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Abstract Three compounds namely; 5-(phenyl)-4H-1,2,4-

triazole-3-thiol, 3-(decylthio)-5-phenyl-1H-1,2,4-triazole

and 3-(benzylthio)-5-phenyl-1H-1,2,4-triazole) were syn-

thesized. The chemical structure of the prepared compounds

was confirmed using FTIR and 1H-NMR analysis. The

compounds were tested as corrosion inhibitors against the

corrosion of carbon steel in 1 M HCl using weight loss,

polarization and electrochemical impedance methods. The

results revealed that these compounds have significant

inhibiting effects on the corrosion of carbon steel. Polariza-

tion studies showed that the compounds act as mixed-type

inhibitors which retard the anodic and the cathodic reactions

with a predominant effect towards the cathodic reaction. The

prepared compounds were evaluated as antimicrobial agents

against sulfate-reducing bacteria using the serial dilution

method, which showed good biocidal action.

Keywords Triazole derivatives � Corrosion

inhibition � Antimicrobial activity

Introduction

Hydrochloric acid solution is commonly used for the removal

of undesirable scale and rust in metalworking processes,

cleaning of boilers, and heat exchangers [1, 2]. To prevent the

metal dissolution and acid consumption during these pro-

cesses, Inhibitors are often used [3–5]. The organic com-

pounds containing O, S and/or N atoms act as effective

inhibitors [6–8] throughout the adsorption on the metal sur-

faces and then decrease the corrosion process [9–12]. Triazole

and triazole-type compounds containing sulfur, and hetero-

cyclic species have attracted more attention because of their

excellent corrosion inhibition performance [13–19]. Zhang

et al. [20] studied the inhibiting action of oxadiazole–triazole

derivatives against the corrosion of mild steel in sulfuric acid

solution. The results indicated that the compounds are acted as

efficient corrosion inhibitors in the acidic solution.

The strategies to control the effects of microbiologically

influenced corrosion (MIC) in oil field companies include

the reduction of the sulfate-reducing bacteria (SRB) using

biocides; in order to: kill the organisms which enter the

system, and reduce the growth rate of microorganisms

within the biofilm. Microbiologically influenced souring

(MIS) is the production of H2S through the metabolic

activities of the sulfate-reducing bacteria. A better chance

of mitigating MIS in some down-hole environments is

using biocides [21]. The objective of this work is to syn-

thesize three triazole derivatives and to study their corro-

sion inhibition effect on carbon steel dissolution in acidic

medium, and their biocidal activity against SRB.

Materials and Methods

Synthesis of 5-(phenyl)-4H-1,2,4-triazole-3-thiol (I)

A mixture of benzoic acid (12.2 g, 0.1 mol) and thiosem-

icarbazide (91.1 g, 0.1 mol) was heated under reflux at

140 �C in the presence of xylene as a solvent and p-toluene

sulfonic acid as a dehydrating agent until the theoretical
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amount of water was collected in the dean stark trap [22].

The mixture was cooled and the product was filtered to

obtain 1-(benzoyl)-thiosemicarbazide, which was refluxed

for 3 h in 200 ml of NaOH solution (2 N), then cooled and

acidified to pH 4. The precipitate was filtered off and re-

crystallized from methanol to yield 5-(phenyl)-4H-1,2,4-

triazole-3-thiol (I) as shown in Scheme 1 [23].

Synthesis of 3-(decylthio)-5-phenyl-1H-1,2,4-triazole

(II)

A mixture of 5-(phenyl)-4H-1,2,4-triazole-3-thiol (1.77 g,

0.1 mol) and 1-bromodecane (2.22 g, 0.01 mol) was

refluxed in ethanolic alkali (0.08 g KOH in 20 ml ethanol)

for 2 h and then cooled to precipitate compound (II) which

was recrystallized from ethanol [24].

Synthesis of 3-(benzylthio)-5-phenyl-1H-1,2,4-triazole

(III)

A mixture of 5-(phenyl)-4H-1,2,4-triazole-3-thiol (1.77 g,

0.01 mol) and benzyl chloride (1.26 g, 0.01 mol) was

refluxed in ethanolic alkali (0.08 g KOH in 20 ml ethanol)

for 2 h, and then cooled to precipitate compound (III)

which was recrystallized from ethanol [24].

