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Abstract The aggregation behavior and flow character-

istics of systems based on zwitterionic surfactant, erucyl

amidopropyl betaine, silica and alumina nanoparticles in a

wide range of surfactant concentrations from molecular to

micellar solutions were studied using surface tensiometry,

conductometry, dynamic and electrophoretic light scatter-

ing, and rheology techniques. The adsorption of zwitteri-

onic surfactant molecules occurs on both positively and

negatively charged surfaces via an electrostatic interaction

mechanism. As a result, addition of a small amount silica

nanoparticles (0.5–0.8 wt%) increases the surfactant solu-

tion’s viscosity by more than two times.

Keywords Erucyl amidopropyl betaine � Silica and

alumina nanoparticles � Dynamic and electrophoretic light

scattering � Adsorption

Introduction

Nanotechnology is one of the fastest growing fields in

fundamental and applied science [1–3] due to the unique

physical and chemical properties demonstrated at the

nanoscale [4]. Nanoparticles of both metals and nonmetals

are used, e.g., as semiconductors [5, 6], adsorbents for

water purification [7], biosensors [8, 9] and components of

anticancer drugs [10, 11].

Surfactants are widely used in the synthesis [12–14] and

stabilization [9, 15, 16] of nanoparticle dispersions. A sig-

nificant number of papers in the field of mixed surfactant–

nanoparticle systems refer to the adsorption of anionic [17,

18], cationic [15, 17–20] and nonionic [17, 18, 21–23]

surfactants on the nanoparticle’s surface, where the sur-

factant aggregates are in the form of spherical micelles. As

far as zwitterionic surfactants and cylindrical micelles are

concerned, they are preferable in the synthesis of elongated

metal nanoparticles [12, 13]. Therefore, the choice of sur-

factants is determined by matching micellar morphology

with the form of the synthesised nanoparticles. On the other

hand, there is a tendency for the modification of cylindrical

micellar solutions based on anionic and cationic surfactants

[24–26] and polymers [27, 28] by nanoparticle additives.

Addition of nanoparticles results in increased viscosity via

formation of additional topological links between the

micelles, and generally affects the rheological properties of

the solutions. However, there are no papers related to the

study of nanoparticle addition to zwitterionic surfactant

solutions, i.e., such as carboxybetaines. Important advan-

tages of zwitterionic surfactants over other ionic amphi-

philes are their high water solubility, low sensitivity to the

presence of salts, high biodegradation rate and the ability to

form cylindrical micelles in solution in the absence of

counter ions (salts) [29]. Many of these properties are

attractive for industrial applications. Long and flexible

worm-like micelles form cross-links at high surfactant

concentrations [30–34] resulting in an increase in solution

viscosity. However, unlike polymer solutions, micellar

solutions are dynamic systems. Thus, their properties can be

controlled by external factors (pressure, temperature, and

additives) [31, 35]. Therefore, this class of surfactants is of
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practical importance and is widely used in oil recovery [36]

and cosmetics [37] as a template to create viscoelastic

compositions and increase solution viscosity.

In this paper, the effect of silica and alumina nanopar-

ticle addition on the aggregation and rheological properties

of the zwitterionic surfactant, erucyl amidopropyl betaine

(EAPB; Fig. 1), were studied in a wide range of surfactant

concentrations from molecular to micellar solutions,

including cylindrical micelles.

Experimental Section

Materials and Methods

LUDOX TM-40 colloidal silica—40 wt% suspension in

H2O (Sigma Aldrich) and Nanobyk-3600 dispersion of

alumina nanoparticles—50 wt% suspension in H2O (BYK

USA, Inc.) were used as received. EAPB was synthesized

by the Limited Liability Company ‘‘Scientific Research

Institution of Surfactants’’ (Russia, Volgodonsk) and

characterized by elemental analysis, and proton nuclear

magnetic resonance ( 1H NMR) spectroscopy. Water used

as a solvent was obtained using Direct-Q ultraviolet water

purification equipment (Direct-Q 5 UV, EMD Millipore

Corp.) with a resistivity 18.2 MX cm at 25 �C. All samples

were prepared by mixing the nanoparticles dispersion with

EAPB water solutions and equilibrated at 25 �C for at least

24 h before any measurement. EAPB was dissolved in

water at 40 �C using a magnetic stirrer for 24 h.

