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Abstract Silicone surfactants have been widely used in

our daily life and many industrial fields on the basis of their

unusual properties. Only in the past decades has the use of

silicone as a hydrophobic building block for the prepara-

tion of surfactants become common. The recent trend to

combine silicone, polyoxyalkylene and carbohydrate moi-

eties in the same molecule has resulted in a plethora of new

compounds with new properties. The generic structure and

surface activity of silicone surfactants are reviewed in this

article. Especially, the preparation, properties and appli-

cation of carbohydrate-modified silicone surfactants such

as glucosamide-containing and glycoside-containing sili-

cone surfactants are described in detail. In addition, the

future development of silicone surfactants is discussed.
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Introduction

Silicone surfactants are a group of small-molecule and

polymeric surfactants. They consist of a permethylated

siloxane hydrophobic group (silicone-soluble group) cou-

pled to one or more polar groups (water-soluble group) in

the same molecule.

Silicone surfactants exhibit some unusual properties.

The siloxane moiety is hydrophobic and oleophobic, which

allows for application in both aqueous and nonaqueous

media. They are often liquids even when their molecular

weights are rather high. They are usually thermal stability,

ultraviolet ray resistant, low toxicity and low surface ten-

sion [1–3].

The unique character is closely connected with bonding

parameters. The difference of electronegativities of the

Si–O bond is 1.76, according to Allred-Rochow. Never-

theless, this polar bond has little influence on the solubility

of silicone oils. Evidently, these bonds are shielded by

methyl groups that are exposed exclusively at the surface.

The Si–O bond length is 0.165 nm compared to 0.140 nm

of a C–C bond. The Si–O–Si bond angle of 130 ± 10� is

much larger than the corresponding C–O–C bond angle of

110� in dimethyl ether.

Silicone surfactants have been widely used in our daily

life and many industrial fields such as polyurethane foam,

household, personal care, cosmetics, agricultural adjuvants,

textiles and coatings as foam stabilizers, detergents,

emulsifying agents, wetting agents and antifoaming/de-

foaming agents [4–8].

In contrast, carbohydrate surfactants such as N-alkyl

glucosamides (NAGA) and alkyl polyglucosides (APG)

have been known for many years and are particularly

interesting because they are (partially) based on renewable

resources. In recent years, they have begun to be produced

on an industrial scale and their usage has been gradually

increasing because of their valuable properties, such as

good dermatological compatibility, excellent biodegrad-

ability, and the absence of toxic effects.

An increasing number of recent publications have

described carbohydrate-modified silicone surfactants. The

idea is to combine the extraordinary surface activity and

wetting properties of siloxanes with the biodegradability of

carbohydrates.
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A summary of the synthesis and the properties of car-

bohydrate-modified silicone surfactants are given in this

review paper.

General Information of Silicone Surfactants

Structure of Silicone Surfactants

Scheme 1 gives a general formula demonstrating organi-

cally modified polysiloxanes by substituting various

organic groups for methyl moieties.

This generic structure describes the variety of organo-

modified siloxanes. R and/or R0 represent various organic

polar groups, which can be aliphatic and/or aromatic;

monomers or polymers. They can be attached to a linear,

grafted, or branched siloxane backbone via a Si–C bond

(z = 0) or a Si–O–C bond (z = 1). In this way, it is possible

to control solubility and compatibility. In general, the

organically substituted silicones have relatively short silox-

ane chain lengths (x ? y = 1–200). The organic substitu-

ents play a substantial role in the properties of such products.

According to the molecular structure, the grafted poly-

siloxane is more in the variety of organo-modified silox-

anes. The advantage of using grafted copolymers is that

they are more resistant to hydrolysis and chemical attack

than linear types. According to the linkage of the siloxane

backbone and organic groups, the organic groups are

attached to the siloxane backbone through a series of

hydrolytically stable Si–C bonds by the hydrosilylation

reactions or through Si–O–C bonds by a condensation

reaction. The latter offers limited resistance to hydrolysis

under neutral or slightly basic conditions, but breaks down

in strong acidic and basic condition.