Analyses

The chemical structures of the synthesized compounds

(I, II, III) were confirmed by FTIR and 1H-NMR

spectroscopy. FTIR spectra showed the following bands: at

940 cm-1 (I), 926 cm-1 (II), 924 cm-1 (III) for (N–C–S),

1,299 cm-1 (I), 1,312 cm-1 (II), 1,309 cm-1 (III) for (N–

N–C), 3,365 cm-1 (I), 3,432 cm-1 (II), 3,395 cm-1 (III)

for (N–H), 681 cm-1 (I), 682 cm-1 (II), 682 cm-1 (III)

(C–S), 3,060 cm-1 (I), 3,059 cm-1 (II), 3,059 cm-1 (III)

for (Ar CH), 1,452 cm-1 (I), 1,422 cm-1 (II), 1,418 cm-1

(III) for (C–N), 2,056 cm-1 (I) for (SH), 2,924 cm-1 (II),

2,935 cm-1 (III) and 2,853 cm-1 (II), 2,825 cm-1 (III) for

(CH2 asym and sym). 1H-NMR spectra of (I, II, III) showed

peaks at: d = 7.75 ppm (m, 5H, Ar–H), d = 3.25 ppm (s,

1H, S–H) for compound (I); d = 7.84 ppm (m, 5H, Ar–H),

d = 3.38 ppm (t, 2H, S–CH2), d = 1.45 ppm (m, 16H,

CH2), d = 0.81 ppm (t, 3H, CH3) for compound (II);

d = 7.86 ppm, 7.24 ppm (m, 10H, Ar–H), d = 3.86 ppm

(t, 2H, S–CH2) for compound (III).

Corrosion Measurements

Weight Loss Measurements

The weight loss experiments were performed with carbon

steel specimens having a composition of: 0.21 C, 0.025

Mn, 0.082 P and the remainder is Fe. The carbon steel

sheet dimensions were 6 cm 9 3.0 cm 9 0.6 cm, the test

was done according to ASTM G31-72 (re-approved 2004).

The steel coupons were immersed in 1 M HCl with and

without the inhibitors I, II and III at concentrations of 100,

200, 400, 600 ppm by weight for 24 h at different tem-

peratures (25, 45 and 65 �C). Then coupons were washed,
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Scheme 1 Illustrated the chemical structure of the synthesized triazole derivatives
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dried and weighed accurately [25]. The test was repeated

three times and the weight loss was their average. The

corrosion rate (R) and the inhibition efficiency (g %) were

calculated using Eqs. (1–2):

R ¼ W=At ð1Þ
g % ¼ ½ðR0�RÞ=R0� � 100 ð2Þ

where W is the average weight loss of three parallel carbon

steel sheets, A is the total surface area of the specimen, t is

the immersion time, R and R0 are the corrosion rate with

and without the inhibitor, respectively [26, 27].

Polarization Measurements

The polarization measurements were carried out using a

potentiostat (Volta lab 40 PGZ 301 in a conventional three

electrode cell system, France). The working electrode was

immersed in the test solution for 30 min until the open

circuit potential (OCP) is reached. The working electrode

was polarized in cathodic and anodic directions. The cor-

rosion current densities (Icorr) were calculated by extrapo-

lation of Tafel lines to pre-determine the OCP [28]. A

standard ASTM electrochemical glass cell was used and a

platinum electrode was used as an auxiliary electrode. All

potentials were measured against a saturated calomel

electrode (SCE) as a reference electrode. The potential was

increased with a rate of 30 mV/min started from 1,000 to

200 mV. The inhibition efficiency (g %) was calculated

using Eq. (3):

g % ¼ ½ðI0�IÞ=I0� � 100 ð3Þ

where the I and I0 are the current density values with and

without inhibitors.

Electrochemical Impedance Technique

The Electrochemical Impedance Spectroscopy (EIS) mea-

surements were carried out using alternating current (AC)

signals of amplitude 10 mV peak to peak at the OCP in the

frequency range of 100 kHz to 30 MHz using a

potentiostat.

Antimicrobial Activity Measurements

The growth inhibition of the three prepared compounds on

the SRB was measured using the serial dilution method.