Dynamic and Electrophoretic Light Scattering

Dynamic light scattering (DLS) is a well-established

technique for determining the hydrodynamic radius Rh

and size distribution of aggregates which is based on

the spherical approximation to the Stokes–Einstein

relationship:

D ¼ kbT=6pgRh ð1Þ

where D is the diffusion coefficient, kb is the Boltzmann

constant, T is absolute temperature and g is the solvent

(water) viscosity. Measurements were performed using a

Zetasizer Nano (Malvern Instruments) with a He–Ne gas

laser source (633 nm). The data was analyzed using the

second-order cumulant expansion method. DLS results are

averaged by the number of particles. Millipore filters with a

pore diameter of 450 nm were used to remove impurities

from the solutions prior to measurement.

The zeta potential of the samples was also measured

using the Zetasizer Nano. The measurement is based on

particle mobility in an electric field. Zeta potential was

measured from electrophoretic mobility using the Helm-

holtz–Smoluchowski equation. All measurements were

performed at least three times for each sample at 25 �C.

Rheological Measurements

Rheological measurements at static shear were conducted

on a RheoStress 6000 rheometer (Thermo Scientific

HAAKE, Germany) using two different measuring

geometries. For low-viscosity solutions, a double coaxial

cylinder gap was used (outer cylinder diameter is 21.7 mm,

the inner cylinder diameter is 18 mm, and the height is

55 mm). Highly viscous samples were examined using a

cone and plane cell with a 35-mm diameter and a cone

angle of 2�. Experiments were undertaken within the stress

range from 0.002 to 100 Pa. Solution viscosity g is defined

as the proportionality coefficient between the applied stress

r and the shear rate (g = r/c). At low shear rates the

viscosity reaches a plateau (not dependent on applied

stress). This value is taken as the maximum Newtonian

viscosity g0 (viscosity at zero shear rate).

Surface Tension Measurement

Surface tensionwasmeasured using aK6 tensiometer (Krüss

Instruments, Germany) using the Du Noüy ring detachment

method. All experiments were performed at 25 �C. This
method is based on measuring the ring detachment force F

which is related to the surface tension c using Eq. 2:

F ¼ 4pRcf ð2Þ

where R is the radius of the ring and f is an empirical

correction factor which accounts for the shape of the liquid

pulled up in the ring and the diameter of the wire.

Conductometry

The electrical conductivity data v (lS cm-1) were col-

lected with an InoLab Cond 7110 conductivity meter

(WTW GmbH, Germany) at 25 �C.

Results and Discussion

Both electrostatic forces and hydrophobic effect can

mediate surfactant–nanoparticles interactions. A survey of

the literature revealed that the balance between the two
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Fig. 1 Structural formula of erucyl amidopropyl betaine (EAPB)
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mechanisms depends strongly on the particle charge and the

nature of surfactant head group [38–42]. In the case of like

charged partners, hydrophobic effects prevail, whereas,

when oppositely charged nanoparticles and surfactants

interact, electrostatic forces play a key role. Apart from

these extreme cases, different types of intermediate inter-

actions occur, depending on the nature of both partners.

The adsorption of EAPB on positively charged hydro-

philic alumina nanoparticles (Al2O3) and negatively

charged silica nanoparticles (SiO2) was studied by elec-

trophoretic techniques and DLS. EAPB is a zwitterionic

molecule, i.e., a molecule that has both a positive and

negative charge over a wide pH range [29]. However, the

measured zeta potential of EAPB in aqueous solution has a

negative value equal to -20 mV. In our previous work

[43], it was shown that EAPB has a neutral pH (6.5–7.2)

over a wide range of solution concentrations. Addition of a

small amount of nanoparticles (0.1 wt%) does not change

the solution pH.

