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Abstract Four water-soluble non-ionic ethoxylated sur-

factants based on vanillin were synthesized (VE15, VE20,

VE40, and VE60). The chemical structures of these sur-

factants were confirmed using FT-IR and 1H-NMR spectra.

The molecular weights of the compounds were determined

using viscosity measurements and gel permeation chro-

matography. Surface tension as a function of the concen-

tration of the surfactant in aqueous solution was measured

at 25, 40 and 55 �C. From these measurements, the critical

micelle concentration (CMC), effectiveness (pcmc), effi-

ciency (pC20), maximum surface (Cmax) excess and mini-

mum surface area (Amin), were calculated. The surface

activity measurements showed their high tendency towards

adsorption and micellization and their good surface tension

reduction, and low interfacial tension. The emulsion sta-

bility measurements showed the applicability of these

surfactants as emulsifying agents. The thermodynamic

parameters of micellization (DGmic, DHmic, DSmic) and

adsorption (DGads, DGads, DSads) showed their tendency

towards adsorption at the interfaces and also micellization

in the bulk of their solutions. The biodegradability of the

prepared surfactants was tested in river water using die-

away method and showed their readily biodegradation in

the open environment.

Keywords Vanillin � Ethoxylate � Surface activity �
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Introduction

In recent years there has been a great interest in surfactants

derived from natural products. The use of naturally

occurring materials is believed to provide improved bio-

degradability. Furthermore, renewable sources are neces-

sary for long-term sustainable production. The economic

importance of nonionic surfactants [1, 2] for detergent

formulations has increased considerably in the past three

decades, and more attention is being paid to their envi-

ronmental compatibility, necessitating proof of their bio-

degradability under natural conditions. Although test

criteria exist as required by legislation, detailed knowledge

of the environmental fate of nonionic surfactants and of

their biodegradability in sewage treatment plants is vital.

Important nonionic surfactant families are the poly eth-

oxylates based on fatty alcohols or alkyl phenols. T-Nonyl

phenol ethoxylates have many industrial, commercial,

institutional, and domestic uses since they are very efficient

and cost-effective surfactants. The presence of alkyl phe-

nols and their ethoxylates in the environment has been

reviewed extensively [3]. Nonylphenol ethoxylates degrade

slowly and the degradation products are more toxic and

persistent than the parent surfactants [4]. Vanillin (4-

hydroxy-3-methoxy benzaldehyde) is the major component

of natural vanilla, which is one of the most widely used and

important flavoring materials worldwide. The source of

vanilla is the bean, or pod, of the tropical Vanilla orchid

[5]. In common with many other low-molecular weight

phenolic compounds, vanillin displays antioxidant and
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antimicrobial properties and hence has the potential for use

as a food preservative [6, 7]. It is active against both Gram-

positive and Gram-negative food-spoilage bacteria and has

been shown to be effective against both yeasts and molds in

fruit purées and laboratory growth media [8–10]. Also

vanillin used as pesticide, green corrosion inhibitors for

corrosion of different metals [11]. Vanillin has many

advantages such as low cost, non-toxicity and easy pro-

duction with the annual production capability in the world

being able reach up to 12,000 ton [12].

In this study, naturally occurring vanillin was chemi-

cally modified into nonionic surface active agents con-

taining hydrocarbon chains and different numbers of

polyethylene oxide units (15, 20, 40 and 60 units). The

surface properties and thermodynamic parameters of the

produced vanillin derived surfactants were determined.

Further to this, the biodegradability of the new synthesized

surfactants was measured.

Materials and Measurements

Chemicals

Commercial vanillin, castor seed oil, monoethanol amine

and ethylene oxide, were purchased from El Goumhoria

Trade Pharmaceuticals & Chemicals Company, Cairo,

Egypt. Sodium hydroxide and hydrochloric acid were

analytical grade chemicals obtained from Merck chemical

company.