SRB-contaminated water was supplied from Qarun Petro-

leum Co. (Western Desert, Egypt). This water was used for

the microbial inhibition test. The test was conducted

according to ASTM D4412-84 [29]. The tested water was

subjected to growth of about 1,000,000 bacteria cells/ml.

The prepared compounds were tested as a biocide for the

SRB by doses of (50, 100, 200 and 400 ppm). The system

was incubated with a contact time of 3.0 h; each system

was cultured in SRB specific media for 21 days at

37–40 �C.

Biodegradation Test

The biodegradability test in river water of the synthe-

sized inhibitors I, II, and III was carried out using the

surface tension method (Du-Noüy tensiometer, Krüss

type K6, Germany) using a platinum ring [30, 31] at

1 % inhibitor concentration. Each inhibitor was dissolved

in river water to a concentration of 100 ppm and incu-

bated at 38 �C. A sample was withdrawn daily (for

7 days), filtered and the surface tension value was

measured. The biodegradation percentage (D %) was

calculated using Eq. (4):

D % ¼ ðct � coÞ=ðcbt � coÞ � 100 ð4Þ

where: ct is the surface tension at time t, co is the surface

tension at time 0 (initial surface tension) and cbt is the

surface tension of river water without addition of inhibitor

at time t.

Results and Discussion

Weight Loss Technique

Effect of Inhibitor Concentration

In a steel/water system, the steel surface is covered with a

layer of FeOOH through which the interaction of surfactant

molecules takes place. The OH groups on the solid surface

are the most important sites for surface interactions; these

groups can act as acids or bases. The adsorption process is

highly dependent on various parameters such as pH and

electrolyte content [32].

The corrosion inhibiting efficiencies (g) of the synthe-

sized compounds of the carbon steel corrosion in 1 N HCl

were measured. The test was done at different temperatures

30–60 �C. Different inhibitor concentrations (100, 200,

400, 600 ppm by weight) were used. The results were

illustrated in Fig. (1), (Figs. 1–2, supplementary file) and

listed in Table 1. It was found that the efficiency of syn-

thesized triazole derivatives decreases the corrosion rates

of the steel in testing solutions and its inhibition efficien-

cies are dependent on its concentration in the tested solu-

tion. Also, it is clear that gradual increasing the inhibitor

concentration from 100 to 600 ppm decreases the steel

corrosion rate. The increase of efficiency, g with increasing

the inhibitor concentration is attributed to the adsorption of

the inhibitor molecules on the steel surface and thus

increases the metal surface coverage [33].
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A visual examination was carried out after the weight

loss measurements were over. It can be noted that, in the

absence of inhibitor, a uniform corrosion attack was

observed, while on the other hand in the presence of

inhibitors, such an attack was not observed: therefore, the

surface area was bright and did not present any corrosion

form, which is indicative that no attack was occurring on

the surface area.

Effect of Temperature

To examine the action of inhibitors at elevated tempera-

tures, mass loss experiments were carried out at different

temperatures (30–60 �C). The results indicate that effi-

ciency shows different trends for the testing compounds. It

was noticed that at a lower concentration (100 ppm by

weight) all compounds show a decrease in efficiency with

increasing solution-temperature of all the testing com-

pounds I, II and III. The same trend was obtained for higher

concentrations of compound I. Meanwhile at higher con-

centrations of the solutions (200 to 600 ppm by weight) of

compounds II and III, the efficiency increases with

increasing the temperature from 30 to 60 �C [33]. At any

temperature, the inhibition efficiency of compound (I) was

found to decreases in efficiency with the increases in

temperature. This is attributed to physical adsorption. At

higher temperatures, the physical adsorption was less. The

time gap between the process of adsorption and desorption

of inhibitor molecules over the metal surface becomes

shorter with an increase in the temperature. Hence, the

metal surface remains exposed to the acid environment for

a longer period, therefore the inhibition efficiency falls at

elevated temperatures [33]. A slight increase or constancy

in g with the increase in temperature at higher concentra-

tions for (II, III) may be due to the chemical adsorption

alone or due to the combination of physical and chemical

adsorption [34]. The mass loss experiment showed a rapid

increase in weight loss at elevated temperature in the

absence of inhibitor. This shows that the tested inhibitor

molecules are good corrosion inhibitors for steel in 1 N

HCl in the range of temperatures studied.

