
ABSTRACT: Computer-assisted methods were employed to
develop a statistical relationship between molecular-based
structural parameters and log critical micelle concentration
(CMC) of some anionic surfactants. The CMC of 31 alkyl sul-
fates and alkanesulfonates were used for model generation.
Among different models, two equations were selected as the
best, and their specifications are given. The statistics of these
models together with cross-validation results indicate the capa-
bility of both models to predict the CMC of anionic surfactants.
Three descriptors of Wiener number, reciprocal of the dipole
moment, and reciprocal of the Randic index appear in the mod-
els. Results indicate that topological characteristics, such as com-
pactness and branching of anionic surfactants, play major roles
in micelle formation. Polarity of the molecules is also important,
but its effect is less than that of topology of the surfactants. 
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Anionic surfactants are among the most versatile chemi-
cals available to chemists, and are used in a variety of
products including detergents, pharmaceuticals, antimi-
crobial agents, and corrosion inhibitors (1–4). To design a
new surfactant with a special property while minimizing
costs associated with trial-and-error research, it is desirable
to study different structural or electronic parameters affect-
ing the surface-active properties of these compounds.

Compared to other properties, elucidation of critical mi-
celle concentration (CMC) requires more attention because
it can be correlated with industrially important character-
istics of surfactant performance such as viscosity, foam sta-
bility, detergency, and dispersion ability. For example, in
designing a laundry detergent, the surfactant concentra-
tion should be higher than the CMC to ensure the presence
of micelles in which dirt and oily substances can be solubi-

lized. In order to perform micellar electrokinetic chroma-
tography (MEKC), a surfactant solution at a concentration
higher than the CMC must be used as a separation solu-
tion. Therefore, knowing the CMC is essential in develop-
ing these experiments.

CMC is experimentally obtained by monitoring the
variation of a physicochemical property of the solution
with changing surfactant concentration (5). Some of the
physical properties that have been used for this purpose
include solution detergency, viscosity, density, electric con-
ductivity (6), surface tension (7), osmotic pressure, refrac-
tive index, and light scattering. Other more sophisticated
techniques have been reported including X-ray diffraction,
electron spin resonance techniques, nuclear magnetic reso-
nance spectroscopy (8), calorimetry (9), cyclic voltamme-
try (10), polarographic (11) and chromatographic tech-
niques, fluorescence emission spectroscopy (12), and ultra-
violet-visible absorption spectroscopy. 

Recently, Nakamura and coworkers (13) devised a
method for determining the CMC of anionic surfactants
using capillary electrophoresis (CE). This method requires
as little as 300 µL of the surfactant for CMC measurements
compared with larger volumes of surfactants required by
other methods. 

In contrast to the interest in experimental methods for
CMC determination, few theoretical works and computer
models of self-assembling surfactant solutions are reported
(14,15). Recently, two computer programs based on molec-
ular thermodynamic theories of surfactant solution behav-
ior were developed (16). These programs are capable of
predicting fundamental micellar properties such as CMC
and micellar shape and size. However, in designing a new
surfactant, one needs to analyze different topological, geo-
metric, and electronic parameters that affect surfactant
properties, and these programs are not very useful in this
respect. It is noteworthy that the most serious theoretical
studies of surfactant systems are those that have used
Monte Carlo and molecular dynamics as a tool for simula-
tion (17). Owing to the lack of comprehensive theoretical
work in this area, the development of a model for estimat-
ing the CMC of surfactants is necessary.
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In this study, computer-assisted methods were em-
ployed to generate a statistical relationship between mo-
lecular structural parameters (descriptors) and the log
CMC of some anionic surfactants. The anionic surfactants
consist of alkyl sulfates and alkanesulfonates (Table 1). In
alkyl sulfates, the sulfur atom is joined to the carbon atom
of the hydrophobe via an oxygen atom, whereas in the case
of a sulfonate, the sulfur is joined directly to the hy-
drophobe. This difference in structure gives significant dif-
ferences in properties between the sulfonate and sulfate
groups (18). 

EXPERIMENTAL PROCEDURES

The methodology used in this study consists of three fun-
damental stages: (i) selection of the data set, (ii) molecular
descriptor generation, and (iii) regression analysis. Com-
putation of descriptors was performed using FORTRAN
programs developed in our laboratory. The SPSS/PC pack-
age (19) was used for regression calculations. MOPAC
(version 6.0) (20) and HyperChem packages (21) were used
for optimization of the molecules.

Data set. Experimental values of the CMC for different
anionic surfactants are taken from the literature (22). A
total of 31 compounds, including 27 alkyl sulfates
(RSO4Na) and 4 alkanesulfonates (RSO3Na), were consid-
ered, for which the CMC (mol/L) was reported at 40°C
(Table 1). It can be seen from Table 1 that the structures are
very diverse and the sulfate head group position varies
considerably. 

