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Abstract In this paper, the improvement of pure random search is studied. By taking some information of the function to be minimized in- 

to consideration, the authors propose two stochastic global optimization algorithms. Some numerical experiments for the new stochastic 

global optimization algorithms are presented for a class of test problems. 
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1 Introduction 

Consider the following global optimization problem: 

m i n f ( x ) ,  
xEL 

where f is a real-valued continuous function over L ,  L 

C R  a is of the form L = II~.dlEai,bi] , with a i , b i C  

R , a i < b i .  Denote f ~  = m i n x ~ L f ( x )  = f ( z ~ )  and 

define S~ = [ f ,  , f ~  + s ] as a stopping criterion in the 

following algorithms, where s is a sufficiently small 

positive number. 

A stochastic global optimization algorithm is con- 

cerned with using randomly generated points to approxi- 

mate optimal solution. The simplest stochastic global 

optimization algorithm is the so-called pure random 

seareh(PRS),  which was named early in 1958 hI .  This 

algorithm generates a sequence of independent and uni- 

formly distributed points in the feasible region. When a 

stopping criterion is met,  the best point of the sequence 

generated thus far is used as an approximation to the op- 

timal solution [2-57 . In 1981, on the basis of Ref. [6]  

Rubinstein reached the important conclusion that if the 

objective function f is continuous, then the PRS con- 

verges to the global optimal solution with probability 

1 E73. However, in 1992, Zabinsky and Smith proved 

that the PRS itself is inefficient for the reason that the 

simple device of forcing monotone value improvement on 

PRS achieves an exponential improvement in iterations 

Received Jun. 29, 1999; Revised Sep. 13, 1999 

Supported by the Science Foundation of Shanghai Municipal Com- 

mission of Education 

required [8] . Thus,  the PRS will be unable to implement 

when the dimension of the problem is very large. To 

overcome this drawback, researchers have done a lot of 

work. First,  in 1978, W. L. Price proposed a con- 

trolled random search ( e R a )  [91 , in which the random 

search and mode search are combined in the optimizing 

process. It does not require f to be differentiable and 

continuous. The CRS is simple to implement. The 

probability of success depends on the parameters of CRS 

and the properties of the problem. In 1983, Price pre- 

sented another improving algorithm CRS2 for CRS [10] , 

and correspondingly, CRS is called CRS1. Comparing 

with CRS1, CRS2 is easier to implement, the needed 

memory is less and it converges to the optimum faster. 

In 1987, Price obtained again two improving algorithms 

based on CRS2 In? , called CRS3 and CCRS, respective- 

ly. CRS3 combines the global search with a local opti- 

mization algorithm [12] for accelerating the speed of con- 

vergence. CCRS is a parallel scheme of CRS3. It also 

aims at speeding up the convergence process. In 1988, 

C. Mohan and Kuanker Shanker provided four modified 

versions of controlled random search to make the algo- 

rithms reliable and convergent faster El3] . 

Considering the stochastic global optimization algo- 

rithms and their improvements, we found that most of 

them, such as PRS, adaptive search E147 and simulated 

annealing [Is? e tc . ,  did not make full use of the charac- 

teristics of the objective function. We think that if the 

objective function satisfies some conditions such as con- 

tinuity, the Lipschitz condition or differentiability etc. , 

the regions containing the minimal points are easy to be 

determined. If the algorithm generates many points in 
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the regions of this kind, the probability of success will 

be large. Motivated by this idea, we try to modify PRS 

further. And we get two algorithms, called the improv- 

ing pure random search-1 ( IPRS-1)  and improving pure 

random search-2(IPRS-2) ,  respectively. The difference 

between them lies in the designs for different kinds of 

functions. The greatest merit of these new algorithms is 

that the distribution of the sample is decided directly by 

the characteristic of the objective function itself. The 

information of the objective function f is thus fully 

used. 