Apparent Activation Energy (Ea) and Pre-exponential

Factor (A)

The activation parameters for the corrosion process were

calculated from the Arrhenius Eq. (5), and transition state

Eq. (6).

ln K ¼ �Ea

RT

� �
þ ln A ð5Þ

ln
K

T

� �
¼ ln

R

NAh

� �
þ DS�

R

� �� �
� DH�

RT
ð6Þ

where: k is the corrosion rate, A is the pre-exponential

factor (Arrhenius constant), R is the gas constant and T is

the absolute temperature. h is the Plank constant, NA is the

Avogadro number, DS is the entropy of activation, DH is

the enthalpy of activation.

The activation corrosion energy (Ea) for different con-

centration of compounds (I, II and III) was calculated by

linear regression between ln (K) and 1,000/T as shown in

Fig. 2, (Fig. 3, supplementary file) and the results are shown

in Table 2. Inspection of Table 2 shows that values of Ea

obtained in solutions containing triazole derivative com-

pounds (II and III) are lower than those in the inhibitor-free

acid solutions at high concentrations (400–600 ppm by
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Fig. 1 Variation of g % against temperatures for inhibitor II

Table 1 Weight loss, corrosion rate, surface coverage and corrosion inhibition efficiency in the absence and presence of 600 (ppm by weight) of

compounds I, II and III at different temperatures

Inhibitor name Blank I II III

Temp. (�C) 30 45 60 30 45 60 30 45 60 30 45 60

Weight loss (mg) 344.6 1,013.2 2,400 58.2 233.8 661.3 27.1 38.6 50.5 27.5 42.1 55.2

Corrosion rate (mg/cm2 h) 0.306 0.902 2.136 0.051 0.208 0.588 0.024 0.034 0.044 0.024 0.037 0.049

h – – – 0.831 0.769 0.724 0.921 0.961 0.978 0.921 0.95 0.977

gw (%) – – – 83.1 76.9 72.4 92.1 96.1 97.8 92.1 95.8 97.7
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weight). The lower values of the apparent activation energy

obtained in the presence of triazole derivatives compounds

(II and III) compared with those obtained in its absence. This

means that this can be attributed to its chemisorption on the

steel surface [35]. The inhibition efficiency also increased as

the temperature increased (Table 2). The fact that g (%)

increased with temperature was explained by Bouyanzer and

Hammouti [36] and de Souza and Spinelli [37], as the likely

specific interaction between the steel surface and the inhib-

itor. Ivanov [38] considers the increase in g (%) with tem-

perature increases as the change in the nature of the

adsorption mode. The inhibitor is being physically adsorbed

at lower temperatures, while chemisorption is favored as the

temperature increases. Noor and Al-Moubaraki [39]

suggested that with an increase in temperature, some

chemical changes occur in the inhibitor molecules, leading to

an increase in the electron density at the adsorption centers of

the molecule, which causes an improvement in inhibition

efficiency. Al-Sabagh et al. [40] explained that, steel corro-

sion occurs at the uncovered part of the surface. Thus

adsorption of inhibitors was assumed to occur at the higher

energy sites. The presence of inhibitor compounds which

result in the blocking of the active sites must be associated

with an increase in the activation energy (Ea) of steel in the

inhibited sites. The relationships between the temperature

dependence of the percentage IE of an inhibitor and the Ea

can be classified into three groups according to temperature

effects [40, 41].

(i) IE decreases with an increase in temperature, Ea

(inhibited solution) [ Ea (uninhibited solution);

(ii) IE increases with an increase in temperature, Ea

(inhibited solution) \ Ea (uninhibited solution);

(iii) IE does not change with temperature, Ea (inhibited

solution) = Ea (uninhibited solution).

Potentiodynamic Polarization

The polarization curves for carbon steel in 1 N HCl with

the studied inhibitors, I, II and III at different concentra-

tions at 30 �C are shown in Fig. 3 and (Figs. 4,5, supple-

mentary file). The electrochemical corrosion kinetic

parameters, i.e., anodic and cathodic Tafel slopes (ba, bc),

corrosion current density (Icorr) and inhibition efficiency

(gp %) are listed in Table 3. The surface coverage area h
was calculated using Eq. (7):

h ¼ 1� ðIinh=IcorrÞ ð7Þ

Fig. 2 Arrhenius plots of ln (K) versus 1,000/T in the absence and

presence of different concentrations of inhibitor I

Table 2 Activation parameter values in the absence and presence of

different concentrations of the synthesized triazole derivatives (I, II,

III)

Inhibitor Inhibitor

conc.

