
ORIGINAL ARTICLE

The Clouding Phenomenon for Anionic Sodium Dodecyl
Sulfate + Quaternary Bromides in Polar
Nonaqueous-Water-Mixed Solvents

Kabir-ud-Din Æ Sanjeev Kumar Æ Nahid Parveen

Received: 28 November 2007 / Accepted: 7 July 2008 / Published online: 14 September 2008

� AOCS 2008

Abstract Aqueous sodium dodecyl sulfate (SDS) solutions

show clouding in the presence of tetra-n-butylammonium

bromide (TBAB) and tetra-n-butylphosphonium bromide

(TBPB). In this study, we report the effect of various volume

percents of different polar nonaqueous solvents (acetonitrile,

AN; dimethylsulfoxide, DMSO; methyl ethylene glycol

ether, MC; formamide, FA; ethylene glycol, EG) on the

clouding behavior of SDS ? quaternary bromide (TBAB or

TBPB) systems. The cloud point (CP) was found to decrease

with initial increase in the volume percent of the above sol-

vents in mixtures (with water). After a minimum in CP vs.

volume percent plots, further increase in the volume percent

caused an increase in the CP, followed by a near constant

region. The data have been discussed on the basis of the

effect of the above solvents on the two types of water present

in the system: hydrated water and bulk water. As AN

had shown a gradual decrease in the CP to a larger volume

percent, it was chosen for detailed studies. Compared to

TBAB, TBPB has diminished the effect of AN on CP

increase due to its bigger size. The limited CMC data also run

parallel to CP results.

Keywords Nonaqueous solvents � CP � CMC �
SDS � Quaternary bromides

Introduction

Weighing the contributions of specific interactions between

head groups, counterions and water in the interfacial

regions of self-assemblies of surfactant molecules in

aqueous solution that balance the hydrophobic effect and

control the various transitions (e.g., structural and phase) of

ionic micelles and biomembranes has proved arduous [1,

2]. Understanding the factors that control this self-assem-

bly is central to a wide range of applications [3–5]. Despite

their great significance, many important features of such

self-assemblies have resisted theoretical explanation.

Temperature is one of the important factors that dominate

the formation of surfactant self-assemblies and, recently

we have focused on several surprising and unexplained

features of the temperature dependence of aqueous self-

assembly of ionic surfactants in the presence of symmet-

rical quaternary bromides [6–11].

It is well known that below the Krafft point, ionic sur-

factants cannot form micelles [12]. In contrast, the aqueous

micellar solutions of nonionic surfactants exhibit a lower

consolute temperature, also called the cloud point (CP)

[13]. The concentration dependence of the CP defines a

phase boundary between the single and double phase

systems, and the minimum temperature can be identified as

the lowest consolute temperature. Above this temperature

the solution separates into two phases: a concentrated

phase containing most of the surfactant and another phase

containing a surfactant concentration close to CMC. To

explain this phenomenon, several mechanisms, including

formation of mixed micelles, complexation or solubiliza-

tion, have been proposed. Recent investigations have

shown that the formation of the connected micellar

network [14] or the strongly orientation-dependent inter-

actions (H-bonds) between water and the surfactant heads
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[15] could be responsible for the CP behavior. Generally,

the CP phenomenon can not happen in ionic surfactant

systems because of the significant electrostatic repulsions

between the charged self-assemblies. However, aqueous

solutions of some ionic surfactants did exhibit the CP

behavior in the presence of quaternary bromides having

R C C4H9. The mechanism of the behavior is still an

unexplained and challenging task in surfactant research

[16–18].

Presently, two schools of thought regarding the

appearance of clouding in ionic surfactant solutions are

available : one says it is the removal of water by the

counterions [7–9, 19] and the other says it is the geometric

constrictions due to micellar growth [16, 17, 20]. The

observations suggest the significant roles played by tem-

perature and large hydrophobic counterions present in the

vicinity of micellar head group region.

In most of their applications, surfactants with additives,

rather than pure, are preferred due to the synergistic effect.

The ingredients commonly present in industrial formula-

tions strongly affect clouding behavior of surfactants [21].