In the following sections, we will give the steps of 

PRS in Section 2. The improved pure random research- 

1 and improved pure random research-2 are described in 

Sections 3 and 4, respectively. The numerical results 

are presented in Section 5. 

2 Pure Random Research 

The steps of PRS are as follows. 

Pure Random Seareh(PRS) 
Step0 Set n = 0 .  
Step 1 Generate a point x~ uniformly distributed in 

L ,  and set y~ = f ( x ~ ) .  

Step 2 If a stopping criterion is met ,  stop. Other- 

wise, increase n and return to Step 1. 

3 Improved Pure Random Search-1 

We assume in addition, that f has not too many local 

minima in a very small region. The improving pure ran- 

dom search-1 is designed as follows. 

Improved Pure Random Search-1 (IPRS-1) 
Step0 Set n = 0 .  
Step 1 Choose a positive integer m divide L into m 

pieces, denoted by Ai, where i = 1 , 2 , ' " ,  rn. Generate 

a point g i uniformly distributed in every A i. Compute 

f (  x l  )and denote 

Y0 = min f ( x i ) .  
l ~ i ~ m  

Step 2 If a stopping criterion is met ,  stop. 

Step 3 Allocate a probability interval Ui in [ 0, 1 

for every Ai, which have the length li 

e - f ( x i )  
li -- v~ m - f ( x . )  ' 

/ , i=1 e 

r n  

where U i ~ : l U i  = [ 0 , 1 ; ,  ~ i = l l i  = 1. Determine r ,  

l ~ r ~ m ,  such that 

l r = max 
l ~ i ~ m  

Step 4 
Step 5 

tributed in 

Step 6 

l i .  

Increase n.  

Generate a random number ~ uniformly dis- 

[ 0 , 1 ] .  

Choose a Uj such that ~e E Uj,  then generate 

l~ = l~ + 

and 

a point zj uniformly distributed in the corresponding 

Aj. Denote Yn = f ( z j ) .  

If f ( z j )  < f ( x j  ) ,  set xj = zj ,  return to Step 2. 

If f (  zj ) = f ( x j  ) ,  return to Step 4. 

Otherwise, let 

e-f(xj) e-f(~) 
~ rn  - f (x )  V~m -f(x.) e-f(z ) 

i=1 e , Z..ai=l,i=Aje , + , 

e - f ( z j )  

l j  = ~ m  f(x . )  e - f ( z i )  , 
Z .ai=l , i~: je  , + 

then return to Step 4. 

When the function satisfies a slightly more restrictive 

conditions, IPRS-1 almost ensures that the generated 

points concentrate near x ~. That  leads to very large 

probability of catching the minimum. At the same 

time, the probability of generating the point with high 

function value is becoming smaller. This speeds up the 

process of reaching what we want. 

If the function value varies within a large range in 

very small region or has many local minima in very small 

region, it is possible that the minimum will be lost in 

the running of IPRS-1. For this kind of functions, we 

change the generating rule. The resulting algorithm is 

called the improved pure random search-2(IPRS-2) .  

4 Improved Pure Random Search-2 

Improved Pure Random Search-2 (IPRS-2) 
Step0 Set n = 0 .  

Step 1 Choose a positive integer m ,  divide L into 

m pieces, denoted by Ai, where i = 1 , 2 , " ' ,  m .  Gen- 

erate a point x i uniformly distributed in every A i. Com- 

pute f ( x i )  and denote 

Y0 = min f ( x i ) .  
l ~ i ~ _  m " 

Step 2 
Step 3 

f ( x ~ )  = 

Step 4 

If a stopping criterion is met ,  stop. 

Determine r such that 

min f ( x i  ). 
l ~ i ~ m  

Allocate a probability interval Ui in [0 ,  1 ] 
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for every A i , which have the length li,  

-s(~.~ l&) e 
l ~ -  W,g . 7f(:~.) - l ( ~  

,z...al = 1 c , m 

and 

ll = 12 . . . . .  l~ 1 = lr+t . . . . .  lm -- 
l - I  

m - 1 '  

where 

OUi = [ 0 , 1 ] ,  ~,li  = 1. 
i=1 i=1 

Step 5 Increase n .  