Synthesis

Hydrolysis of Castor Oil

Castor seed oil was hydrolyzed according the procedures in

Ref. [13]. In typical procedures, 100 g of castor oil was

reacted with sodium hydroxide solution (250 mL of 10 %

by weight) and the reaction mixture was heated by a water

bath for 2 h. Then bidistilled water (400 mL) was added

while stirring for 1.5 h until the mixture became almost

clear. After cooling, 300 mL of HCl solution (30 % by

weight) was added portion wise under stirring for 3 h. The

reaction mixture was allowed to cool at room temperature,

and then transferred into a 1-L separating funnel to separate

the aqueous layer. The oil phase was then separated,

washed three times with bidistilled water to remove the

excess acid and salts and then dried under vacuum (0.1 bar)

at 40 �C for 24 h. The fatty acids obtained were analyzed

using GPC-chromatography and showed the following

compositions: ricinoleic acid (89.5 %), linoleic acid

(4.2 %), oleic acid (3 %), palmetic acid (1.0 %), and

stearic acid (1.0 %). The molecular weight of the produced

fatty acid (296 g mol-1) was calculated from the obtained

ratio of these acids.

Reaction of Vanillin with Hydrolyzed Castor Seed Oil

Vanillin (4-hydroxy-3-methoxybenzaldehyde) (0.2 mol)

and the hydrolyzed acid of the castor seed oil (0.2 mol)

were esterified in 200 mL xylene as a solvent and in the

presence of 0.01 % p-toluene sulphonic acid as a catalyst.

The mixture was refluxed until the water of the reaction

was obtained (3.6 mL) which indicated the end of the

reaction. The solvent was stripped off under vacuum using

a rotary evaporator. Then, 200 mL of distilled water was

added to dissolve the unreacted vanillin and the catalyst,

while the oily layer was separated using a separating fun-

nel. Vacuum distillation was then performed to the oily

layer to complete drying to afford the vanillin fatty ester

(I) [14], Scheme 1.

Reaction of Vanillin Ester with Mono Ethanol Amine

To 0.1 mol of vanillin fatty ester (I), 0.1 mol of mono-

ethanol amine was added and refluxed in 100 mL of eth-

anol as a solvent for 8 h. The reaction mixture was left to

cool and then filtered. The products were recrystallized

three times from ethanol and dried in vacuum oven at

40 �C to afford the Schiff base of vanillin fatty ester (II)

[15], Scheme 1.

Synthesis of Ethoxylated Nonionic Surfactants

The reaction between vanillin-monoethanol amine Schiff

base ester (II) and ethylene oxide was carried out following

the procedures of Ref. [16]. In a typical experiment, 1 mol

of the synthesized ester was charged into the reaction

system (described in Ref. [16]) in the presence of 1 %

triethyl amine as a catalyst and then was heated to

150–180 �C with continuous stirring. A stream of nitrogen

gas was passed through the system for 2 min to flush out

the air. The nitrogen stream was then replaced by an eth-

ylene oxide stream at a fixed rate, which was regulated by

monitoring the Hg level of the manometer. The reaction

was carried out for different time periods after which the

apparatus was filled with nitrogen, cooled and weighed.

After cooling, the product obtained was discharged,

weighed and the catalyst was evaporated under vacuum

(0.1 mm Hg, at 100 �C). The ethoxylated products

obtained were brown viscous liquids. The differences in

weights indicated the amount of the ethylene oxide units

consumed in the reaction, hence, the number of moles of

ethylene oxide (n) attached to each mole of the reactants

was calculated. The total number of ethylene oxide units

attached to the ester was 15, 20, 40, and 60 units.
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The ethoxylated products obtained were designated as

VE15, VE20, VE40, and VE60, where: n = 15, 20, 40 and

60, Scheme 1.