Therefore, it is important to understand the magnitude and

nature of such additive effects as well as the mechanism

involved so that the system can be tailored to exhibit

clouding behavior at desired temperatures. Although

abundant literature is available on the effects of different

additives on the CP behavior of nonionic surfactants

solutions [22–24], those on the ionic surfactants are limited

[7, 17, 20, 25–29]. In the case of anionic surfac-

tant ? quaternary salt systems, the effects of the nature of

the counterion, the head group as well as the nature of the

additives on the CP behavior were investigated [7, 9, 11,

29–33]. Clouding as well as micellization in nonaqueous

polar solvents has, however, attracted less attention as

compared to the case of water. Such studies can throw light

on the CP phenomenon from the ‘‘solvophobic effect’’

point-of-view as opposed to the hydrophobic effect [34].

The term ‘‘solvophobic interaction’’ has been coined to

describe aggregation in nonaqueous polar solvents, in

analogy with ‘‘hydrophobic interactions’’, responsible for

the association of surfactants in water [35]. Therefore, it is

of genuine interest to study the ionic surfactant clouding in

polar nonaqueous solvents. Such studies may find use in

the extraction of compounds through CP extraction meth-

odologies [36, 37].

Our earlier studies on sodium dodecyl sulfate (SDS) ?

tetra-n-butylammonium bromide (TBAB) [7–9] have

helped us to identify various SDS ? TBAB combinations

to see the effects of addition of acetonitrile (AN),

dimethylsulfoxide (DMSO), methyl ethylene glycol ether

(methyl cellosolve, MC), formamide (FA) and ethylene

glycol (EG). CP measurements were also performed with

SDS ? tetra-n-butylphosphonium bromide (TBPB). A few

CMC measurements have also been carried out in order to

support the CP data.

Experimental Procedures

SDS ([99%, Fluka, Buchs, Switzerland), TBPB (99.5%,

Fluka) and TBAB ([98%, Fluka) were used as received.

All the nonaqueous solvents (AN, DMSO, MC, FA and

EG) were of the highest purity grade available commer-

cially and were used as obtained. Demineralized double-

distilled water was used throughout.

Various SDS ? quaternary bromide (TBAB or TBPB)

samples were prepared by taking requisite amounts of SDS

and the quaternary salt and making up the volumes with

solvent (water or water ? various specified volume per-

cents of the nonaqueous solvent concerned).

The CP data were obtained by placing several Pyrex

glass tubes, containing the sample solutions, into a tem-

perature controlled bath. The temperature was ramped at

the rate of 0.1 �C/min near the CP. Onset of turbidity

(visual observation) was taken as the CP. However, the

temperature was oscillated slowly through the CP until it

was reproducible to ±0.1 �C.

Conductometry was used to determine the CMC and

degree of counterion dissociation of the micelles (a) values

[38]. The conductivity against SDS concentration plots

showed typical profiles characterized by two linear regimes

with different slopes, corresponding to the premicellar and

postmicellar region, respectively, and where the break

point is identified as CMC. Likewise the a values were

calculated from the ratio between the slopes of these lines.

The measurements were performed on an ELICO (type CM

82T) conductivity bridge equipped with platinized elec-

trodes (cell constant = 1.02 cm-1) at 30 ± 0.1 �C. The

conductivity runs were carried out by progressively adding

concentrated SDS stock solution into the thermostated

mixed solvent (water or water ? nonaqueous solvent).

Results and Discussion

Clouding in an SDS ? TBAB System

It is well known that the micellar head group region is

associated with a certain amount of water of hydration [39,

40]. Further, in ionic micellar solutions the counterion

condensation plays very important role in deciding the

effective charge on the micelle and hence its formation,

structure, and mutual interaction. Pure SDS solution does

not show any clouding but the presence of TBAB in the

system is responsible for the clouding phenomenon

(Fig. 1). The TBA? consists of four butyl chains in
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addition to the positive charge on the nitrogen atom. Hence

the ion can interact with SDS micellar surface electro-

statically as well as hydrophobically. In the present

context, the butyl chains of TBA? may get embedded

between monomers of the SDS micelle. As geometric

constraint makes it difficult for all the four butyl chains to

penetrate into the micelle core, two directions may be

chosen for bending the butyl chains: one towards the water

phase and the other towards the micellar core [7, 11, 19,

41]. The butyl chains towards the water phase may have

the chance to interact with butyl chains of other counteri-

ons attached to other micelles. Consequently, micelles may

experience closer contact, which may assist in replacing

water of hydration from the head group region. Thus, the

removal of water is attributed to the cloudiness of the

SDS ? TBAB system [11]. On the basis of the studies of

CP variation with [SDS] or with [TBAB] [7–9], we have

chosen 0.1 M SDS ? 0.065 M TBAB system to study the

effect of various volume percents of nonaqueous solvents

on the CP (in mixed solvents).