Step 6 Generate a random number ~ uniformly dis- 

tributed in [ 0 , 1 ] .  

Step 7 Choose an Uj such that ~E Uj, then gener- 

ate a point zj uniformly distributed in the corresponding 

Aj. Denote Yn = f (  zj ). 

If f ( z j )  < f ( x j ) ,  set xj = zj ,  return to Step 2. 

Otherwise, return to Step 5. 

The IPRS-2 only ensures that the probability of gen- 

erating points near the current minimum is large, and 

the probabilities of generating other points are the same. 

This prevents from being trapped in local minimum, to 

some extent, for the function with many local minimum 

in very small regions. 

5 Numerical Experiments 

In this section, we first describe some test problems 

in detail. 

Test problems 

1. f ( x )  = 9x21 + 36XlX2 + 52x~ + 

30(x  2 + 4 x  2 + 2Xl - 16) 2 , 

- 4 ~ x 1 ~ 4 ,  - 2~-~x2~2. 

1 e 1 
2 . f ( x )  = T.z 'I  q- T ( 1  -- eos (2x l ) )  + x 2 , 

- 1 0 ~ X l ~ 1 0 ,  - 10~x2~-~10. 

1 4 1 2 ~ 1 2 3.f(x)=TXl-TXl +,,,xl +Tx2, 
- 2 ~ x 1 ~ 2 ,  - 2 ~ x 2 ~ 2 .  

4. Goldstein/Price 

f ( x )  = (1 + (Xl + 2x2 + 1)2(19 - 14Xl + 3Xl 2 - 

28x2 + 12XlX2 + 12x 2) ) (30 + ( 2 x  1 - 6 x 2 ) 2 (  18 - 

32x~ + 12x 2 + 96x2 - 72XlX2 + 108x2) ) ,  

- 2 ~ x 1 ~ 2 ,  - l ~ x 2 ~ l .  

5. Branin 

f ( x )  = (x2 - 1 .275x  2 + 5Xl - 6) 2 + 

! 
10(1 - ~ ) c o s ( ~ x  1 ) -t- 1 0 ,  

- 1 . 5 ~ x l ~ 3 . 5 ,  0 ~ x 2 ~ 1 5 .  

6. f ( x )  = 0. l (s in2(3nXl)  + 
d-1 

~ ( x j  - 1)2(1 + sin2(3nxj+l)) + 
j - 1  

( x  d - 1)2(1 + s in i (2r rxa) ) ) ,  

- l O ~ x j ~ l O ,  j = 1 , . . . , d .  

There test problems are taken from Ref. [ 143. The 

results of running IPRS-1 and IPRS-2 are all average 

over 50 runs, where ~ is taken to be 0 .01.  Tables 1 and 

2 show the number of the problems as P ,  the number of 

division of L as m ,  the average number of iterations as 

E [  N ]. We also show the number of function evalua- 

tions, where available, for the best results reported in 

literature for a particular problem. One should be care- 

ful in comparing the algorithms in this way, since dif- 

ferent algorithms use different stopping criteria and each 

algorithm is designed for some restricted class of opti- 

mization problems. 

