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Abstract The composition and structural parameters of

W/O microemulsions containing the gemini surfactant 1,4-

bis(3-alkylimidazolium-1-yl) butane bromide [(Cn-4-Cn)-

Br2, n = 12, 14, 16] ? pentan-1-ol ? octane ? water and

W/O microemulsions containing the ionic liquid surfactant

1-alkyl-3-methylimidazolium (CnmimBr, n = 12, 14,

16) ? pentan-1-ol ? octane ? water were studied and

compared. The mole fractions of the n-alkyl alcohol at the

interfacial layer Xi
a in (Cn-4-Cn)Br2 based microemulsion

systems are always larger than those in CnmimBr based

microemulsion systems. However, the mole fractions of the

n-alkyl alcohol in the oil phase Xo
a are nearly the same for

both the microemulsion systems. The (Cn-4-Cn)Br2 based

microemulsion systems have greater absolute values of the

free enthalpy values �DGo
o!i than that for CnmimBr based

systems. In the (Cn-4-Cn)Br2 based microemulsion sys-

tems, a large number of cosurfactants at the interfacial

layer is conducive to the formation of a smaller droplet

W/O microemulsion. The effects of n-alkyl alcohols,

alkanes, salinity and temperature on the composition and

structural parameters of the (Cn-4-Cn)Br2 based and Cn-

mimBr based microemulsion systems were also investi-

gated and discussed.

Keywords Interfacial composition � Structural

parameter � Microemulsion � Dilution method � Gemini

imidazolium

Introduction

Gemini surfactants (GS) contain two hydrophilic groups

and two hydrophobic groups. The two head groups of GS

are connected by a spacer group. Compared to conven-

tional surfactants containing a similar single hydrophilic

group and a single hydrophobic group, the properties of

interest of GS include their lower-than-usual critical

micelle concentration (CMC) values and high efficiency in

decreasing the surface tension of water [1–7]. GS have

been attracting considerable interest in the academic and

industrial fields. Their behavior at the air/solution interface,

the thermodynamics of micellization, the mixed micelli-

zation with various conventional surfactants, and the phase

behavior of GS have been widely studied and reviewed [8–

13]. Recently, a micellization study on aqueous solutions

of a series of symmetrical cationic GS with different spacer

lengths was systematically conducted, and the effect of

spacer length on the micellization of the synthesized GS

was investigated [14]. The values of CMC suggest that the

shorter the spacer length, the higher the surface activity of

the ionic liquid-type gemini imidazolium surfactants [15].

Ethylene glycol, ionic liquids and organic hydrotropes have

often been used to modify the properties of aqueous solu-

tions of GS. The addition of ethylene glycol to aqueous

gemini micellar solutions causes the sphere-to-rod transi-

tion to occur at high surfactant concentrations [16]. The

effect of ionic liquids on cationic gemini solutions could be

regarded as the comprehensive effects of inorganic salt,

cosurfactant, and cosolvent on the surfactant solution [17].
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The properties of aqueous solutions of cationic GS can be

efficiently modified by the addition of organic hydrotropes.

When the volume fraction of hydrotrope increases, the

value of CMC of GS in water ? hydrotrope media

increases [18]. The interactions between the surfactants and

the hydrotropes are synergistic in nature, greatly reducing

the CMC values [19–21]. Mixed micellization properties of

the cationic [22] and anionic [23] monomeric surfactants

with GS have been studied. The mixed system in water

exhibits synergism in the formation of mixed micelles. In

addition, GS had more influence on the TCP (temperature

of cloud point) of the nonionic polymer cellulose ether.

This might be due to the stronger interactions of GS as

compared to their single-chain counterparts [24]. Recently,

researchers showed that GS had more influence on the

cloud point of amphiphilic drugs, and could serve as a

better drug carriers [25–27]. In the presence of GS, the

thermodynamic parameters were also evaluated at TCP

[28–30].

In comparison to the micellization study in aqueous

solutions of GS mentioned above, there have been fewer

research studies done on the microemulsions formed by

GS. The middle-phase microemulsions of GS were inves-

tigated by salinity scan [31]. It was shown that the oil-in-

water single phase could form a Winsor III type micro-

emulsion over a wide salt concentration range. The oil in

water (O/W) microemulsion of GS could be used in the

polymerization of styrene [32, 33].

A dilution method of W/O microemulsions was com-

monly used to determine the composition and structural

parameters of W/O microemulsions [34, 35]. In this paper,

the composition and structural parameters of the W/O

microemulsion systems containing 1,4-bis(3-alkylimi-

dazolium-1-yl) butane bromide [(Cn-4-Cn)Br2] was inves-

tigated using the above-mentioned dilution method, and a

comparison with the microemulsion system containing

their monomeric analogues was also made.