(ppm by

weight)

Ea

(kJ mol-1)

DH*

(kJ mol-1)

DS*

(J mol-1 K-1)

Blank 1 M 0.00 54.37689 51.73636 -84.0373

I 100 79.78114 77.14062 -8.62097

200 78.15991 75.50027 -16.5359

400 76.26598 73.62546 -25.3487

600 68.12575 65.48605 -53.3254

II 100 77.34182 74.70129 -24.1432

200 27.10031 24.46062 -190.609

400 22.00716 19.36663 -211.154

600 19.06317 14.80557 -227.097

III 100 76.69000 74.0503 -23.8772

200 59.73858 57.09806 -99.1355

400 27.57255 24.93202 -191.231

600 19.55536 16.91566 -219.928

* Standard value
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Fig. 3 Anodic and cathodic polarization curves obtained at 30 �C in

1 M HCl at different concentrations of inhibitor I
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where Icorr and Iinh are the uninhibited and inhibited cor-

rosion current densities, respectively.

The inhibition efficiency (gp %) of this inhibitor was

obtained from Eq. (8):

gp % ¼ h� 100 ð8Þ

It is clear from the polarization curves that the increases

in the inhibitor concentrations of I, II and III decrease the

corrosion current density (Icorr) which consequently

increases the surface coverage values (Table 3). These

inhibitors cause changes in the anodic and cathodic Tafel

slopes and no definite trend was observed in the shift of

Ecorr values in the presence of different concentrations of

the synthesized inhibitors, suggesting that these

compounds behave as mixed-type inhibitors mainly anodic.

The results show that the most effective compound is II

which has the hydrocarbon chain length C10. The maxi-

mum inhibition efficiencies were 83, 91 and 93 %, for

compound I, III, and II, respectively [42–45].

Electrochemical Impedance Spectroscopy (EIS)

Results obtained from EIS can be interpreted in terms of

the equivalent circuit of the electrical double layer shown

in Fig. 6 in the supplementary file [46].

Figure 4 and (Figs. 7–8 supplementary file) show the

Nyquist plots for carbon steel in 1 M HCl solution with and

without different concentrations of the synthesized triazole

compounds (I, II, and III) at 30 �C. The Nyquist plots were

regarded as one part of a semicircle. The charge transfer

resistance values (Rct) were calculated from the difference

in impedance at lower and higher frequencies [47]. The

double layer capacitance (Cdl), values were calculated

using Eq. (9) [48].

f ð�ZmaxÞ ¼ ð2pCdlRctÞ�1 ð9Þ

where f(-Zmax) is the frequency of maximum imaginary

components of the impedance. The inhibition efficiency

was calculated using charge transfer resistance using Eq.

(10):

g % ¼ ððRct�Ro
ctÞ=RctÞ � 100 ð10Þ

where Rct and Rct
o are the charge transfer resistance values

with and without inhibitor for carbon steel in 1 N HCl,

respectively. The electrochemical impedance parameters

derived from the Nyquist plots and the inhibition efficiency

are listed in Table 4. It was clear that, Rct values in the pre-

sence of the inhibitor were always greater than their values in

the absence of the inhibitor and also increase with increasing

inhibitor concentration, which indicates a reduction in the

steel corrosion rate. The capacitance, Cdl, values were lower

due to a decrease in the local dielectric constant and/or an

increase in the thickness of the electrical double layer, sug-

gesting that the inhibitor molecules acted by adsorption at the

metal/solution interface [49]. The inhibiting efficiency was

in the following order: II [ III [ I.