Measurements

Viscometric Measurements

The intrinsic viscosities (g) of the prepared compounds

were measured in distilled water at 25 �C using a capillary

viscometer (Ubbelohde suspended level type) under

thermostated condition (25 ± 0.5 �C) at surfactant con-

centrations in the range 0.005–5.0 g L-1. The molecular

weights (M. Wt.) were calculated using Eq. (1) [17]:

g ¼ 3:38� 10�3 M:Wt:0:39 ð1Þ

The obtained average molecular weights using viscosity

measurements (M. Wt.V) of the different synthesized

compounds were compared by the expected molecular

weights and listed in Table 1.

Gel permeation Chromatography (GPC)

GPC experiments were carried out using a Supremax 3,000

column (Polymer Standard Service, Mainz, Germany) with

ethanol as eluent (1 mL min–1). The system comprised a

pump (Hitachi, Darmstadt, Germany), an auto sampler

device (Merck Hitachi model AS–2000A) and a vacuum

in–line degreaser. The amount of injected sample volume

per run was 40 ll. The samples were analyzed with a

differential refractive index (RI) detector RI–71 made by

Merck. Molecular weights were calculated using Astra

software (Wyatt Technology Corp). The standards com-

pounds (M. Wt. of 1,000, 2,000, 3,000, and 6,000) were

used for calibration. The average molecular weights

(M. Wt.GPC) of the synthesized compounds were obtained

relative to the standard compounds (Fatty acid solutions

in ethanol) and listed in Table 1. The distribution by

GPC was given in term of polydispersity and listed in

Table 1.

Surface Tension

Surface tension measurements were obtained using a

Du–Noüy tensiometer with a platinum ring. Freshly

prepared aqueous solutions of the synthesized nonionic

surfactants were measured over a concentration range of

0.01–0.000005 ML–1 at 25, 40, and 55 �C. Apparent sur-

face tension values were an average of three readings with

2-min intervals between the readings [18].

OH

OCH3

HC O

+ RCOOH

Esterfication
Xylene

p-toluene sulphonic acid

OCOR

OCH3

HC O

(I)

(II)

OCOR

OCH3

HC O

NH2CH2CH2OH
Ethenol

-H2O

OCOR

OCH3

HC NCH2CH2OH

OCOR

OCH3

HC NCH2CH2OH

(III)
O

Ethoxylation

OCOR

OCH3

HC NCH2CH2O(CH2CH2O)nH

Tri ethyl amine
120-180 oC

Scheme 1 The synthetic route

of ethoxylated non-ionic

surfactants based on vanillin.

Where n = 15, 20, 40 and 60.

And R ricinoleic acid (89.5 %),

linoleic (4.2 %), oleic (3 %),

palmitic (1.0 %), and stearic

(1.0 %)

J Surfact Deterg (2012) 15:735–743 737

123



Interfacial Tension

The interfacial tension measurements were obtained

between an aqueous solution of the synthesized nonionic

surfactants at a concentration of 0.1 % and light paraffin oil

at 25 �C using the same procedures as the surface tension

measurements [18].

Emulsification Power

The procedure was that 10 mL (0.1 wt%) of each of the

different surfactant solutions was individually placed in a

100-mL cylinder and then 10 mL of the paraffin oil was

added. The cylinder was shaken vigorously for 10 min and

then allowed to settle. The time required to separate 9 mL

of pure surfactant solution was recorded (average of three

readings) and was taken as an indication of the emulsifi-

cation power of each surfactant [19].

Cloud Point Measurements

For determining the cloud point (CP), 3 ml of the surfac-

tant solution (0.5 wt%) was placed in a Pyrex glass tube

(15 ml capacity), which was then placed in a controlled

heating apparatus. The temperature was raised slowly at a

rate of 0.1 �C min-1 near the CP, and the temperature at

the onset of sudden clouding in the solution was taken as

CP [20].

Biodegradability

The biodegradability test (Die away method) in river water

of the nonionic surfactant was determined by the surface

tension method using a du-Noüy tensiometer (Krüss type

K6) [21–23]. In this method, each surfactant was dissolved

in river water to a concentration of 100 ppm and incubated

at 38 �C. A sample was withdrawn daily (for 28 days),

filtered and the surface tension value was measured. The

biodegradation percent (D%) was calculated as follows:

D% ¼ ðct � coÞ
cbt � co

� 100 ð2Þ

where ct is the surface tension at time t, co is the surface

tension at time = 0 (initial surface tension) and cbt is the

surface tension of river water without addition of surfac-

tants at time t.