Experimental

Materials and Apparatus

Gemini imidazolium surfactants with a four-methylene

spacer group (Cn-4-Cn)Br2 (n = 12, 14, 16) [1,4-bis(3-

dodecylimidazolium-1-yl) butane bromide, 1,4-bis(3-tetra-

decyl imidazolium-1-yl) butane bromide, 1,4-bis(3-cetyl

imidazolium-1-yl) butane bromide], and their correspond-

ing monomers CnmimBr(n = 12, 14, 16) [1-dodecyl-3-

methylimidazolium, 1-tetradecyl-3-methylimidazolium,

1-cetyl-3-methylimidazolium] (Scheme 1) were synthe-

sized and purified according to literatures [6, 36–40]. The

purities of the surfactants synthesized were checked using

1H-NMR spectroscopy in DMSO and LC–MS. The purities

were also examined by observing the curves of surface

tension and no minimum points were found from the

curves. The surfactants were left to dry in vacuum for

2 days prior to use.

Heptane, octane, decane, dodecane, butan-1-ol, pentan-

1-ol and heptan-1-ol (with mass fraction purity [0.99)

were all of A. R. grade and purchased from Alfa Aesar

Johnson Matthey, USA. All these chemicals were used

without further purification. NaCl (with mass fraction

purity [0.99) was A.R. grade and purchased from Sinop-

harm Chemical Reagent Co., Ltd., Shanghai, China. Dou-

bly distilled water of conductivity less than 3 lS � cm-1 at

298 K was used in the experiments.

Methods

A fixed amount of surfactant (0.5 mmol) was placed in a

dry test tube, and was mixed with fixed amounts of oil and

water. The molar ratio of water to surfactant (xo) was kept

constant. The tube was then placed in a thermostatted water

bath. N-alkyl alcohol was added slowly using a burette

under stirring using a magnetic mixer at constant temper-

ature until the original turbid system became just clear.

Then a small predetermined amount of oil was added into

the tube and the system turned cloudy. The n-alkyl alcohol

was added again until the system became clear. The pro-

cedure was repeated several times. The volumes of n-alkyl

alcohol and alkane required were recorded. Each experi-

ment was repeated two times, and the average values were

used for data processing. Except for the experiments on the

effects of temperatures, all the other experiments were

performed at 313.15 K (uncertainty ±0.1 K). The error

limit of the dilution method was ca. ±3 % [41, 42].

Results and Discussion

Composition and Structural Parameters of the W/O

Microemulsions

Figure 1 shows the W/O microemulsion dilution curves for

the microemulsion systems (Cn-4-Cn)Br2(a), Cnmim-

Br(b) ? pentan-1-ol ? octane ? 5 % NaCl solution.

N

N

N

N(CH2)4

CnH2n+1 CnH2n+1

Br_Br_

N

N CH3

CnH2n+1

Br

(Cn-4-Cn)Br2 ( n=12,14,16 ) CnmimBr ( n=12,14,16 )

Br -Br - Br -

Scheme 1 Chemical structures of gemini imidazolium (left) and their

monomeric analogues (right)
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From the slopes (I) and intercepts (k) of the straight lines in

Fig. 1, the composition and structural parameters for the

microemulsion systems, i.e. ns (the number of moles of the

surfactant), no
a (the moles of the n-alkyl alcohol in the oil

phase), ni
a (the number of moles of the n-alkyl alcohol in

the interfacial layer), Re (the effective radius of the water

pool), Nd (the total number of the droplets), �Ns (the average

aggregation number of the surfactant), and �Na (the average

aggregation number of n-alkyl alcohols) were calculated

[43] according to the S1 section of the Supporting Material

and listed in Table 1.

For the two types of microemulsion systems containing

(Cn-4-Cn)Br2 and CnmimBr as surfactants, respectively, the

mole fraction of the n-alkyl alcohol in the oil phase Xo
a , the

mole fraction of the n-alkyl alcohol in the interfacial layer Xi
a,

and the standard free energy change of transferring n-alkyl

alcohol from the continuous oil phase to the interfacial layer

�DGo
o!i were calculated according to Eqs. 1–3 from Table 1.

Xo
a ¼

no
a

no þ no
a

ð1Þ

Xi
a ¼

ni
a

ns þ ni
a

ð2Þ

�DGo
o!i¼� RT ln K¼� RT ln

Xi
a

Xo
a

ð3Þ

Xo
a , Xi

a, �DGo
o!i and the radius of the water pool Rw

(refer to Ref. [34]) for (Cn-4-Cn)Br2 based and CnmimBr

based microemulsion systems were plotted and compared

in Fig. 2. The related theoretical considerations were pre-

sented in the S1 section of the Supplementary Material.