The versatility of silicone surfactants comes from the

many organic functional groups that can be incorporated

into the molecule. Many types of polar groups have been

described, but nonionic groups based on polyoxyethylene

(PEO) and polyoxypropylene (PPO) have been the most

extensively studied.

Surface Activity of Silicone Surfactants

Silicone surfactants have more excellent properties than the

organic surfactants. These properties can be attributed to

the strength and flexibility of the Si–O bond, its partial

ionic character, and the low interactive forces between the

nonpolar methyl groups, characteristics that are directly

related to the comparatively long Si–O and Si–C bonds.

Siloxane surfactants significantly reduce the surface

tension of the solution at low concentration, indicating that

these molecules adsorb strongly at the air/water surface and

that they are highly effective aqueous surfactants, reducing

the surface tension of water to approximate 21 mN/m.

The low surface tension of silicone surfactants has been

attributed to both the preponderance of highly surface

active methyl substituent and a flexible polymer backbone.

The length of the Si–O and Si–C bonds allows an unusual

freedom of rotation, which enables the molecules to adopt

the lowest energy configuration at interfaces. By compar-

ison, hydrocarbon surfactants generally have many meth-

ylene groups in their hydrophobic portions, which have an

intrinsically higher surface energy than methyl groups. The

surface tension values of these surfactants suggest that the

siloxane portion lies flat on the water surface, exposing the

methyl groups to the air.

A dramatic change in slope of the surface tension

versus log surfactant concentration curves is generally

interpreted as the onset of surfactant aggregation into

micelles in bulk aqueous solution. Micelle formation by

siloxane surfactants in aqueous solution has not been

extensively investigated. Most of the studies to date report

critical micelle concentrations (CMC) values from surface

tension versus log surfactant concentration plots.

Although the structure of the micelles formed has been

investigated in the past few years, no conclusion has been

drawn on the tendency of these surfactants to form well-

defined micelles [9–15].

Glucosamide-Modified Silicone Surfactants

Prepared by Reacting the Aminosilicone

with Aldoniolactone

Wagner et al. [16, 17] reported a synthetic sequence of

reaction of aldoniolactones with primary amino functions

of polysiloxanes. A series of carbohydrate-modified sili-

cone surfactants (Scheme 2) were synthesized and their

properties such as spreading and wetting on a low energy

surface (tetrafluoraoethylene-hexafluoropropylene copoly-

mer; FEP) were determined.

von Braunmühl et al. [18] synthesized aldonamide

siloxanes (Scheme 3) in a broad variety of molecular

weight and composition by the hydrosilylation reaction of

polymethylhydrosiloxane (PMHS) with O-acetylated N-

allylaldonamides of various sugars using different transi-

tion metal complexes as catalyst.
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Scheme 1 The generic structure of organo-modified siloxanes
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Han et al. [19–25] reported the synthesis of a series of

glucosamide-modified silicone surfactants such as glucosa-

mide-based trisiloxane surfactants, glucosamide-based tri-

siloxane surfactants of substitution in the oxyethylene units,

and glucosamide-based trisiloxane gemini surfactants

(Scheme 4). The properties of these glucosamide-based tri-

siloxane surfactants were determined by the surface tension,

critical aggregation concentration (CAC), the spread abili-

ties on hydrophobic surface (paraffin wax, sterile polysty-

rene, wheat and cabbage leaf) and the hydrolyzations.

These trisiloxane surfactants significantly reduced the

surface tension of the solution to approximately 21 mN/m

at low concentration and possessed advantageous spread

properties.

Du et al. [26] synthesized carbohydrate-modified silox-

ane surfactants (Scheme 5) by an analogous method. Their

surface activities, adsorption, and aggregation behavior in

aqueous solution were investigated by surface tension

measurements, dynamic light scattering (DLS) and trans-

mission electron microscopy (TEM).