Clouding in an SDS ? TBAB System in Mixed

Solvents

Figure 1 shows the variation of CP with volume percent of

nonaqueous solvents present with water. A well defined

minimum can be seen in all cases followed by an increase

in CP at slightly higher volume percents of the nonaqueous

solvents. Before the minimum (Fig. 1), the rate of decrease

in CP with volume percent is different for different sol-

vents. The decrease in CP seems to be dependent on the

accumulation of the solvent at micelle-water interface. Due

to this accumulation some of the water of hydration is

replaced by the nonaqueous solvents. This results in a less

hydrated micelle which therefore, requires a lower tem-

perature to show clouding. This indeed is observed. The

effect of the addition of nonaqueous solvents depends on

how they change the water structure and micelle structure

[42]. Although each solvent brings forward the clouding

(before the minimum), the reasons are quite different. In

the case of MC, the interaction consists of the destruction

of the H-bonding of the original water near the micellar

head group region and formation of new H-bonds between

water and MC with a simultaneous depletion of micelle

hydration and a decrease in the CP. The bringing forward

of the CP in the presence of AN can also be understood in

terms of the formation of H-bonds between water and AN.

However, AN shows more gradual decrease in CP than MC

(Fig. 1). This is probably due to the higher molar volume

of MC (Table 1) than AN and, therefore, it could be more

efficient in removing water from the head group region.

It has been reported that EG alone or mixed with water

stabilizes proteins against denaturation (increased hydro-

phobic interactions) [43, 44]. The clouding phenomenon in

the present case is also facilitated by EG addition before

the minimum and hence CP variation can be understood in

the light of the discussion above. The dielectric constant of

FA is the highest among the solvents listed in Table 1. In

an independent study, Singh et al. [45] concluded that the
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Fig. 1 Cloud point (�C) variation in the system 0.1 M SDS ?

0.065 M TBAB with nonaqueous solvents

Table 1 Physical parameters of the solvents used and their concentrations (%, v/v) at the lowest CP of 0.1 M SDS ? 0.065 M TBAB

Organic solvent Mol. formula Mol. wt. Density (g cm-3)a Molar

volume (cm-3)

Dielectric

constant

% solvent (v/v)

at the lowest CP

AN CH3CN 41.05 0.786 52.56 39.0 0.50

MC CH3OCH2CH2OH 76.10 0.968 79.02 35.0 0.05

DMSO (CH3)2SO 78.13 1.101 71.09 45.0 0.10

EG HOCH2CH2OH 62.07 1.109 55.82 37.7 0.05

FA HCONH2 45.04 1.133 39.75 109.0 0.25

a Weast RC (ed) (1977) CRC Handbook of physics and chemistry. CRC Press, Florida
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CMC decreases for the same surfactant according to the

increase in the dielectric constant of the medium. The

presence of FA near micellar heads would decrease

repulsion between similarly charged head groups allowing

the predominance of the hydrophobic interaction and hence

a decrease in CP. Similar types of argument were given to

explain the CMC decrease in the presence of a low urea

concentration [46]. Therefore, the decrease in the CP in the

presence of FA is in consonance with the earlier studies.

The DMSO addition behavior is similar to that of other

solvents before the minimum although DMSO is known to

form stoichiometric hydrates with water [47]. The content

of DMSO in the system below the minimum is low and one

can expect that hydrate formation at such low content

would also be minimal. The removal of water from the

micelle head group region seems dominant and responsible

for the CP decrease (Fig. 1). At higher bulk phase con-

centrations, the solvents decrease the dielectric constant of

the bulk phase. This would cause increased mutual repul-

sion among the SDS heads in the micelle thus producing

more hydrated micelles and hence the CPs are observed at

higher temperatures (Fig. 1). Based on the data shown in

Fig. 1, we have chosen AN for further study because it

provides a gradual variation of the CP up to a higher vol-

ume percent below the minimum.

Figure 2 shows the variation of CP with volume percent

of AN for x M SDS ? 0.05 M TBAB system. From the

perusal of CP data it is clear that as we increase [SDS] in

the system the CP decreasing/increasing effect is more

pronounced. Since addition of nonaqueous polar solvents

affects the water as well as micelle structures it is expected

that the surfactant content in the overall system would

affect the interaction with AN and so the CP. At low

concentrations of SDS, TBAB content is comparatively

higher. As [TBAB] affects CP significantly [30], the effect

of the AN content in the system seems less important. This

means at higher [SDS], the role of AN is significant as the

system has more micelle-bound water which is effectively

replaced by AN molecules.