Figure 2 indicates that the pattern of change of four

parameters of Xo
a , Xi

a, �DGo
o!i and Rw are similar to the

chain lengths (nc,s) of (Cn-4-Cn)Br2 and CnmimBr mole-

cules increase in (Cn-4-Cn)Br2 based and CnmimBr based

W/O microemulsion systems. That is, as nc,s increases, Xo
a

and Xi
a values would decrease, whereas �DGo

o!i would

increase. Rw would decrease gradually as nc,s increases.

For all the W/O microemulsion systems in Fig. 2, the

comparison of parameters (Xo
a , Xi

a,�DGo
o!i and Rw) between

surfactants (Cn-4-Cn)Br2 and CnmimBr are shown as follows.

Xo
a : (Cn-4-Cn)Br2 & CnmimBr; Xi

a and �DGo
o!i: (Cn-4-Cn)

Br2 [ CnmimBr; Rw:(Cn-4-Cn)Br2 \ CnmimBr.

It can be explained that as the carbon chain lengths (nc,s)

of (Cn-4-Cn)Br2 and CnmimBr molecules increase, the

hydrophobicity of the surfactants increases. Therefore

the amount of the n-alkyl alcohol required to reach the

Fig. 1 Plots of na=ns
vs no=ns

for

(Cn-4-Cn)Br2(a), CnmimBr(b) ?

pentan-1-ol ? octane ? 5 %

NaCl solution W/O

microemulsions with different

surfactants at x0 = 20. a Filled

circles (C12-4-C12)Br2, filled

squares (C14-4-C14)Br2, filled

triangles (C16-4-C16)Br2.

b Filled circles C12mimBr, filled

squares C14mimBr, filled

triangles C16mimBr

Table 1 Composition and structural parameters for (Cn-4-Cn)Br2, CnmimBr ? pentan-1-ol ? octane ? 5 % NaCl solution W/O microemul-

sions with different surfactants at x0 = 20

no
a
�
no

ni
a
�
ns

104 ns/mol 104 ni
a/mol Re (nm) Nd 9 10-18 �Ns

�Na

(Cn-4-Cn)Br2 ? pentan-1-ol ? octane ? 5 % NaCl solution

(C12-4-C12)Br2 0.076 2.95 5.02 14.8 1.62 52.2 5.81 17.1

(C14-4-C14)Br2 0.057 2.81 5.02 14.1 1.35 113 2.75 7.74

(C16-4-C16)Br2 0.038 2.72 5.00 13.6 1.19 183 1.65 4.48

CnmimBr ? pentan-1-ol ? octane ? 5 % NaCl solution

C12mimBr 0.076 1.64 5.01 8.22 3.25 2.86 105 172

C14mimBr 0.057 1.55 5.01 7.77 3.22 3.03 100 154

sC16mimBr 0.038 1.50 5.00 7.50 3.04 3.75 80 121

Error limits no
a
�
no

± 0.002, ni
a
�
ns

± 0.04, ni
a ± 2 %, Re ± 3 %, Nd, �Ns, and �Na ± 5 %
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balanced interfacial layer would decrease, resulting in the

decrease in Xo
a and Xi

a values. The strengthened hydro-

phobic property of the surfactant as its carbon chain length

increases enables the formation of the stable microemul-

sion to be more spontaneous [44] (Fig. 2c).

Compared with the corresponding mono-chain ana-

logues CnmimBr, the gemini surfactants are more tightly

packed in the interfacial layer because the two hydrocarbon

chains are bridged by a short spacer chain (–CH2CH2-

CH2CH2–) [45]. This bridge effect implies a somewhat

greater spontaneous curvature of the interfacial layer of

(Cn-4-Cn)Br2, and thus more n-alkyl alcohol molecules

must be incorporated into the interfacial layer of (Cn-4-Cn)

Br2, in comparison to CnmimBr (Fig. 2b). This phenome-

non results in the greater �DGo
o!i values for (Cn-4-Cn)Br2

based microemulsion systems than that for CnmimBr based

systems (Fig. 2c). This was also explained by the differ-

ences in size and shape of the surfactants

(Cn-4-Cn)Br2 and CnmimBr in the two microemulsion

systems [46].

Figure 2d shows that the size of the water pool Rw for

the (Cn-4-Cn)Br2 based microemulsion systems are smaller

than that for their monomeric analogues CnmimBr systems.

The GS-based microemulsion systems can have potential

application in the synthesis of nanoparticles of smaller size.