In the mixed EAPB–Al2O3 systemswith a constant Al2O3

nanoparticles concentration (0.1 wt%) the dependence of

particle zeta potential and hydrodynamic particle size as a

function of surfactant concentration are shown in Fig. 2. All

of the samples formed transparent dispersions up to an

EAPB concentration of 0.0025 M. Charge reversal of the

nanoparticle surface from ?15 to -15 mV was observed

with increasing EAPB concentration. The latter value is

close to the zeta potential of pure EAPB, suggesting that the

surfactant adsorbed on the particle surface due to electro-

static association of the negatively charged EAPB head

group with the positively charged Al2O3 surface. In the

absence of added surfactant, alumina nanoparticle aggre-

gates with a hydrodynamic diameter of 130 nm are formed.

This large size likely indicates the presence of clusters of

nanoparticles. The increase in hydrodynamic diameter with

increasing EAPB concentration (*15 nm) suggests the

formation of surfactant bilayer-like vesicular structures on

the aggregate’s surface.

In the case of negatively charged SiO2 nanoparticles

(0.1 wt%), an increase in zeta potential from -55 to

-30 mV was observed with increasing EAPB concentra-

tion, as shown in Fig. 3. All samples with silica nanopar-

ticles were transparent at all surfactant/nanoparticle

concentration ratios tested. The negative magnitude was

maintained due to the adsorption of the EAPB by

hydrophobic association. An increase in the hydrodynamic

diameter by 3–4 nm with increasing surfactant concentra-

tion is observed, which indicates the presence of an

adsorbed surfactant layer on the particle surface. The

dependence is in good agreement with the four-step

adsorption isotherm [44, 45]. A sharp increase in the zeta

potential and the aggregate’s hydrodynamic diameter by

4 nm is observed with increasing surfactant concentration

over the range from 0 to 0.2 mM. This is equivalent to

monolayer adsorption of surfactant molecules on the

nanoparticle surface, assuming that the radius of EAPB

micelles is 2.9 nm [35]. A further increase in the EAPB

concentration is followed by a small change in the zeta

potential, which corresponds to surfactant monolayer sat-

uration. Finally, the curve reaches a plateau region with a

constant hydrodynamic diameter and zeta potential value,

in which no further adsorption is observed.

Further experiments were carried out with fixed sur-

factant concentration at 20 mM, where worm-like EAPB

micelles are formed [43]. The zeta potential and hydro-

dynamic diameter were measured with increasing SiO2

particle concentration from 0.1 to 0.4 wt%, as shown in

Fig. 4. These systems are stable with no phase separation

observed over the entire concentration range. The zeta

potential decreases with increasing nanoparticle concen-

trate, close to that of pure SiO2 nanoparticles due to the
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Fig. 2 The hydrodynamic diameter and n-potential of aggregates in
the mixed EAPB–Al2O3 systems (Al2O3 = 0.1 wt%) versus EAPB

concentration, the polydispersity index in the range 0.17–0.2, 25 �C
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Fig. 3 The dependence of zeta potential and the hydrodynamic

diameter of aggregates in the mixed EAPB–SiO2 systems

(CSiO2 = 0.1 wt%) on surfactant concentration, with a polydispersity

index in the range 0.18–0.2, 25 �C
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increase in the surface being free from adsorbed surfactant

molecules [46]. Thus, a denser packing of surfactant

molecule and a higher particle surface saturation are

observed in the low SiO2 concentration region. In the

absence of nanoparticles, 25 nm surfactant aggregates are

formed, which increase in size with increasing SiO2 con-

centration. Bimodal particle size distributions are not

observed in the system, which indicates the formation of

particles of the same type. And the presence of the plateau

indicates that this is the saturation concentration of

aggregates by nanoparticles.

