in the obligate downy mildew wine parasite Plasmo-

para viticola [10]. All knowledge earned in the field of

sterol biosynthesis proved fruitful when I switched to

investigations of other isoprenoid series, particularly to

the chemistry and biochemistry of bacterial triterpenoids

of the hopane series. I did not know that I would come

back to plant isoprenoids, including sterols, about

20 years later when we discovered a novel pathway for

the formation of isoprene units.

M. Rohmer (&)

Institut de Chimie, Université Louis Pasteur/CNRS,
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Bacterial Biohopanoids

Geohopanoids probably represent the most abundant nat-

ural products on earth. This pentacyclic triterpenoid series

is found in the organic matter of all sediments, independent

of their age, origin or nature [11]. They represent the

molecular fossils of a long overlooked family of bacterial

metabolites. Triterpenes of the hopane series are rarely

found in plants. They are more common in lichens, mosses

and especially ferns. In contrast to the higher plant hopa-

noids, which are derived from the cyclization of

oxidosqualene and possess an oxygenated function at C-3,

hopanoids from lower eukaryotes are mostly derived from

the direct cyclization of squalene and are accordingly

devoid of such an oxygen function. Diploptene 2 (Fig. 1), a

simple C30 hopanoid, was the first triterpene found in

bacteria in the early 1970s. The major triterpenoids in all

bacteria producing hopanoids were, however, always the

C35 bacteriohopane derivatives (e.g. 3a, 3b, Fig. 1) [12].

Their discovery was rather fortuitous, by looking at the

compounds responsible for the alignment of the cellulose

microfibrils secreted by ‘Acetobacter xylinum’ [13, 14].

This family of natural products, proved to be first precur-

sors for the ubiquitous geohopanoids, presented an unique

feature in natural product chemistry: an additional poly-

functionalized C5 n-alkyl side-chain is linked by a carbon/

carbon bond to one of the methyl group of isopropyl group

of the hopane skeleton [15]. A huge structural diversity

characterizes the bacterial biohopanoids. Modifications of

the triterpene hopane skeleton include the introduction of

double-bonds at C-6 and/or C-11 [16, 17], of an additional

methyl group at C2b, C-2a or C-3b [18–21] or the presence

of the two diastereomers at C-22 [15]. The side chains may

differ by the number of the hydroxy groups, the replace-

ment by the terminal C-35 hydroxy group by an amino

group, the presence of polar moieties linked to the terminal

hydroxy group (hexose derivatives linked via a glycosidic

bond or carbapseudopentose linked via an ether bond) or to

the terminal amino group (amino-acids or fatty acids via a

peptide bond) [22]. Usually hopanoids are present in

eubacterial cells in concentrations similar to those found

for sterols in eukaryotes [12] and suitable for 13C-NMR

biosynthetic studies.

Like cholesterol 1a (Fig. 1), biohopanoids are amphi-

philic molecules with a flat, rigid skeleton due to the all

trans ring junctions of the pentacyclic triterpene ring system

and a length corresponding to the half of the thickness of a

phospholipid bilayer. Such structural similarities suggested

similar physiological roles. Indeed, in membrane models,

hopanoids behave much like sterols, modulating the fluidity

and the permeability of phospholipid mono and bilayers

[23, 24]. This interpretation is corroborated by in vivo data.

The hopanoid concentration increases with temperature in

the thermoacidophile Alicyclobacillus acidocaldarius,

counterbalancing the destabilizing effect of temperature

[25]. In Zymomonas mobilis, a bacterium that can tolerate

high ethanol concentrations up to 13% in its culture medium

[26], the extremely high hopanoid concentrations (30 mg/g,

Fig. 1 Isoprenoids. 1a
cholesterol, 1b sitosterol, 2
diploptene, 3a
bacteriohopanetetrol, 3b
aminobacteriohopanetriol, 4
ubiquinone, 5 menaquinone, 6
plastoquinone, 7 ginkgolide, 8
phytol, 9 b-carotene
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dry weight) has been proposed as being involved in the

membrane stabilization in the presence of the solvent. Other

roles may be assigned to hopanoids. In the cyst cells of the

nitrogen-fixing Frankia sp., the high hopanoid con-

centrations may protect the sensitive nitrogenase from

degradation by atmospheric oxygen [27]. In Streptomyces

coelicolor, hopanoid biosynthesis is strongly linked to

aerial growth and sporulation, these triterpenoids being

nearly undetectable under vegetative growth conditions in

submersed cultures [28].

The chemistry and biochemistry of the bacterial hopa-

noids turned out to be a rich topic. Hopanoid biosynthesis

is a mine of yet undisclosed enzyme reactions involved in

the linkage of the side-chain to the triterpene moiety and in

the methylation of the A ring. The most surprising conse-

quence was however, the non-programmed and non-

programmable discovery of a novel pathway for the

formation of the isoprene units.