Descriptor generation. Fourteen molecular structure de-
scriptors were calculated for each compound in the data
set. These descriptors can be classified into three major
groups—topological, geometric, and electronic. Topologi-
cal descriptors include Wiener number (WI) (23) and
Randic (RA−1) (24) and Balaban indices (25). Geometric de-
scriptors include van der Waals molecular volume (26),
maximum distance between the atoms in the molecule,
and the surface areas of the head and the tail of the mole-
cules. These descriptors were calculated using a FOR-
TRAN 77 program developed in our laboratory. Electronic

descriptors consist of heat of formation, dipole moment
(DIP), net atomic charges, total charges on the head of the
molecule, partial charge of the most negative atom in the
molecule, and ionization potential. Geometric and elec-
tronic descriptors depend on the three-dimensional coor-
dinates of the atoms; therefore, calculations of these types
of descriptors require optimization of the molecular struc-
ture for each molecule. In this work, AM1 Hamiltonian im-
plemented in the MOPAC and HyperChem packages were
used for optimization.

Generation and evaluation of the regression model. The lin-
ear regression method was based on the construction of a
linear mathematical equation relating the observed log
CMC to numerically encoded structural parameters. Lin-
ear models were generated using a stepwise regression
method (27). The choice of which equation to consider fur-
ther was made by using four criteria: multiple correlation
coefficient (R), standard deviation (SD), F value for the sta-
tistical significance of the model, and the ratio of the num-
ber of observations modeled to the number of descriptors
in the equation. An ideal model is one that has high R and
F values, low SD, and the least numbers of independent
variables (descriptors).

The best resulting equations were tested for their pre-
dictive power using a cross-validation procedure (28). For
each model, a number of molecules equal to the number of
descriptors appearing in the model were eliminated from
the data set each time and then a model was developed
using the remaining compounds. Finally, the log CMC of
eliminated molecules was predicted by the generated
model.

RESULTS AND DISCUSSION

A number of good models were obtained using experimen-
tal values of log CMC as dependent variables and calcu-
lated descriptors as independent variables. Among these
equations, two of the best models were selected and their
specifications are given in Tables 2 and 3. These models
were selected due to their high values of R and F statistics
and low SD. Comparison of the statistics for models 1 and
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TABLE 1
Data Set

Compound Compound Compound

1 C10H21SO4Na 12 CH3(CHSO4)C13H27Na 23 C11H23CH(C3H7)CH2SO4Na
2 C12H25SO4Na 13 CH3CH2(CHSO4)C12H25Na 24 C10H21CH(C4H9)CH2SO4Na
3 C13H27SO4Na 14 CH3C3H6(CHSO4)C10H21Na 25 C9H19CH(C5H11)CH2SO4Na
4 C14H29SO4Na 15 CH3C6H12(CHSO4)C7H15Na 26 C8H17CH(C6H13)CH2SO4Na
5 C15H31SO4Na 16 CH3C2H4(CHSO4)C12H25Na 27 C7H15CH(C7H15)CH2SO4Na
6 C16H33SO4Na 17 CH3C4H8(CHSO4)C10H21Na 28 C10H21SO3Na
7 CH3(CHSO4)C12H25Na 18 CH3C6H12(CHSO4)C8H17Na 29 C12H25SO3Na
8 CH3CH2(CHSO4)C11H23Na 19 CH3(CHSO4)C15H31Na 30 C14H29SO3Na
9 CH3C2H4(CHSO4)C10H21Na 20 CH3C7H14(CHSO4)C8H17Na 31 C16H33SO3Na

10 CH3C3H6(CHSO4)C9H19Na 21 C13H27CH(CH3)CH2SO4Na
11 CH3C5H10(CHSO4)C7H15Na 22 C12H25CH(C2H5)CH2SO4Na



2 given in Tables 2 and 3, respectively, reveals the superior-
ity of model 2 over that of model 1. However, fewer
descriptors (two parameters) appear in model 1 compared
to model 2 (three parameters), and its statistics reveal 
that this equation also represents a good model for predict-
ing the log CMC of anionic surfactants. Models 1 and 2
have two parameters of WI and reciprocal of dipole
moment, DIP−1, in common. These descriptors show no
correlation with each other and can be considered indepen-
dent parameters. However, two descriptors of WI and 
RA−1 index in model 2 show a negative correlation (R = 
−0.9199), but each encodes different aspects of molecular
structure.

WI is a topological descriptor defined as (29)

[1]

where the summations are overall atoms in the molecule
and Dij represents the distance between atoms i and j. In
graph theory, distance is defined as the shortest path be-
tween a pair of atoms in a structure. Therefore, WI appears
to be a convenient measure of molecule compactness. The
negative mean effect of this parameter in both models re-
veals that, as the compactness of an anionic surfactant in-
creases, its CMC decreases.