To prove the above point we performed CP measure-

ments with varying volume percents of AN in systems

containing different fixed concentrations of TBAB (Fig. 3).

The CP decreasing effect of AN is present up to a higher

volume percent for systems containing more TBAB. This

suggests that in presence of higher [TBAB] one can expect

more TBA? counterions near the micellar surface. As

discussed above that more number of TBA? would replace

more hydrated water. Thus, less hydrated water would now

be available to interact with AN which is responsible for

the CP decrease.

Figure 4 shows the variation of the CP with the volume

percent of AN for systems in which both SDS and TBAB

were increased while the molar ratio (SDS/TBAB) was

kept almost constant. The data show that these systems

with higher contents of SDS and TBAB show a CP

decrease at higher volume percent of AN. It can be

understood by the fact that if we have more SDS, more

number of micelles would be formed with total higher

content of bound hydrated water. If it is so, higher AN is
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needed to interact with this bound water and hence the CP

decrease is expected to continue upto a higher AN content

(i.e., the minimum would shift progressively to a higher

AN content). This is what we observed in Fig. 4.

Similar experiments of CP measurements were also

performed with an SDS ? TBPB system (Fig. 5). The

increase in both SDS and TBPB contents produced a CP

decrease with volume percent of AN. Unlike Fig. 4, no

minima were observed, but the trend of a higher content

requirement of AN is clearly indicated if we consider the

break points of nearly two straight lines for lower and

higher AN contents. This difference in the presence of

TBPB (compared to TBAB) may be due to the difference

in sizes of TBP? and TBA?. It was reported earlier also

that a lower amount of TBPB is needed to observe clouding

in comparison to TBAB [33]. Though the concentration

ranges of the two sets of CP measurements (Figs. 4 and 5)

are different, it is clearly possible to conclude that once the

micellar head group region is crowded by quaternary

counterions, the effect of the nonaqueous solvent to lower

the CP is important because now less water remains there

which allows more solvent to accumulate at the micellar

interface. The CMC data for all the solvents at low volume

percents are given in Table 2. The micelles formed in

nonaqueous solvents (or mixed solvents with water) are

similar in many respects to the micelles that are formed in

water, although, micelle formation is not as favored in

such solvents as in water for a given surfactant [48, 49].

However, the CMC data of Table 2 are obtained at com-

paratively much lower volume percents to get an insight

into the CP behavior of the present systems before the

minimum (Fig. 1). It is surprising to see that the CP

decrease runs almost parallel to the CMC decrease in the

presence of lower volume percents of the different sol-

vents. This seems a very important result which hints at a

modification of hydrophobic interactions at such a low

volume percent. Later on the effect on water structure

predominates and a regular CMC/CP increase is observed

[34, 48, 49]. We can also see a weak dependence of a on

concentration and the type of the solvent used. This is in
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Table 2 The CMC of SDS in water ? non-aqueous solvents (with-

out quaternary bromides) determined by conductometry at 30 �C

Organic solvent % solvent

(v/v)

CMC (mM) Degree of

dissociation (a)

AN 0 8.1 0.36

0.25 7.7 0.39

0.50 7.4 0.38

1.0 7.6 0.42

3.0 7.9 0.46

DMSO 0 8.1 0.36

0.10 7.8 0.38

0.50 7.9 0.40

3.0 8.4 0.41

MC 0 8.1 0.36

0.05 7.6 0.40

EG 0 8.1 0.36

0.05 7.7 0.40
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agreement with the literature results [35] which may be due

to the preferential binding of both the surfactant and

counterions to water than to the alternative polar non-

aqueous solvent.

In conclusion, we can say that clouding that occurs in

ionic surfactant sodium dodecyl sulfate solutions in the

presence of quaternary bromides can be facilitated by

certain volume percents of added polar nonaqueous sol-

vents (mixed with water). The effect depends on the nature

of the solvent used. Our limited CMC data also suggest that

a new kind of behavior is expected if the micellization

were to be studied in water containing low additions of the

above solvents. One can expect unconventional results at

low volume percents as were observed earlier in the case of

low urea content [46].
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