The biosynthesis of isopentenyl diphosphate (IPP 18,

Fig. 2) and dimethylallyl diphosphate (DMAPP 19), the

universal precursors of isoprene units had already been

elucidated in the 1950s, essentially using systems prepared

from liver and from yeast, and resulted in the description of

the mevalonate (MVA 15) pathway (Fig. 2b). This path-

way is also involved in the formation of plant triterpenoids,

including sterols. MVA was believed to be the universal

precursor of isoprene units despite many contradictory

observations in the field of the biosynthesis of the isopre-

noids from bacteria and especially plants (e.g. the

biosynthesis of mono and diterpenes, carotenoids) [29].

Hopanoid Biosynthesis: First 13C-Labeling Experiments

and Discovery of the Methylerythritol Phosphate

(MEP) Pathway

The first incorporations of 13C-labeled precursors into

bacterial hopanoids were designed in order to determine the

origin of the C5 side-chain linked to the triterpenes moiety

[30]. For this purpose, selected bacteria were grown on a

synthetic mineral medium with acetate as the sole carbon

and energy source. These growth conditions differed from

those of most former experiments where the labeled carbon

source was usually administered in a complex medium in

the presence of many other sources of carbon. Under such

growth conditions, there is no competition for the utilization

of different carbon sources. The cells are obliged to use the

labeled substrate via known probable metabolic routes.

Starting from the 13C-labeled position and their isotope

abundance, a retro-biosynthetic scheme, we expected to be

able to deduce the enzyme reactions involved in the

metabolism of the carbon source. Such experiments were

first made on bacteria capable of utilizing acetate as the sole

carbon and energy source: Rhodopseudomonas palustris,

which is characterized by very simple hopanoid content,

synthesizing only aminobacteriohopanetriol 3b (Fig. 1),

and Methylobacterium organophilum, which produces

bacteriohopanetetrol 3a (Fig. 1) derivatives and has a better

versatility in the utilization of carbon sources, a feature

which later proved interesting.

These first experiments showed that the bacteriohopane

side-chain is indeed a D-pentose, derived from the non-

oxidative pentose phosphate pathway and linked via its C-5

carbon atom to the hopane isopropyl group [30, 31]. The

most striking result was, however, found on the triterpene

moiety. The labeling pattern of the hopane isoprene units

(Fig. 3) was not in accordance with the expected one from

the MVA pathway. At the time of these early investiga-

tions, there was no reason to reject the universally accepted

MVA pathway. Results were interpreted in the frame of

this metabolic route, expecting that MVA had to be formed

from two distinct acetyl-CoA pools, although a completely

different pathway could not be excluded [30].

Incorporation of 13C-Labeled Glucose Isotopomers into

the Hopanoids of Zymomonas mobilis: The Origin of the

Carbon Atoms of Isoprene Units in the MEP Pathway

Zymomonas mobilis is a good hopanoid producer [32] and

possesses minimal enzymatic equipment, utilizing only

hexoses (mainly glucose) as a carbon and energy source

and having no complete tricarboxylic acid cycle. These

properties made this bacterium an interesting target for the

further investigations that we performed in collaboration

with the group of Hermann Sahm (Forschungszentrum

Jülich, Germany). Incorporation of 13C-labeled D-glucose

isotopomers into the hopanoids of the bacterium Zymo-

monas mobilis (with labeling either at C-1, C-2, C-3, C-5 or

C-6) gave the first insights into an alternative metabolic

route for the formation of isoprene units [33]. The carbon

atoms of IPP 18 (for IPP skeleton numbering, cf. Fig. 2c)

could be divided into two subgroups. C-3 and C-5 had a

dual origin, being respectively equally derived from C-2 or

C-5 of glucose for the former and C-3 and C-6 of glucose

for the second one, whereas C-1, C-2 and C-4 of IPP had a

single origin, being respectively derived from C-6, C-5 and

C-4 of glucose. This labeling pattern characterizes the

glucose catabolism via the Entner–Doudoroff pathway in

Z. mobilis. The first subgroup corresponds to the C-2 and

C-3 carbon atoms of pyruvate 11, and the second one to the

complete carbon skeleton of D-glyceraldehyde-3-phosphate

10 (Fig. 2). This interpretation requires a rearrangement

allowing the insertion of the two-carbon subunit derived

from pyruvate (by decarboxylation) between the carbon

atoms from D-glyceraldehyde-3-phosphate derived from
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C-4 and C-5 of glucose. Incorporation of doubly labeled

[4,5-13C2] glucose showed in the isoprene units of the

bacteriohopanetetrol derivatives and of 2b-methyldiplop-

terol characteristic 2J13C/13C coupling constants, indicating

that C-4 and C-5 from glucose are introduced into the

isoprene units via a single precursor molecule and repre-

senting the signature of the previously described

rearrangement. Confirmation of the role of pyruvate and D-

glyceraldehyde-3-phosphate was obtained after incorpora-

tion of uniformly labeled [U-13C6] glucose into the

hopanoids of Z. mobilis and the incorporation of [1-13C]

glucose into the prenyl chain of ubiquinone in E. coli

mutants, each lacking an enzyme of the triose phosphate

metabolism inter converting glycerol and pyruvate [34].