Surface tensiometry and conductometry techniques were

applied to study the self-organization of EAPB in the

presence of SiO2 nanoparticles. Both methods are widely

used to determine the critical micelle concentration (CMC)

in surfactant solutions. Previously, the self-organization of

EAPB in aqueous solution has been studied and the CMC

values determined [43]. Our current focus is on the effect

of silica nanoparticle additives on the EAPB self-organi-

zation in water. The CMC of EAPB is insignificantly

increased when silica nanoparticles are added (0.1 wt%),

but the minimum surface tension is higher than in the

individual EAPB solution, as shown in Fig. 5. This sug-

gests surfactant concentration at the water/air interface is

lower for the EAPB–SiO2 system than for pure EAPB and

the surfactant molecules are more favorably adsorbed at the

nanoparticle surface than at the water/air interface.

The CMC values obtained by conductometry are in good

agreement with the tensiometry data, as shown in Fig. 6

and Table 1. It is important to note that the individual SiO2

nanoparticles have no surface activity, since no decrease in

the surface tension of the SiO2 solutions is observed over a

wide range of nanoparticle concentrations (0.1–5 wt%).

Thus, interactions between EAPB molecules and silica

and alumina nanoparticles have been shown at a low
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Fig. 4 The dependence of zeta potential and the hydrodynamic

diameter of aggregates (CEAPB = 0.02 M) on SiO2 concentration,

with a polydispersity index in the range 0.2–0.21, 25 �C
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surfactant concentration. Further experiments were con-

ducted at higher surfactant concentrations where a vis-

coelastic network of long, worm-like micelles were formed

[35]. One of the main mechanisms mediating the increase

in the viscosity of micellar solutions is the formation of

rod-like micelles. Sphere-to-rod transitions of micelles can

be induced by different additives, such as electrolytes,

hydrophobic solutes and nanoparticles, with their mecha-

nisms markedly differing. The most general explanation is

that the additives cause the neutralization and dehydration

of head groups, thereby allowing for closer packing.

In our work, we found that increasing the concentration

of alumina nanoparticles to 0.3 wt% at a constant surfac-

tant concentration of 0.0625 M resulted in the suspension

formation. Therefore, the modification of highly concen-

trated EAPB solutions with nanoparticle addition was

conducted using only the silica nanoparticles. The depen-

dence of viscosity on shear rates in the mixed EAPB–SiO2

solutions is shown in Fig. 7. The experiment was carried

out at the constant surfactant concentration (0.0625 M) by

varying the concentration of the SiO2 particles from 0.3 to

0.8 wt%. The selected range is determined by the rever-

sible phase separation observed at higher nanoparticle

concentrations (C[1 wt%).

That the viscosity increased by more than two times is

evidence of interactions between nanoparticles and worm-

like micelles due to the formation of mixed aggregates. A

similar effect was previously observed in the mixed sys-

tems based on worm-like micelles of cetyltrimethylam-

monium bromide (CTAB) and silica nanoparticles with a

modified surface [25, 26]. The viscosity increase was due

to cross-linking between worm-like micelles and

nanoparticles. The adsorption of the end-cup molecules of

worm-like micelles on the nanoparticles surface is an

energetically favourable process driven by decreasing free

energy [25].

Conclusion

The interaction between the zwitterionic surfactant erucyl

amidopropyl betaine (EAPB) and negatively charged silica

and positively charged alumina nanoparticles has been

studied. The adsorption of surfactant molecules on

nanoparticles affects its self-aggregation characteristics,

which is reflected in a slight increase of the CMC values

and a higher minimum surface tension. The increase in

viscosity of EAPB solutions with small addition of silica

nanoparticles confirms the interaction between the com-

ponents and surfactant adsorption on SiO2 nanoparticles.
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