Prepared by Reacting the Aminosilicone with Glucose

Ma [27] prepared a group of glucosamide gemini surfac-

tants (Scheme 6) by the catalytic hydrogenation reaction

between glucose and a,x-diaminopropylsiloxane in the

presence of the Pd/C as a catalyst.

Members of this kind of surfactant reduced the surface

tension of water to 25–35 mN/m at concentration levels of

10-4–10-5 mol/L.

Moreover, the shapes of molecular aggregates of gemini

surfactants in water were studied by transmission electr-

omicroscopy. In the dilute solution, the product displayed

unprecedented aggregation behavior with a thread-like

micelle-to-vesicle transition. The stability of vesicle was

increased as the length of spacer chain grew.

Prepared by Reacting the Epoxy-Silicone

with Amino-Sugar

Dietz et al. [28] prepared the siloxane-polyether-sugar

ternary copolymers (Scheme 7) by reacting polyether-

epoxy-siloxane with N-methylglucamine.

Polyether silicones belong to the class of nonionic sur-

factants which show inverse solubility behavior in water. In

other words, they decrease in solubility as the temperature

rises. This behavior is defined by what is known as the

inverse cloud point. Sugar silicones are likewise nonionic

surfactants that exhibit a ‘‘normal’’ solubility behavior. In

other words, their solubility in water improves constantly

as the temperature climbs. Therefore, through an appro-

priate balance of polyether groups and sugar groups at the

molecular level, it is possible to prepare silicone surfac-

tants with custom-tailored solubility parameters as emul-

sifiers for use in microemulsions.

The sugar radicals increase as a proportion of the sum of

the sugar and polyether radicals and there is likewise an

increase in the cloud point. With a relatively short siloxane

chain and an approximately constant number of functional

groups per molecule, the cloud point is raised for a com-

parable proportion of the sugar radicals to the polyether

radicals.

Pure sugar siloxanes, despite the large number of OH

groups, are of poor solubility in water, probably owing to the

formation of aggregates as a consequence of strong hydrogen

bonds. The additional polyether radicals in the sugar silox-

anes prevent the aggregation of sugar radicals and hence

raise the solubility of sugar siloxanes. The sugar-polyether-

siloxane features a greatly increased stability in water in

comparison with corresponding binary sugar siloxanes.

Wagner et al. [29] synthesized sulfobetain amphoteric

surfactants (Scheme 8) by means of the reaction of

siloxanylpropyl-2,3-epoxypropylether with glucamine or

N-methylglucamine, respectively, followed by the addition

of butanesultone.

The biodegradability, as determined by the OECD

test, was 60% higher than that of a common poly-

dimethylsiloxane. But the value of degradability was much

lower than it is for hydrocarbon surfactants.

The very high surface activity of this type of siloxane

was expressed by the low critical micelle concentration and

the maximum surface tension depression. And they were

very good emulsifiers.
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Wagner et al. [30] further reported quaternization of

tertiary amino functions containing aminoalkylamides

yields polyhydroxylated ammonium salts (Scheme 9).

The reactions between primary and tertiary amino

functions containing polyamines and polyhydroxylated

lactones were carried out and yielded the corresponding

amides. The quaternary ammonium salts were synthesized

by using epoxy-silicone as an alkylating agent. An essential
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precondition for a quantitative alkylation is a sufficiently

long alkylene bridge (n C 3) to insulate the tertiary amino

function from electronic (amide structure) influences.

Glycoside-Modified Silicone Surfactants

Prepared by Protective Groups

Jonas et al. [31, 32] followed a multistep procedure on the

route to carbohydrate-polysiloxane graft copolymers. Per-

acetylation, glycosidation, hydrosilylation and finally

deacetylation yield, mainly b-glycosides of polysiloxanes.

Haupt et al. [33] prepared carbohydrate-modified poly-

dimethylsiloxanes (Scheme 10) by an analogous method.