Results and Discussion

Structure

The chemical structures of the synthesized nonionic eth-

oxylated surfactants (VEn) were confirmed using FTIR and
1H-NMR spectroscopy as follows (VE15 was taken as a

representative sample for the synthesized surfactants):

IR spectra: FTIR spectra of the synthesized compounds

showed the following absorption bands: 3,392 cm-1 (OH),

2,924 cm-1 (CH3), 2,869 cm-1 (CH2), 1,733 cm-1 (C=O),

1,642 cm-1 (CH=N), 1,458 cm-1 (CH2)n, 1,105 cm-1 (C–

O), phenyl groups, 845 cm-1.
1H-NMR spectra: 1H-NMR spectra of the synthesized

compounds in CDCl3, showed signals at: 0.84 ppm (t, 3H,

CH3), 1.26 ppm (m, 24H, CH2), 1.57 ppm (s, 3H, OCH3),

2.00 ppm (m, 2H, OCOCH2(CH2), 3.87 ppm (s, 1H, OH)

disappeared by the deuteration, 4.18 ppm (s, 1H, CH=N),

7.25 ppm (m, 3H, C6H3). The signal at 3.64 ppm (t, nH,

OCH2CH2) defined the methylene groups in the repeated

ethylene oxide units, where n = 60, 80, 160, 240H for

VE15, VE20, VE40, VE60, respectively.

Surface Activity

The surface tension versus -log C relationship of the

synthesized nonionic surfactant at 25, 40, and 55 �C is

shown in Fig. 1a, b (compound VE15 and VE60 were taken

as representative for the tested compounds). It is clear that

the relationship is characterized by two distinguishable

regions. The first at low concentration range and charac-

terized by a fast decrease in the surface tension values, i.e.,

high slope. While the second (at higher concentrations)

where the surface tension variation remains almost con-

stant by increasing the concentration, i.e., the slope is

almost constant. The concentration at the break point of

these two regions was taken as the critical micelle con-

centration (CMC).

The CMC values determined from Fig. 1 were listed in

Table 2. It is obvious that the increase in the number of

oxyethylene (EO) units increases the value of the CMC

[24]. That can be attributed to the increase in the hydro-

philic character of surfactants in water. Such improvements

in the solubility lower the tendency for surfactants to form

Table 1 Expected molecular weight (M. Wt.E), average molecular

weight obtained from viscosity measurements (M. Wt.V), average

molecular weight and polydispersity obtained from Gel permeation

chromatography (M. Wt.GPC)

Compound M. Wt.E

(g mol-1)

M. Wt.V

(g mol-1)

M. Wt.GPC

(g mol-1)

PolydispersityGPC

VE15 1,134 1,100 1,168 1.13

VE20 1,354 1,313 1,395 1.25

VE40 2,234 2,167 2,301 1.32

VE60 3,114 3,021 3,207 1.47
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micelles in water, which consequently increases the CMC

values.

From the data presented in Table 2, it can be concluded

that there is continuous increase in the CMC values on

increasing the number of EO units (15, 20, and 40). Also,

the reduction of surface tension is increased by increasing

the number of EO units within the surfactant molecules.

Surfactant containing 60 EO units (VE60) has the lowest

CMC values at 25, 40, and 55 �C (Table 2).

The increase in the temperature of the measurements

from 25 to 55 �C leads to a moderate decrease in CMC

values. This can be attributed to the hydrogen bonds

breakdown. As a result of the temperature rising, the sur-

factant molecules separate from the aqueous phase due to

the breakdown of the hydrogen bonds to form the micelles

[25].

The maximum surface excess concentration (Cmax) in

mol cm-2 was calculated from the following relationship

[18]:

Cmax ¼ 2:303RT � oc
o log C

ð3Þ

where R = gas constant (8.314) and T = t ? 273 (�K).