Evidence for an alternative biosynthetic route was later

obtained for other bacterial isoprenoid series. In Esche-

richia coli, which do not synthesize hopanoids, the same

labeling pattern was obtained in the isoprene units of the

prenyl chain of ubiquinone upon feeding with 13C-labeled

acetate as in the hopanoids from R. palustris and M.

organophilum. Upon feeding with [1-13C] glucose, the

labeling distribution could be analyzed in the same way as
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Fig. 2 Biosynthesis of isoprene

units. a Labeling from [1-13C]

glucose of glyceraldehyde

phosphate 10 and pyruvate 11,

the precursors of the

methylerythritol phosphate

(MEP) pathway, and of acetyl-

CoA 12, the precursor of the

mevalonate (MVA) pathway. b
Mevalonate pathway. 12 acetyl-

CoA, 13 acetoacetyl-CoA, 14
hydroxymethylglutaryl-CoA, 15
MVA, 16 phosphoMVA, 17
diphosphoMVA, 18 IPP, 19
DMAPP. c Methylerythritol

phosphate pathway. 10
D-glyceraldehyde 3-phosphate,

11 pyruvate, 20 1-deoxy-D-

xylulose 5-phosphate,

21 2-C-methyl-D-erythritol

4-phosphate, 22 4-

diphosphocytidyl-2-C-methyl-

D-erythritol, 23 4-

diphosphocytidyl-2-C-methyl-

D-erythritol 2-phosphate,

24 2-C-methyl-D-erythritol

2,4-cyclodiphosphate,

25 (E)-4-hydroxy-3-methylbut-

2-enyl diphosphate, 18 IPP, 19
DMAPP. Adapted from

reference [117]
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those obtained for the formation of isoprene units in

Z. mobilis, but in the frame of the glycolysis, which is

utilized by E. coli for glucose catabolism [33].

All these features are inconsistent with the MVA path-

way and a novel biosynthetic route had to be imagined [33,

34]. This was proposed by analogy with known enzymatic

and chemical reactions. The pyruvate-derived two-carbon

subunit is obtained from pyruvate decarboxylation by a

thiamine diphosphate enzyme, much like the reactions

catalyzed by pyruvate decarboxylase or pyruvate

dehydrogenase, yielding (hydroxyethylidene) thiamine

diphosphate. The later intermediate is a nucleophile that

can be added onto the carbonyl group of glyceraldehyde-3-

phosphate in a reaction resembling the reaction catalyzed

by a transketolase and yielding a 1-deoxypentulose phos-

phate identified as 1-deoxy-D-xylulose 5-phosphate (DXP,

20, Fig. 2c). A further step is the intramolecular rear-

rangement mentioned above, followed by the concomitant

reduction of the resulting aldehyde intermediate. It was

thought to be an acid-catalyzed rearrangement of a a-ketol

resembling the rearrangement involved in the formation of

the carbon skeleton of the branched amino-acids, but was

later characterized by analysis of the isotope effects

induced by the presence of a deuterium atom either at C-3

or at C-4 in the substrate as a retro-aldol/aldol reaction

[35]. The reaction product is 2-C-methyl-D-erythritol

4-phosphate (MEP, 22, Fig. 2C), a tetrol already presenting

the branched isoprene skeleton. In contrast with DXP,

which is also in E. coli a precursor of thiamine diphosphate

and pyridoxal phosphate, no other function than that of an

isoprenoid precursor is known for MEP. Accordingly, the

pathway was proposed to be named after this intermediate.

The first two candidates for the C5 precursors of this

novel MVA-independent pathway are the phosphates of

already known natural products. 1-Deoxy-D-xylulose (DX,

26, Fig. 4) was previously isolated from the fermentation

broth of a Streptomyces sp. and was known as a precursor

of pyridoxal phosphate thiamine diphosphate in E. coli, and

2-C-methyl-D-erythritol (ME, 27, Fig. 4) is accumulated in

many plants, often in stress conditions [29, 36]. Incorpo-

ration of deuterium-labeled isotopomers of 1-deoxy-D-

xylulose by the group of Duilio Arigoni [37] and of

2-C-methyl-D-erythritol [38–40] by our group into the

prenyl chain of ubiquinone 4 and menaquinone 5 (Fig. 1)

from Escherichia coli confirmed that these compounds are

involved in an isoprenoid biosynthetic pathway.