Wagner et al. [16] also synthesized glycoside-modified

siloxanes in a four-step sequence which includes peracet-

ylation, glycosidation, deacetylation and hydrosilylation.

Prepared by Directly Glycosidation

Glycosides bearing siloxanyl moieties have been claimed

by Greber [34] and Sejpka et al. [35]. In both cases, acid

catalyzed Fischer glycosidations were described, despite

the known tendencies of unprotected reducing carbohy-

drates to oligomerize and of siloxanes to equilibrate under

such conditions.

O’Lenick [36, 37] provided a series of novel silicone

containing glycoside polymers (Scheme 11), which were

prepared by the reaction of a dimethicone copolyol with a

saccharide or saccharide source in the presence of an acid

catalyst. They were substantive to skin and hair and pos-

sessed outstanding emoliency properties when applied to

the skin. In addition, unlike the alkyl products previously

known, these materials were exceptionally well tolerated

by the skin and eye and were essentially non-irritating. The

compounds were very mild surface active agents which

were ideally suited for use in personal care compositions

like hair and skin care products.

Sejpka et al. [38] reported that glycoside polysiloxanes

(Scheme 12) could be prepared by two various processes.

In the first process, the compound whereas synthesized by

the hydrosilylation reaction of polymethylhydrosiloxane

(PMHS) with allyl polyoxyethylene ether glycosides. The

latter was synthesized by the glycosidation reaction of

saccharide with allyl polyoxyethylene ether. The excess

allyl polyoxyethylene ether can be removed by distillation

in the glycosidation. In the second process, the glycoside

silicone polymers were prepared by the reaction of a

dimethicone copolyol with a saccharide in the presence of

an acid catalyst. The excess polyethyleneoxide-modified

silicone to lower the polymerization degree of glucoside

was not easy to remove. The polysiloxane chain could be

equilibrated again by the acid catalyst.

Afriat et al. [39] prepared the siloxane-alkyl-glycoside

ternary copolymers (Scheme 13) as a moisturizing agent in

a cosmetic or dermatological composition. They were

especially effective for treating human skin and the scalp,

and were particularly effective for moisturizing the skin

and treating dry skin. The composition had long-lasting

skin moisturization properties.

Wagner et al. [40] prepared the anion trisiloxane sur-

factant (Scheme 14) by the hydrosilylation of ally1 glyc-

idyl ether with H-siloxanes followed by the reaction of the
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product with the sodium salt of glucose maleate. The

compound was a nearly white solid with good solubility in

water and some alcohols.

Using the same reaction path, a number of compounds

with polymeric siloxane groups were synthesized. How-

ever, they were not soluble in water.

Sahoo et al. [41] synthesized glycoside-modified silox-

ane (Scheme 15) by esterification between organosilicon

carboxylic diacids and a C1-O-alkylated sugar by using

Novozyme 435 as a catalyst under mild reaction conditions

(i.e., low temperature, neutral pH, solventless). Specifi-

cally, the acid-functionalized organosilicones reacted with

the primary hydroxyl group at the C6 position of a,b-ethyl

glucoside during the regioselective esterification. The pure

organosilicon-sugar conjugates were prepared in a one-step

reaction without protection–deprotection steps and without

activation of the acid groups with the integrity of the

siloxane bonds.

Further Work

A great variety of silicone derivatives with different

structure and functional properties is now available to the

formulator. These derivatives permit great formulation

latitude and make possible the creation of products which

are optimized for specific applications.

The modification of siloxanes with carbohydrate moie-

ties led to a new class of surface active silicone compounds

with improved biodegradability. This advance can expand

the application of siloxane surfactants into new fields.

Future work on silicone surfactants needs to continue to

develop new materials that are able to deliver multiple

performance capabilities. A series of surfactants, based on

silicone as a hydrophobe and containing other functional

groups similar to those in conventional surfactants, have

been and continue to be developed. These surfactants are

silicone functional analogs of conventional surfactants.
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