The Cmax values in Table 2 were used to calculate the

average minimum area per adsorbed molecule at the

aqueous–air interface at saturated condition (Amin) using

Eq. 4 [18]:

Amin ¼
1014

NACmax

ð4Þ

where NA is Avogadro’s number.

By inspecting the data Table 2, it can be concluded that

the Cmax values decrease by increasing the number of EO

units in the nonionic chain, and similarly does the temper-

ature rising from 25 to 55 �C. It is apparent from Table 2

that Amin values increase by increasing the temperature of

the measurement, which could be due to the coiling of the

nonionic hydrophobic chains at the interface [26].

Cloud Point for the Ethoxylated Synthesized

Compounds

The solubility of nonionic surfactants in the aqueous phase

is related to the hydrogen bonds formation between their

molecules and the water molecules. Increasing the number

of the hydrogen bonds increases the solubility of nonionic

surfactants in the water phase. Several factors affect the

hydrogen bonds formed, including: temperature, added

salts and pH. As the temperature of a nonionic surfactant

solution is increased, the hydrogen bonds breakdown due

to an increase in the activation energy of the system

[25–27]. At a certain temperature, known as the cloud point

(CP), the surfactant molecules separate out of the solution,

causing it to become cloudy. Ultimately, the surfactant

solution separates into two immiscible phases: a surfactant

rich phase and a surfactant poor phase. Phase separation

occurs because of the difference in density of the micelle

rich and micelle poor phases.

Data presented in Table 2 revealed that the cloud points

of the nonionic surfactant under consideration increased

with increasing the ethylene oxide content. This can be

attributed to the increase in the number of oxyethylene

units. Increases in the number of the oxyethylene units

increases the ethereal bonds (–O–) in the molecule which

plays a central role in increasing the hydrogen bonds

between water molecules and the lone pairs of electrons of

the ethereal oxygen atoms [28]. The surfactant which
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Fig. 1 a Surface tension versus -log concentration of VE15

nonionic surfactant at different temperatures. b Surface tension

versus -log concentration of VE60 nonionic surfactant at different

temperatures
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contains 60 oxyethylene units (VE60) requires higher

energy to break the hydrogen bonds, which explains its

relatively high cloud point at 74–76 �C. Among the other

surfactants which contain 15, 20 and/or 40 oxyethylene

units, the cloud points were gradually increased from

57–59 �C for VE15 to 60–62 �C for VE40. Since the cloud

point is strongly related to the solubility of the surfactant in

water, a plot of cloud points against the number of oxy-

ethylene groups (n) was plotted in Fig. 2. It is noteworthy

that the plot shows a linear increase in the cloud point with

the number of oxyethylene units; when the number of

oxyethylene groups is greatly increased from n = 15

(VE15) to n = 60 (VE60).

Emulsification Power

The tendency of the surfactants solution to form oil-in-

water or water-in-oil emulsions is a reflection of the ability

of surfactant molecules to locate at the boundary surfaces

between the different phases. Hence, the most adsorbed

surfactant molecules at the interface are the most powerful

emulsifying agents. The emulsification efficiency in this

study was measured as the time required for separation of

9 mL of pure water from the emulsion formed between

surfactant solution (0.1 % wt) and paraffin oil (10 mL:

10 mL). Increasing the time required for separation of the

desired amount of water from the emulsified system indi-

cates the stability of the formed emulsion, and vice versa.

Table 2 shows the emulsification tendency of the synthe-

sized surfactant, and reveals that nonionic surfactants

which contain short oxyethylene chains (VE15, VE20)

exhibit low emulsification efficiencies at 180 and 300 s,

respectively. While, surfactants contain long oxyethylene

chains VE40 and VE60 form more stable emulsions at 600

and 3,000 s, respectively.