The odd labeling patterns obtained with the first
13C-labeled acetate incorporations [30] can now be easily

interpreted. One has only to find out how glyceraldehyde-

3-phosphate 10 and pyruvate 11 are synthesized from

acetate via the tricarboxylic acid and the glyoxylate cycles,

which are utilized by bacteria when acetate is the only

carbon and energy source (Fig. 3).

Isoprenoid Biosynthesis in Plant Plastids

While we were carrying out our investigations on the

biosynthesis of bacterial hopanoids, the group of Duilio

Arigoni (ETH, Zürich, Switzerland) was investigating

Fig. 3 Incorporation of [1-13C] acetate for isoprene unit biosynthesis

into the MVA pathway (A) or via the tricarboxylic acids and the

glyoxylate cycles into the MEP pathway (B). For the sake of

simplicity, cofactors have been omitted in the tricarboxylic acids and

glyoxylate cycles. Only the carbon skeletons of the metabolites have

been represented
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independently and nearly simultaneously the biosynthesis

of diterpenoids of the ginkgolide series 7 (Fig. 1) in Ginkgo

biloba embryos [41, 42]. In this study, and again in contrast

with former work on plant isoprenoid biosynthesis where
13C-labeled acetate was utilized, labeling experiments were

performed with 13C-labeled glucose. Results were

straightforward. Labeling patterns determined in the dit-

erpenoid isoprene units did not correspond to those

expected from the MVA pathway. They corresponded to

those described for the bacterial MEP pathway. Isoprene

units were synthesized from pyruvate and GAP, both

derived from labeled glucose via glycolysis [41].

Interestingly, this study on ginkgo embryos showed for

the first time the dichotomy characterizing isoprenoid

biosynthesis in plants: sitosterol 1b (Fig. 1) is synthesized

in the cytoplasm as expected via the MVA pathway

whereas diterpenoids, which are plastid isoprenoids, are

derived from the alternative MEP route [41, 42].

We later extended this observation in collaboration with

the group of Hartmut K. Lichtenthaler (University of

Karlsruhe, Germany) to algae [43–46] and to other plants

and to the normal isoprenoid constituents of the photo-

synthetic apparatus. Incubation of barley seedlings, an

axenic duckweed culture or a carrot tissue culture with

[1-13C] glucose all showed the same dichotomy: the

cytoplasmic phytosterols are synthesized via the MVA

pathway and phytol 8 (Fig. 1) from chlorophyll, carote-

noids 9 and the prenyl chain of plastoquinone 6 via the

MEP route [47]. Confirmation of such a compartmentation

was obtained for many other systems. The key to the

success for all these experiments was the utilization of
13C-labeled glucose for in vivo incubation in the place of

labeled acetate. Hemiterpenes (such as isoprene and

2-methylbut-3-en-2-ol) [48, 49], monoterpenes [50, 51],

diterpenes [52–54] and carotenoids [47, 55], are mainly

synthesized in the plastids and derived from MEP pathway.

This intracellular localization of the MEP pathway was

later corroborated by the presence of a plastid targeting

sequence for all enzymes involved in this metabolic route

[56, 57].

Molecular Biology: The Key for the Full Elucidation

of the MEP Pathway

When the MEP pathway was discovered, no bacterial

genome was completely sequenced. The formation of DXP

was thought to be catalyzed by a thiamine diphosphate

enzyme with a transketolase resembling mechanism.

Indeed, deoxyxylulose phosphate synthase shares sequence

similarities with transketolases and was thus rapidly iden-

tified in the genomes of E. coli [58, 59] and peppermint

[60]. Once ME was shown to be incorporated into the

isoprenoids of E. coli, the search for auxotrophic mutants

requiring this tetrol for growth led to the identification of

the DXP reductoisomerase [61, 62], an enzyme which

catalyzes as expected the reversible rearrangement of DXP

into 2-C-methyl-D-erythrose phosphate [63] and the con-

comitant NADPH-dependent reduction of the latter

aldehyde into MEP.

In the meantime, more and more bacterial genomes were

sequenced facilitating the search for the MEP pathway

genes among unannotated genes. The next genes were

detected by genome mining. Incubation of 3H-labeled MEP

with crude cell-free extracts from E. coli led to the isolation

of a radioactive compound when the reaction mixture

contained ATP. Yields were improved in the presence of

CTP, and radioactivity was incorporated from [a-32P]CTP,

Fig. 4 IPP 18 and DMAPP 19
as precursors of isoprene units

in the MEP pathway. Tracing

the origin of the isoprene units

by incubation of [4-2H]DX 26
or [3-2H]ME 27. Adapted from

reference [98] and reproduced

with permission
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but not from [c-32P]CTP, suggesting that the detected