The RA−1 index quantifies the notion of molecular
branching, and its reciprocal shows a considerably positive
mean effect on CMC (Table 3). This agrees with the experi-
ment, which shows that, as the length of a side chain in-
creases, the CMC decreases. In addition, carbon atoms on
a branched hydrophobe have about half the effect of car-
bon atoms on a straight chain (30). The positive effect of

the reciprocal of the RA−1 index confirms this observation.
The superiority of model 2 over model 1 may be because
this model considers both molecule compactness and
branching characteristics.

Appearance of DIP as a descriptor in both models indi-
cates that polarity of the anionic surfactants, as well as
topology, plays a role in micelle formation. The calculated
values of the descriptors appearing in the selected models,
along with the calculated values of log CMC obtained
using models 1 and 2 together with the experimental val-
ues, are given in Table 4. Inspection of these data reveals
that, in agreement with the experiment, as the length and
therefore molecular size of the molecules increase, the WI
increases and the CMC decreases. It is also seen from this
table that as hydrophobe length increases, the DIP−1 pa-
rameter, as well as log CMC, decrease (compare the DIP−1

for surfactants 1–6 given in Table 4). Inspection of Table 4
also indicates that for molecules 7–11, as the sulfate group
position varies and moves toward the center of the chain,
DIP−1 increases. For these surfactants, in agreement with
experiment, as the DIP decreases, the CMC increases. A
similar conclusion can be drawn for molecules 12–15,
16–18, and 19 and 20, given in Table 4. Molecules 21–27 re-
quire special attention. These surfactants contain a C-16
hydrophobic group, and RA−1 is identical for all of them.
This indicates a similarity of branching characteristic for
these compounds. However, the compactness of these mol-
ecules and also their DIP vary considerably. Calculated
values of log CMC for these anionic surfactants are in good
agreement with experimental values. As the compactness
of a molecule increases and its DIP decreases, the CMC in-
creases.

WI = 1
2 i=1

N

∑ Dij
j =1

N

∑
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TABLE 2
Specification of MLR Model 1a

Descriptor Coefficientb Mean effect

Wiener number (WI) −1.5759 × 10−3 ± (5.9638 × 10−5) −1.7444
Reciprocal of dipole moment (DIP−1) 5.1312 ± (0.7027) 0.2556
Constant −1.0323 ± (0.0783)
aStatistics for this equation are n = 31, r = 0.9820, SD = 0.0887, and F = 389. MLR, multiple linear
regression.
bThe standard error (SE) of coefficients is given in parentheses. These values are a measure of coeffi-
cient dispersion and are obtained by dividing the standard deviations by the square root of the num-
ber of surfactants used for development of the model (n = 31).

TABLE 3
Specification of MLR Model 2a

Descriptor Coefficient Mean effect

Wiener number −9.7401 × 10−4 ± (1.3165 × 10−4) −1.0476
Reciprocal of Randic index (RA−1) 11.0284 ± (2.2709) 1.3605
Reciprocal of dipole moment 6.7040 ± (0.6150) 0.3340
Constant −3.1373 ± (0.4374)
aStatistics for this equation are n = 31, r = 0.9912, SD = 0.0661 and F = 477. See Table 2 for abbre-
viations.
bSE of coefficients are given in parentheses. These values are a measure of dispersion of the coeffi-
cients. See Table 2 for more details.



Further inspection of Table 4 shows that calculated log
CMC values for alkanesulfonates (R-SO3

−) are not gener-
ally as satisfactory compared to the alkyl sulfates (R-SO4

−).
This could be partly due to discrepancies in experimental
values reported for these compounds (22). For example,
values of 57.5 (31) and 40 mmol/L (32) were reported for
the CMC of molecule 28 (C10H21SO3

−) by different groups.
Values of 1.37 (31) and 0.74 mmol/L (22), a difference of
about 50%, are reported for the CMC of surfactant 31
(C16H33SO3

−). It is noteworthy that even a very recent CE
technique developed for CMC determination shows differ-
ent values for the CMC of anionic surfactants using differ-
ent methods (13).