As the total number of the droplets Nd increases, there

would be a decrease in both the average aggregation

number of the surfactant �Ns and the n-alkyl alcohols �Na.

Effects of N-Alkyl Alcohols and Alkanes

Figures 3, 4 show the effects of n-alkyl alcohols and

alkanes on the plots of na/ns vs no/ns for W/O microemul-

sion systems (C16-4-C16)Br2(a), C16mimBr(b) ? n-alkyl

alcohol ? alkane ? 5 % NaCl solution, respectively.

The no
a
�
no

, ni
a
�
ns

, ns, ni
a, Re, Nd, �Ns, �Na values were cal-

culated and listed in S2 section of Supporting Material. The

values of Xo
a , Xi

a, �DGo
o!i and Rw of these W/O micro-

emulsion systems were obtained and are compared in

Fig. 5.

Figure 5 indicates that for all the W/O microemulsion

systems studied with different n-alkyl alcohols or alkanes,

the comparison of parameters (Xo
a , Xi

a, �DGo
o!i and Rw)

between surfactants (Cn-4-Cn)Br2 and CnmimBr are shown

as follows. Xo
a : (C16-4-C16)Br2 & C16mimBr; Xi

a and

�DGo
o!i: (C16-4-C16)Br2 [ C16mimBr; Rw: (C16-4-C16)

Br2 \ C16mimBr.

As the carbon chain length of the n-alkyl alcohol (nc,a)

increases, Xo
a and Xi

a would decrease, whereas �DGo
o!i and

Rw would increase (Fig. 5A). The n-alkyl alcohols with

longer chain lengths have higher efficiency in changing the

hydrophilicity, making the amphiphilic mixture more

hydrophobic. Therefore, less n-alkyl alcohol is needed to

balance the hydrophile-lipophile property of the interfacial

layer and less n-alkyl alcohol is solubilized in the oil phase.

Hence, the spontaneous transfer ability of the n-alkyl alcohol

from oil to the interfacial layer (�DGo
o!i) would increase.

It can be seen from Fig. 5 that the trends of change for

all parameters displayed by Fig. 5B are contrary to the

Fig. 2 Comparison of Xo
a (a), Xi

a (b), �DGo
o!i (c) and Rw (d) for the

two surfactants based microemulsions (Cn-4-Cn)Br2 (filled circles),

CnmimBr (open circles) ? pentan-1-ol ? octane ? 5 % NaCl

solution
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trends of change displayed by Fig. 5A. As the carbon chain

length of alkane molecules increases, the molar fraction of

both the n-alkyl alcohols at the interfacial layer, Xi
a and the

molar fraction of the n-alkyl alcohol in oil phase, Xo
a would

increase. However, the extent of increase for the latter was

more significant, leading to a decrease in the �DGo
o!i

values. This results in the weakening of the spontaneous

transfer of the n-alkyl alcohol from the oil to the interfacial

layer. This phenomenon can be explained in terms of the

penetrating ability of oil molecules into the surfactant

interfacial layer [47]. As the smaller oil molecules are

prone to penetrate the surfactant palisade layer, the inter-

facial layer tends to be convex towards oil. This facilitates

the change of the curvature of the interfacial layer. Thus,

less n-alkyl alcohol is needed to adjust the hydrophile-

lipophile property of the interfacial layer [48].

Effects of Salinity and Temperature

Figures 6, 7 show the effects of salinity and temperature on

the dilution curves for the W/O microemulsion systems.

The composition and structural parameters (n
o
a
�
no

, ni
a
�
ns

, ns,

ni
a, Re, Nd, �Ns, �Na) were listed in S2 section of the Sup-

plementary Material.

The effects of NaCl concentrations (Fig. 8A) and tem-

peratures (Fig. 8B) on the values of Xo
a , Xi

a, �DGo
o!i and

Rw for the two W/O microemulsion systems (C16-4-

C16)Br2 and C16mimBr ? pentan-1-ol ? octane ? NaCl

solution were calculated and compared in Fig. 8.

As NaCl concentration increases, Xo
a and Xi

a would

decrease, whereas �DGo
o!i would increase (Fig. 8A). This

phenomenon can be explained by the salting-out effect.

The solubility of alcohol in oil (Xo
a ) would remarkably

decrease at higher salinity for ionic surfactants (C16-4-C16)

Br2 and C16mimBr [49]. The hydrophilic group of

(C16-4-C16)Br2 or C16mimBr was compressed upon the

increase in the NaCl concentration in the microemulsion

droplets. Thus, the surfactant molecules tend to be less

hydrophilic and the alcohol required to form the W/O

microemulsion would be reduced. Therefore, Xi
a values

would decrease with increasing salt concentration for the

microemulsion systems. The increase in the �DGo
o!i val-

ues with increasing salt concentration indicates that salt

promotes the transfer of pentan-1-ol from the oil to the

interfacial layer.