product is a MEP adduct to a nucleoside derivative. This

compound could not be further purified and characterized

by chemical methods. The search for the gene of an

enzyme catalyzing the coupling of a polyol phosphate to a

nucleotide triphosphate resulted in the finding of the

recently described acs1 gene from Haemophilus influenzae

encoding a bifunctional enzyme, which catalyzes the con-

version of ribulose 5-phosphate into ribitol 5-phosphate

and the further coupling of ribitol 1-phosphate to CTP

yielding the CDP adduct of ribitol [64]. This acs1 H. in-

fluenzae gene presents homologies with the unannotated

ygbP gene from E. coli, and the cognate protein catalyzes

the conversion of MEP into 4-diphosphocytidyl-2-C-

methyl-D-erythritol 22 (Fig. 2c) in the presence of CTP

[65]. The next two genes belong, with the former one, to a

small cluster in the E. coli genome. They were consecu-

tively identified, and the corresponding enzymes

characterized. The unannotated ychB and ygbB genes of E.

coli were revealed by bacterial genomics. Their distribu-

tion in bacterial genomes was identical with that of the

already known genes of the MEP pathway, and the corre-

sponding recombinant proteins catalyzed the next steps: the

phosphorylation of the tertiary hydroxy group yielding 4-

diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate 23

[66], followed by the elimination of UMP yielding 2-C-

methyl-D-erythritol 2,4-cyclodiphosphate (MEcPP) 24 [67]

(Fig. 2c). The two latter compounds were incorporated into

carotenoids by isolated Capsicum annuum chromoplast and

were thus established as intermediates of the MEP path-

way. Sequence homologies led to the identification of the

corresponding genes in Arabidopsis thaliana and tomato

[68, 69].

Isoprenoid biosynthesis is an essential metabolic path-

way. Any deletion of a MEP pathway gene is therefore

lethal. Another approach for the identification of MEP

pathway genes was the deletion of genes in an E. coli

construct capable of utilizing exogenous MVA as iso-

prenoid precursor after the insertion of all genes required

for the conversion of MVA into IPP (MVA kinase, phos-

phoMVA kinase and diphosphoMVA decarboxylase,

Fig. 2a) [70, 71]. Growth after deletion of a MEP pathway

gene is thus restored by addition of exogenous MVA to the

culture medium. This approach was independently utilized

for the characterization of the genes encoding the three

enzymes responsible for the conversion of MEP into

MEcPP 24 [70, 72, 73].

The last steps correspond to the reduction of a tetrol

derivative, MEcPP 24, into a primary allylic (DMAPP, 19)

and/or homoallylic (IPP, 18) alcohol diphosphate (Fig. 2c).

This implies unprecedented elimination as well as reduc-

tion steps, i.e. the involvement of an associated reduction

system. The genes corresponding to these last steps were

found by bacterial genome mining. The search for the

genes accompanying the already known MEP pathway

genes led to the identification of two unannotated genes in

E. coli gcpE and lytB. Their involvement in isoprenoid

biosynthesis was shown using the E. coli mutants capable

of utilizing MVA described above: the lethal deletion of

gcpE or lytB was rescued by the addition of exogenous

MVA [74, 75]. In vivo incorporation of [U-13C6]DX by

E. coli constructs overexpressing MEP pathway genes

followed by 13C-NMR analysis of the resulting crude cell

extracts afforded interesting clues about the respective role

of the GcpE and LytB proteins [76, 77]. Overexpression of

all genes upstream of GcpE was followed by the

accumulation of MEcPP 24 (Fig. 2c). Additional overex-

pression of gcpE resulted in the accumulation of (E)-4-

hydroxy-3-methylbut-2-enyl diphosphate (HMBPP, 25,

Fig. 2), and of gcpE and lytB in the accumulation of IPP 18

as well as DMAPP 19 in a ca. 5:1 ratio, identifying MEcPP

and HMBPP as substrates of respectively GcpE and LytB,

and HMBPP and IPP as well as DMAPP as the reaction

products of the same enzymes.

Characterization of the corresponding enzymatic activ-

ities was rather tricky. The first hints of the role of GcpE

were obtained in vivo with an E. coli strain with a deleted

dxr gene, engineered for the utilization of exogenous MVA

and overexpressing gcpE: in the presence of a cocktail of

cofactors (including those required for reduction reactions),
3H-labeled ME was converted into MEcPP 24 (Fig. 2c),

suggesting that the cyclodiphosphate is the substrate of

GcpE [78]. Further, a crude cell free-system from an E. coli

strain overexpressing gcpE converted MEcPP into (E)-

methylbut-2-ene-1,4-diol in the presence of a phosphatase

[79] or into HMBPP 25 (Fig. 2c) in the presence of fluoride

as phosphatase inhibitor [80]. In contrast, in a MVA uti-

lizing and lytB-deficient E. coli strain HMBPP 25 was

accumulated in sufficient amounts for direct spectroscopic

characterization, indicating that this allylic diol diphos-

phate is most probably the substrate of LytB [81].