Thermodynamics of Micellization and Adsorption

of VE15–VE60 Surfactants

The behaviors of the surfactant at the interface and in the

bulk of their solutions depend on the thermodynamic

parameters of micellization and adsorption. The thermo-

dynamic parameters including standard free energy,

entropy and enthalpy (DG, DS, DH) were calculated using

Gibbs equations as follows [18], and data are summarized

in Table 3:

Table 2 Critical micelle concentration (CMC), effectiveness (pcmc),

efficiency (Pc20), maximum surface excess (Cmax), minimum surface

area (Amin), interfacial tension (cIT), emulsification power and Cloud

point of the synthesized ethoxylated nonionic surfactants based on

vanillin at different temperature 25, 40 and 55 �C

Compound T (�C) CMC

(mM)

Cmax 9 10-11

(mol cm-2)

Amin

(nm2 molecule-1)

cIT

(m Nm-1)

Emulsification

power (S)

Cloud

point (�C)

VE15 25 0.257 7.24 229.24 40 180 57–59

40 0.241 5.12 324.07

55 0.233 2.76 600.88

VE20 25 0.831 7.23 229.49 39 300 57–59

40 0.815 6.10 272.30

55 0.792 4.74 350.15

VE40 25 1.050 6.43 258.17 34 600 60–62

40 0.994 5.86 283.44

55 0.962 4.49 369.59

VE60 25 1.48 5.63 294.76 33 3,000 74–76

40 1.35 4.87 340.93

55 1.27 4.03 411.65

55
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75

10 20 30 40 50 60

oxyethylene units, EO

C
P

, 
o C

Fig. 2 Cloud point versus ethylene oxide units of nonionic surfactant
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DGmic ¼ RT lnðCMCÞ ð5Þ

DSmic ¼
DGmic

DT
ð6Þ

DHmic ¼ DGmic þ ðTDSmicÞ ð7Þ
DGads ¼ DGmic � ð0:6� pcmc � AminÞ ð8Þ

DSads ¼
DGads

DT
ð9Þ

DHads ¼ DGads þ ðTDSÞ ð10Þ

where R is the universal gas constant (= 8.314 J mol K-1),

T the absolute temperature, pcmc is the effectiveness and

Amin is the minimum surface area.

All the synthesized surfactants showed negative values

of the free energies of micellization and adsorption (DGmic,

DGads) indicating that these two processes occurred spon-

taneously. Comparing the values of DGmic, DGads showed a

slight increase in DGads values than DGmic. The higher

negativity of DGads values indicates the adsorptive ten-

dency of these surfactants rather than micellization ten-

dency. That is attributed to the well arrangement of their

molecules at the interface, which decreases the repulsion

due to the aqueous phase. Increasing the number of EO

units in the nonionic surfactant molecules decreases the

DGmic and DGads values, which could be attributed to

the increase in the solubility of the different analogous as

the result of hydrogen bonds formation.

The contribution of each oxyethylene group in the two

processes was expressed in term of DG/nEO, Table 3.

Obviously, the contribution of EO units in the adsorption

process is more than their contribution in the micellization

process. That is due to the predominance of the hydrogen

bonds formation at the interface with water molecules.

While, in the case of the micellization process, the system

requires more energy to introduce the two methylene group

into the bulk of the formed micelles. The gradual increase

of the oxyethylene units in the surfactant molecules grad-

ually decreases their contributions in the two processes, as

a result of increasing the repulsion between the increased

number of ethylene groups and the water molecules. On

raising the temperature, the negativity of DGmic, DGads are

increased due to the stability of the adsorbed and micel-

lized surfactant molecules than the freely dispersed ones in

the aqueous phase.

Entropy changes of micellization (DSmic) are low values

which point to the ordering of surfactant molecules par-

ticipating in the micellar phase. Ordering of the molecules

shows the compactness at which the hydrophobic chains

are coiled in the micellar core in high compatibility, and

the hydrophilic groups faced the water phase. That

arrangement decreases the repulsion in the surfactant-

aqueous phase system and leads to stabilization of the

formed micelles. The sequence of the enthalpy changes

(Table 3) shows that both the micellization and adsorption

processes are occurred and the majority was for the

adsorption process than the micellization process.