Figure 8B shows that as temperature increases, the mole

fractions of alcohol at the interfacial layer (Xi
a) for both

microemulsion systems would increase, and more alcohol

would be needed to balance the interfacial layer. Also, as

Fig. 3 Plots of na=ns
vs no=ns

for

(C16-4-C16)Br2(a),

C16mimBr(b) ? n-alkyl

alcohol ? octane ? 5 % NaCl

solution W/O microemulsions

with different n-alkyl alcohols

at x0 = 20. Filled triangles

butan-1-ol, filled squares pental-

1-ol, filled circles heptan-1-ol

Fig. 4 Plots of na=ns
vs no=ns

for

(C16-4-C16)Br2(a),

C16mimBr(b) ? pentan-1-

ol ? alkane ? 5 % NaCl

solution W/O microemulsions

with different alkanes at

x0 = 20. Filled circles heptane,

filled squares octane, filled

triangles decane, open circles

dodecane
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Fig. 5 Comparison of the

effects of n-alkyl alcohols (left)

and alkanes (right) on the values

of Xo
a (a), Xi

a (b), �DGo
o!i

(c) and Rw (d) for the two W/O

microemulsions (C16-4-C16)Br2

(filled circles), C16mimBr (open

circles) ? n-alkyl

alcohol ? alkane ? 5 % NaCl

solution

Fig. 6 Plots of na=ns
vs na=ns

for

(C16-4-C16)Br2(a),

C16mimBr(b) ? pentan-1-

ol ? octane ? NaCl solution

W/O microemulsions with

different salinities at x0 = 20.

NaCl concentrations: open

squares 0 %, open circles

2.5 %, filled triangles 5.0 %,

filled squares 7.5 %, filled

circles 10 %
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Fig. 7 Plots of na=ns
vs no=ns

for

(C16-4-C16)Br2(a),

C16mimBr(b) ? pentan-1-

ol ? octane ? 5 % NaCl

solution W/O microemulsions

with different temperatures at

x0 = 20. Filled circles 303 K,

filled squares 313 K, filled

triangles 323 K, open circles

333 K

Fig. 8 Comparison of the

values of Xo
a (a), Xi

a (b),

�DGo
o!i (c) and Rw (d) between

the two W/O microemulsions

(C16-4-C16)Br2 (filled circles),

C16mimBr (open

circles) ? pentan-1-

ol ? octane ? NaCl solution

with x0 = 20
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temperature increases, the mole fractions of the alcohol in

the oil phase (Xo
a ) would decrease, resulting in an increase

in �DGo
o!i values.

Conclusions

The composition and structural parameters of W/O mi-

croemulsions containing the gemini surfactant 1,4-bis(3-

alkylimidazolium-1-yl)butane bromide [(Cn-4-Cn)Br2] ?

pentan-1-ol ? octane ? water were studied and compared

with that of W/O systems containing ionic liquid surfactant

1-alkyl-3-methylimidazolium (CnmimBr) ? pentan-1-ol ?

octane ? water. Compared with the corresponding mono-

chain analogues CnmimBr, the gemini surfactants are more

tightly packed in the interfacial layer in the microemul-

sions, and more n-alkyl alcohol molecules are incorporated

into the interfacial layer of (Cn-4-Cn)Br2 (Xi
a). This results in

the greater �DGo
o!i values for (Cn-4-Cn)Br2 based micro-

emulsion systems. The size of the water pool Rw for the (Cn-

4-Cn)Br2 based microemulsion systems are smaller than

those for their monomeric analogues CnmimBr systems.

As the carbon chain length of the n-alkyl alcohol

increases, both Xo
a , the mole fraction of the n-alkyl alcohol

in the oil phase, and Xi
a, the mole fraction of the n-alkyl

alcohol in the interfacial layer would decrease, whereas

�DGo
o!i, the standard free energy change of transferring

n-alkyl alcohol from the continuous oil phase to the

interfacial layer would increase. As the carbon chain length

of alkane molecules increases, both Xi
a and Xo

a would

increase, while �DGo
o!i values would decrease.

As NaCl concentration increases, Xo
a and Xi

a would

decrease, whereas �DGo
o!i would increase. This phenom-

enon can be explained by the salting-out effect.

As temperature increases, the values of Xi
a for both

microemulsion systems would increase, whereas Xo
a would

decrease, resulting in an increase in �DGo
o!i values.
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