Improvements in the enzyme assay methods were only

possible once the real nature of the GcpE and LytB proteins

was recognized. GcpE and LytB share with [4Fe–4S]

cluster enzymes three conserved cysteins serving as

anchors for such a cluster [79, 80, 82]. Most of these

enzymes are quite oxygen sensitive, losing their prosthetic

group and consequently their activity in the presence of air.

They usually require handling under an inert atmosphere in

a glove box as well as reconstitution of their prosthetic

group in the presence of Fe3?, sulfide and dithiothreitol.

This observation opened up new possibilities for the

investigations on the last two steps of the MEP pathway.

When bacterial [4Fe–4S] cluster enzymes are involved in a

reducing process, they are associated in vivo to flavodoxin/

flavodoxin reductase/NADPH for the regeneration of the
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reduced state of the prosthetic group. The former biological

system can be replaced in an enzyme assay by the semi-

quinone radical obtained by photoreduction of deazaflavin.

This approach proved fruitful. Reconstituted recombinant

GcpE enzyme from E. coli [83] or the native as-isolated

protein [84] converted in the presence of the biological or

of the chemical reducing system MEcPP 24 into HMBPP

25 (Fig. 2c). Even dithionite was an effective reducing

agent with the Thermus thermophilus GcpE [85]. Binding

of intermediates to the cluster was suggested by EPR for

the GcpE from E. coli [86].

Similarly, the last enzyme encoded by the lytB gene was

also found to be a [4Fe–4S] enzyme converting HMBPP 25

(Fig. 4) into either IPP 18 or DMAPP 19 in a ca. 1:5 ratio

[82] in the presence of the same associated biological

reducing systems for the E. coli enzyme [87], and even in

the presence of dithionite in the case of the Aquifex aeo-

licus enzyme [88]. Protonation of an allylic anion

intermediate 28 (Fig. 4) is the most likely final step of the

LytB catalyzed reaction (Fig. 4) [89].

Characterization of the cluster was performed by EPR

spectroscopy of the LytB enzyme from E. coli with the

cluster in its reduced [4Fe–4S]1? form from E. coli

obtained upon dithionite reduction [87]. The as-isolated

enzyme presented the signal of a [3Fe–4S]2? cluster,

which represented about 10% of the protein and was most

likely derived from the degradation by oxygen [87]. The

same signal was also reported from the spectrum of LytB

isolated under an inert atmosphere [90]. Mössbauer

spectroscopy allowed the characterization of the GcpE/

IspG from E. coli and Arabidopsis thaliana in the oxi-

dized [4Fe–4S]2? form upon reconstitution with 57Fe

[91].

In plants and other organisms phylogenetically related to

phototrophic phyla, the MEP pathway is localized in the

plastids where flavodoxin is absent. GcpE interacts with

ferredoxin in the cyanobacterium Thermosynechococcus

elongatus [92] and in the malaria parasite Plasmodium

falciparum [93], and activity was characterized in the

presence of the associated reducing system ferredoxin/

ferredoxin reductase/NADPH. In higher plants, the elec-

trons required for the reduction converting MEcPP 24 into

HMBPP 25 are derived also from ferredoxin. Indeed, a

preparation containing Arabidopsis thaliana GcpE and

purified spinach thylakoids afforded upon illumination, and

in the absence of any reducing cofactor, HMBPP 25 from

MEcPP 24 (Fig. 2c) [94], showing that the electron flow

derived from the photo-oxidation of water can be directly

diverted via photosystems I and II towards isoprenoid

biosynthesis. In the dark (or in roots), the electron flow

must come from catabolic processes, and ferredoxin is

associated with the NADPH-dependent ferredoxin reduc-

tase under these conditions [94].

Conclusion: Further Developments

The MEP pathway for the biosynthesis of isoprene units in

bacteria and plant plastids is now completely elucidated. All

genes and enzymes are known. Many structural features of

the enzymes as well as mechanistic aspects of the catalyzed

reactions have, however, still to be deciphered. The dis-

covery of this new metabolic pathway opened additional

unexplored fields in plant and bacterial metabolism.

IPP and/or DMAPP as Precursor of the Isoprene Units?