Antimicrobial Activity Against Sulfate-Reducing Bacteria

(SRB)

The antimicrobial activity of the three synthesized com-

pounds (I, II, III) against SRB was determined by the serial

dilution method at doses of 50, 100, 200 and 400 ppm and

the results are listed in Table 5. The three synthesized

Table 3 Potentiodynamic polarization parameters of different concentrations of synthesized triazole derivatives (I, II, III) at 30 �C at a scanning

rate of 2 mV s-1

Inhibitor Inhibitor conc. (ppm by weight) Ecorr [mV (SCE)] Icorr (mA cm-2) ba (mV dec-1) bc (mV dec-1) h g %

0.00 -558.4 0.266 318.2 -174. – –

I 100 -522.7 0.096 158 -152.7 0.637 63.7

200 -560.1 0.066 209.2 -152.3 0.749 74.9

400 -541.2 0.053 147 -104.5 0.800 80.0

600 -560 0.042 260 -140.7 0.839 83.9

II 100 -494.5 0.049 100.3 -140.5 0.814 81.4

200 -488.3 0.046 152.9 -206.3 0.824 82.4

400 -511.2 0.023 118.5 -310.5 0.913 91.3

600 -503.2 0.018 102.6 -293.7 0.931 93.1

III 100 -544.2 0.056 192 -132 0.789 78.9

200 -520.4 0.046 142.9 -290.3 0.827 82.7

400 -510.7 0.024 81.7 -209.3 0.908 90.8

600 -508.4 0.021 126.5 -300 0.919 91.9
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compounds showed impressive results due to their rela-

tively high efficiency against this type of bacteria. The

results indicate that the three synthesized compounds have

high antimicrobial activity against the SRB at relatively

high doses (200–400 ppm), and that the three synthesized

compounds were inactive at the lowest concentration

(50–100 ppm). On the other hand, it was capable to killing

all the bacteria within 3 h (as contact time) at the highest

concentration. To decrease the effect of the microbial

induced corrosion, the biocides should be used to inhibit

SRB growth and other acid producing bacteria in the oil

field.

Biodegradability

The biodegradability of I, II and III was evaluated using

the Die-away test as described in Ref. [50]. The results

of the biodegradation using surface tension measure-

ments for 7 days (Fig. 5) showed a gradual increase in

the biodegradation extent of the different inhibitor

solutions by increasing the time. The extent of the bio-

degradation values of the inhibitor solutions in the river

water reached a maximum after 7 days. The gradual

increase in biodegradation is ascribed to the loss of the

surface activity of the inhibitors dissolved in the river

water. The loss of surface activity may be due to the

disruption of the inhibitor molecules [51]. The biodeg-

radation products in the start of the test period (i.e.,

1–3 days) have surface active characters, which retain

the surface activity of the solutions. However, at the end

of the test period (4–7 days), the products lose their

surface activity due to the severe degradation. The

biodegradation ratios of the inhibitor (Table 6) range

between 35 and 53.8 % after 7 days. The biodegradation

values of these inhibitors specified them as biodegrad-

able compounds [52].
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Fig. 4 Nyquist plots for carbon steel in 1 M HCl in the absence and

presence of different concentrations of inhibitor I

Table 4 EIS parameters in the absence and presence of different concentrations of synthesized triazole derivatives (I, II, III) at 30 �C

Inhibitor Inhibitor conc. (ppm) Rs (ohm cm2) Rct (ohm cm2) Cdl (lF cm-2) h g %

0.00 4.9 160.7 221.8 – –

I 100 28.21 463.9 24.42 0.653 65.3

200 12.22 707.1 22.5 0.772 77.2

400 1.96 829.5 15.34 0.806 80.6

600 5.6 939.7 15.16 0.828 82.8

II 100 15 873 14.58 0.815 81.5

200 13 1,213 8.288 0.867 86.7

400 8 1,726 6.56 0.906 90.6

600 1.72 2,842 5.59 0.943 94.3

III 100 2.33 762.7 9.34 0.789 78.9

200 -7 936.2 6.02 0.828 82.8

400 5.69 1,330 5.9 0.879 87.9

600 8.779 1,479 4.81 0.891 89.1

Table 5 The bacterial count (cell/ml) of different doses of the syn-

thesized compounds (I, II, III)

Dose (ppm)

50 100 200 400

Cpd (I) 1,000 100 10 Nil

Cpd (II) 1,000 10 Nil Nil

Cpd (III) 100 10 Nil Nil
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Conclusions

From the above results it may be concluded that

1. The synthesized triazole derivative compounds dem-

onstrate good inhibition of the corrosion process of

mild steel in 1 N HCl and they have a high capability

to prevent SRB growth.

2. The prepared compounds act as a mixed-type inhibitor

in 1 N HCl. The weight loss and polarization curves

are in good agreement.
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