Biodegradability

Agricultural, industrial and domestic use of surfactants

leads to the entry of these compounds into terrestrial and

aquatic ecosystems. Synthetic surfactants vary significantly

in structure, but most consist of alkyl or alkyl phenol

groups attached to nonionic or anionic hydrophilic moieties

[29–34]. Permanent use of alkylphenol ethoxylate com-

pounds usually causes pollution problems because they do

not undergo biodegradation by micro-organisms present in

soil and water. In the environmentally friendly surfactants,

Table 3 Thermodynamic parameters of adsorption and micellization for the synthesized ethoxylated non- ionic surfactants based on vanillin at

25, 40, 55 �C

Compound T

(�K)

DGads

(kJ mol-1)

DGads/(EO)n

(kJ mol-1)

DGmic

(kJ mol-1)

DGmic/

(EO)n(kJ mol-1)

DSads

(kJ mol-1 K-1)

DSmic

(kJ mol-1 K-1)

DHads

(Kcal mol-1)

DHmic

(Kcal mol-1)

VE15 298 -25.85 -1.72 -20.48 -1.37 – – – –

313 -28.49 -1.90 -21.68 -1.45 -0.176 -0.080 – –

328 -34.89 -2.33 -22.82 -1.52 -0.427 -0.075 -73.95 -47.59

VE20 298 -22.95 -1.15 -17.58 -0.88 – – – –

313 -24.56 -1.23 -18.51 -0.93 -0.107 -0.062 – –

328 -27.04 -1.35 -19.48 -0.97 -0.166 -0.064 -81.34 -40.58

VE40 298 -22.88 -0.57 -16.99 -0.42 – – – –

313 -24.29 -0.61 -17.98 -0.45 -0.094 -0.067 – –

328 -26.93 -0.67 -18.95 -0.47 -0.176 -0.063 -84.71 -39.76

VE60 298 -22.87 -0.38 -16.15 -0.27 – – – –

313 -24.77 -0.41 -17.21 -0.29 -0.127 -0.070 – –

328 -27.08 -0.45 -18.19 -0.30 -0.154 -0.066 -77.68 -39.85
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bacteria exploit these potentially useful resources of

reduced carbon to derive energy and support growth

[35–38].

The biodegradability of the synthesized ethoxylated

nonionic surfactants was evaluated using a surface tension

method. Since all the prepared surfactants under investi-

gation have the same hydrophobic part, hence, hydrophilic

oxyethylene chain length is the sole factor affecting this

process. It is clear from the results of the biodegradation

die-away test in the river water in Table 4 that the bio-

degradation ratio of all of the prepared compounds ranged

from 70 to 89 % after the 28th day of exposure to the

microorganisms. Furthermore, the highest biodegradation

extent was obtained in the case of VE40 and VE60 at 82 and

89 % compared to VE15 and VE20 surfactants at 70 and

78 %, respectively. As concluded from the biodegradation

ratios, the values meet the international recommendation of

the biodegradable surfactants in drain water which is 75 %

after 28 days [39]. It is clear that there is a direct rela-

tionship between the number of attached oxyethylene units

and the percentage of biodegradation. Consequently, these

surfactants can be classified as biodegradable surfactants.

In fact, the biodegradation affinity is due to the presence of

a naturally occurring compound, i.e., vanillin, which has

the ability to degrade by the action of the environmental

microorganisms. Additionally, the presence of the oxy-

ethylene units within the surfactants structure increases

their ability towards biodegradation [40].

The simplest pathway of the degradation considered in

case of the studied compounds is the bacterial attack at the

far end of either the hydrophobe or the oxyethylene chain,

or a central fission separating the hydrophobe and the EO

chain. The attack at the terminal group results in shortening

the oxyethylene chain by one unit, which is called (w-EO

pathway). That pathway is the most common and has been

documented [41, 42].
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