The origin of the hydrogen atoms found in the isoprene

units derived from MEP pathway was followed by incor-

poration of 2H-labeled DX or ME. If the hydrogen atoms

corresponding to those located at C-1, C-4 and C-5 of MEP

are integrally retained in the isoprene units, quite striking

observations were made on the retention or the loss of the

hydrogen atom at C-4 of DXP corresponding to the

hydrogen atom at C-3 of MEP. Three labeling patterns

were described for isoprene units upon feeding of DX 26 or

ME 27 (Fig. 4) with 2H labeling at C-4 or C-3 respectively:

(i) quantitative loss in all isoprene units wherever they are

derived from IPP or from DMAPP as found in the

carotenoids and phytol from a plant cell culture of Cath-

aranthus roseus [95], (ii) quantitative retention in the

DMAPP derived unit and quantitative loss in those derived

from IPP in the prenyl chains of ubiquinone and mena-

quinone from the bacterium Escherichia coli [40, 96] or

significant retention in the DMAPP derived unit and nearly

complete loss in that derived from IPP in the monoterpene

cineol from Eucalyptus globulus [97] and finally (iii)

retention of deuterium in all isoprene units derived either

from IPP or from DMAPP as observed for phytoene and

the prenyl chain of plastoquinone from a tissue culture of

tobacco BY-2 [98] (Fig. 4). Such apparently contradictory

observations may in fact be explained, keeping in mind that

IspH/LytB, the last enzyme of the MEP pathway, affords

two reaction products, IPP 18 or alternatively DMAPP 19.

Taking into account the stereoselectivity of the introduc-

tion of the proton on the allylic anionic intermediate and of

the elimination of the pro-R proton of IPP by the IPP

isomerase and the trans-prenyl transferase, each labeling

pattern reflects the origin of the isoprene units, the presence

of deuterium representing the signature of a DMAPP ori-

gin, and its absence the signature of an IPP origin [36, 98]

(Fig. 4).
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Cross-Talk Between Cytoplasmic and Plastidial

Compartments in Plant Cells

In plant cells, two pathways contribute to isoprenoid bio-

synthesis: the MVA pathway localized in the cytoplasm

and the MEP pathway found in the plastids. The origin of

the isoprene unit precursors, IPP and/or DMAPP is, how-

ever, scrambled by exchanges of intermediates between

these two cell compartments. This aspect is well illustrated

by the labeling patterns observed after incorporation of

[1-13C] glucose into plant isoprenoids, and was already

clearly documented in the first study on ginkgolide bio-

synthesis. From the labeling pattern observed in the

diterpenes skeleton of ginkgolides, it was deduced that

most of the geranylgeranyl diphosphate (ca. 98%) was

made from isoprene units uniquely derived from the MEP

pathway. A small but significant part of the C20 skeleton

has a composite origin: a C15 farnesyl diphosphate chain

synthesized from isoprene units derived from the MVA

pathway is completed by a fourth unit solely derived from

the MEP pathway [41]. This shows that an acyclic C15

precursor, most probably farnesyl diphosphate, is carried

from the cytoplasm to the plastids. Similar observations

describing a dual origin for isoprene units were later

reported for many other systems from higher plants [41, 55,

99–101], liverwort [102] and hornwort [103], illustrating

the possibility of exchanges of C5, C10 and C15 interme-

diates between cytoplasm and plastids. A striking example

is given by the tobacco BY-2 cell culture where MEP and

MVA pathways can complement each other [104]. Upon

inhibition of the MVA pathway by a sublethal dose of

mevinolin, phytosterol in the cytoplasm are synthesized via

the MEP pathway from exogenous DX. Similarly, upon

inhibition of the MEP pathway by fosmidomycin, the

prenyl chain of the plastidial plastoquinone is synthesized

from MVA, like the isoprene units of sterols [104].

The simultaneous presence of two independent path-

ways opens new understanding of plant physiology at the

level of the regulation of isoprenoid biosynthesis. For

instance, the emission of volatile plant defense terpenoid

is dependent on both pathways: sesquiterpenoids being

preferentially derived from the MVA route whereas

monoterpenoids are synthesized via the MEP pathway

[105, 106]. In addition, a nycthemeral rhythm (corre-

sponding to the succession of day and night) has been

pointed out for the MEP pathway in snapdragon flowers.

Emission of volatile terpenoid synthesized via the MEP

pathway occurs essentially during the day and is con-

trolled by the circadian clock. Both plastidial

monoterpenes and the cytosolic sesquiterpene nerolidol

are derived from MEP pathway, suggesting a unidirec-

tional trafficking of precursor(s) from plastids towards the

cytoplasm [107].

MEP Pathway Enzymes as Targets for Antibacterial

Drugs

The MEP pathway is the major metabolic route for iso-

prenoid biosynthesis in eubacteria. It is present in most

bacterial taxa, including many obligate pathogens as well

as opportunistic pathogens responsible for hospital-

acquired diseases [108, 109]. In addition, some eukaryotes

phylogenetically related to photosynthetic phyla, possess

the MEP pathway, among them the Plasmodium spp.

responsible for malaria [110].