To test the validity of the selected models, cross-valida-
tion procedures as described in the Experimental Proce-
dures section were used. Results from these calculations
are given in Table 5. This table reveals values of 0.9272 and
0.9457 for the cross-validated Q2 of models 1 and 2, respec-
tively. This indicates a capability of both models in predict-
ing the CMC for anionic surfactants and the superiority of
model 2 over model 1. 
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TABLE 4
Experimental and Calculated Values of log CMC and Descriptors Employed in the Models

Descriptorb log CMCc

Calculated, Calculated,
Compounda WI RA−1 DIP−1 (debye−1) model 1 model 2 Experimental

1 526 0.1686 0.0427 −1.6424 −1.5045 −1.4724
2 776 0.1451 0.0346 −2.0777 −2.0604 −2.0675
3 926 0.1269 0.0316 −2.3297 −2.4279 −2.3665
4 1094 0.1269 0.0290 −2.6076 −2.6088 −2.6576
5 1281 0.1193 0.0268 −2.9135 −2.8891 −2.9208
6 1488 0.1126 0.0249 −3.2495 −3.1775 −3.2366
7 1034 0.1216 0.0391 −2.4611 −2.5405 −2.4815
8 984 0.1274 0.0498 −2.3278 −2.3573 −2.3665
9 944 0.1274 0.0598 −2.2132 −2.2509 −2.2882

10 914 0.1274 0.0730 −2.0982 −2.1333 −2.1707
11 884 0.1274 0.1022 −1.9009 −1.9081 −2.0132
12 1216 0.1203 0.0356 −2.7659 −2.7561 −2.7670
13 1161 0.1198 0.0448 −2.6324 −2.6474 −2.6576
14 1081 0.1198 0.0475 −2.4921 −2.5509 −2.4685
15 1036 0.1198 0.1012 −2.1456 −2.1470 −2.1772
16 1308 0.1130 0.0475 −2.8500 −2.8467 −2.7645
17 1238 0.1130 0.0699 −2.6247 −2.6284 −2.6290
18 1208 0.1130 0.0975 −2.4360 −2.4144 −2.3716
19 1641 0.1074 0.0323 −3.4529 −3.3350 −3.3098
20 1396 0.1070 0.0977 −2.7308 −2.6622 −2.6290
21 1410 0.1140 0.0302 −3.0996 −3.0512 −3.0969
22 1344 0.1135 0.0354 −2.9688 −2.9574 −3.0458
23 1289 0.1135 0.0399 −2.8589 −2.8735 −2.9586
24 1248 0.1135 0.0454 −2.7662 −2.7969 −2.8239
25 1218 0.1135 0.0511 −2.6895 −2.7292 −2.6990
26 1200 0.1135 0.0575 −2.6285 −2.6691 −2.6383
27 1194 0.1135 0.0621 −2.5954 −2.6323 −2.5228
28 424 0.1739 0.0443 −1.4733 −1.3350 −1.2403
29 643 0.1482 0.0357 −1.8625 −1.8901 −2.0362
30 926 0.1291 0.0298 −2.3388 −2.4162 −2.4089
31 1281 0.1143 0.0255 −2.9202 −2.9534 −2.8633
aNumbers refer to the surfactants given in Table 1.
bSee Tables 2 and 3 for abbreviations.
cCMC, critical micelle concentration.

TABLE 5
Results of Cross-Validation Procedure

Model 1 Model 2

Q2(n)a Press Q2(n)a Press

0.9313 (2) 0.0605 0.9752 (3) 0.0221
0.9997 (2) 0.000 0.9646 (3) 0.0073
0.8903 (2) 0.0173 0.8051 (3) 0.0145
0.8615 (2) 0.0084 0.8957 (3) 0.0392
0.9072 (2) 0.003 0.9867 (3) 0.0148
0.8554 (2) 0.0517 0.9790 (3) 0.0041
0.6963 (2) 0.0073 0.9849 (3) 0.0301
0.9570 (2) 0.0483 0.9920 (3) 0.0066
0.9654 (2) 0.0059 0.9736 (3) 0.0093
0.9981 (2) 0.0007 0.9303 (3) 0.0157
0.9420 (2) 0.1071 0.9155 (1) 0.0099
0.9940 (2) 0.0036
0.9596 (2) 0.0134
0.9687 (2) 0.0017
0.9410 (2) 0.0114
0.9679 (1) 0.0038
aNumbers in parentheses represent the number of molecules that have to be
removed from a data set each time.



Figure 1 shows a plot of calculated log CMC using
model 2 vs. experimental values. This line shows a high
correlation coefficient (r = 0.9907) and a low standard error
(SE = 0.0631). Residuals of the multiple linear regression
(MLR)-predicted values for log CMC are plotted against
experimental values in Figure 2. Propagation of residuals
on both sides of zero indicates that no systematic error ex-
ists in the development of the MLR model.

From the results of this work, one may conclude that
topological characteristics, such as compactness and
branching of anionic surfactants, play a major role in mi-
celle formation. Polarity of the molecules also is important
in this respect, but its effect is less than surfactants topol-
ogy. It can be concluded that development of a linear equa-
tion between log CMC and numerical encoded structural
parameters might be of some help in designing new sur-
factants. 
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