The MEP pathway is absent in humans and animals, and

isoprenoid biosynthesis is an essential metabolic route in

all living organisms. Inhibition of any enzyme of this

pathway has lethal consequences. This means that all

enzymes of the MEP represent unexplored targets for the

design of antibacterial or antiparasitic drugs [109–111].

This aspect is particularly interesting to overcome the

widespread resistance towards most current commercial

antibiotics. The concept has already been validated.

Indeed, despite poor pharmacokinetic properties, a rapid

elimination in urine [112] and the fast appearance of bac-

terial resistance, fosmidomycin, a natural antibiotic and a

potent inhibitor of the second enzyme of the MEP pathway,

the DXP reducto-isomerase [113], is quite effective against

bacterial growth [112, 114] or against simple Plasmodium

infections in rodents and in man [110, 115, 116].
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53. Knöss W, Reuter B, Zapp J (1997) Biosynthesis of the labdane

diterpene marrubiin in Marrubium vulgare via a non-mevalonate

pathway. Biochem J 326:449–454

54. Hayashi T, Asai T, Sankawa U (1999) Mevalonate-independent

biosynthesis of bicyclic and tetracyclic diterpenes of Scoparia
dulcis L. Tetrahedron Lett 40:8239–8243

55. Arigoni D, Sagner S, Latzel C, Eisenreich W, Bacher A, Zenk

MH (1997) Terpenoid biosynthesis from 1-deoxy-D-xylulose in

higher plants by an intramolecular skeletal rearrangement. Proc

Natl Acad Sci USA 94:10600–10605

56. Rodrı́guez-Concepción M, Boronat A (2002) Elucidation of the

methylerythritol phosphate pathway for isoprenoid biosynthesis

in bacteria and plastids. A metabolic milestone achieved through

genomics. Plant Physiol 130:1079–1089

57. Eisenreich W, Bacher A, Arigoni D, Rohdich F (2004) Bio-

synthesis of isoprenoids via the non-mevalonate pathway. Cell

Mol Life Sci 61:1401–1426

58. Sprenger GA, Schörken U, Wiegert T, Grolle S, de Graaf A,

Taylor SV, Begley TP, Bringer-Meyer S, Sahm H (1998)

Identification of a thiamin-dependent synthase in Escherichia
coli required for the formation of the 1-deoxy-D-xylulose

5-phosphate precursor to isoprenoids, thiamin and pyridoxol.

Proc Natl Acad Sci USA 94:12857–12862

59. Lois LM, Campos N, Rosa-Putra S, Danielsen K, Rohmer M,

Boronat A (1998) Cloning and characterization of a gene from

Escherichia coli encoding a novel transketolase-like enzyme

that catalyzes the synthesis of D-1-deoxyxylulose 5-phosphate, a

common precursor for isoprenoid, thiamin and pyridoxol bio-

synthesis. Proc Natl Acad Sci USA 95:2105–2110

60. Lange BM, Wildung MW, McCaskill D, Croteau R (1998) A

family of transketolases that directs isoprenoid biosynthesis via

a mevalonate-independent pathway. Proc Natl Acad Sci USA

95:2100–2104

61. Kuzuyama T, Shimizu T, Takahashi S, Seto H (1998) Direct

formation of 2-C-methyl-D-erythritol 4-phosphate from

1-deoxy-D-xylulose 5-phosphate reductoisomerase: a novel

enzyme in the non-mevalonate pathway to isopentenyl diphos-

phate. Tetrahedron Lett 39:4509–4512

62. Takahashi S, Kuzuyama T, Watanabe H, Seto H (1998) A

1-deoxy-D-xylulose 5-phosphate reductoisomerase catalyzing

the formation of 2-C-methyl-D-erythritol 4-phosphate in an

alternative nonmevalonate pathway for isoprenoid biosynthesis.

Proc Natl Acad sci USA 95:9879–9884

63. Hoeffler JF, Tritsch D, Grosdemange-Billiard C, Rohmer M

(2002) Isoprenoid biosynthesis via the methylerythritol phos-

phate pathway: mechanistic investigations on the 1-deoxy-D-

xylulose 5-phosphate synthase. Eur J Biochem 269:446–4457

64. Follens A, Veiga-da-Cunha M, Merckx R, Van Schaftingen E,

Van Eldere J (1999) acs1of Haemophilus influenzae type a

capsulation locus region II encodes a bifunctional ribulose 5-

phosphate reductase-CDP-ribitol pyrophosphorylase. J Bacteriol

181:2001–2007

65. Rohdich F, Wungsintaweekul J, Fellermeier M, Sagner S, Herz

S, Kis K, Eisenreich W, Bacher A, Zenk MH (1999) Cytidine

50-triphosphate-dependent biosynthesis of isoprenoids: YgbP

protein of Escherichia coli catalyzes the formation of 4-diph-

osphocytidyl-2-C-methylerythritol. Proc Natl Acad Sci USA

96:11758–11763
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