T a b l e  I R e s u l t s  fo r  t e s t  p r o b l e m s  

P 
IPRS-1 IPRS-2 

m E[N]  m E[N]  

Best 

o ther  

1 8 x 1 6  7 1 1 2 . 1  8 x 1 6  8 4 2 6 . 1  5 4 7 . 4  (t~ 

1 6 x  32 1 9 9 6 . 5  1 6 x  32 5 1 5 6 . 0  

2 0 x 4 0  1 3 0 0 . 7  2 0 x 4 0  3 5 2 2 . 0  

40 x 80 2 6 8 . 6  40 x 80 7 8 4 . 3  

2 l O x l O  8 3 5 . 2  1 0 × 1 0  1 0 2 7 . 6  4 2 1 . 1  (l) 

20 x 20 2 4 8 . 3  20 x 20 4 5 2 . 7  10286 (4) 

4 0 x 4 0  1 1 2 . 0  4 0 × 4 0  3 2 0 . 1  

50 x 50 1 4 8 . 6  5 0 x  50 3 2 3 . 6  

3 4 x 4  1 5 2 9 . 3  4 x 4  1 1 0 4 . 4  114.91 

8 × 8  4 8 3 . 4  8 x 8  7 3 9 . 3  3402 ~4) 

2 0 > : 2 0  2 5 1 . 0  2 0 x 2 0  2 4 9 . 0  

4 0 x 4 0  6 9 . 7  4 0 x 4 0  1 0 6 . 4  

4 4 x 8  1 2 1 2 6 . 0  4 x 8  1 0 6 6 9 . 0  6 2 1 . 2  (~} 

8 x 16 4 3 5 1 . 0  8 x 16 6 1 2 8 . 3  148 (2) 

1 2 x 2 4  2 1 6 7 . 3  1 2 x 2 4  2 4 7 1 . 2  

20 x 40 1096 .3  20 × 40 8 2 4 . 9  

5 5 x 1 5  6 9 8 . 9  5 × 1 5  1 8 9 2 . 5  7 1 7 . 6  el) 

1 0 × 3 0  1 1 8 8 . 0  1 0 × 3 0  2 2 1 4 . 0  160 (3) 

2 0 x 6 0  1 0 0 7 . 7  2 0 × 6 0  5 6 6 1 . 5  

3 0 × 9 0  8 7 8 . 4  3 0 x 9 0  5 1 3 1 . 6  
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Table 2 Results for test problem 6 with different dimensions 

IPRS-1 IPRS-2 

rn E[ M] m E[ M] 

1 5 82.6 5 '77.3 

10 53.8 10 53.5 

20 41.7 20 44.3 

40 24.1 40 39.5 

2 5 x 5  62.5 5×5  47.3 

10x 10 41.3 10 × 10 67.78 

20 × 20 16.7 20 × 20 83.3 

40 x 40 0 40 × 40 0 

3 5 x 5 x 5  1986.6 5 x 5 × 5  2728.9 

1 0 × 1 0 x l 0  478.5 10×10x10  5153.5 

15x15×15 469.9 15x15x15  4112.3 

4 5 × 5 x 5 × 5  6764.6 5 x 5 x 5 x 5  14960.0 

From Table 1, we can conclude that the IPRS-1 per- 

forms well in comparison with some other methods in 

literature. In all cases the optimal solutions were found 

within the desired accuracy in a reasonable amount of 

time and function evaluations. It is also clear that for 

the IPRS-1 and IPRS-2, in general, the more pieces L 

is divided into, the less the number of iterations is. No- 

tice that Problem 5 has the opposite result. In this case, 

the function changes a little in a very large region con- 

taining the global minimum. Adding division number of 

L makes the useful region containing the global mini- 

mum to be divided into too many pieces. The probabili- 

ties of generating points in these pieces all keep large. 

Therefore, the probability of catching the gtobal mini- 

mum becomes small. As a result, the number of itera- 

tions needed increases. Thus,  for this kind of functions, 

one should not divide L into too many pieces so as to 

reach the global minimum fast. In all but Problem 4, 

the IPRS-1 is much better than the IPRS-2. The objec- 

tive function of the Problem 4 has three local minimum 

in very small region. According to the principles of the 

algorithms, they should behave in this way. Table 2 

shows that when d ~ 2 ,  the iterations of the algorithms 

g r o w  w i t h  d .  T h e r e f o r e ,  if d is no t  v e r y  l a r g e ,  t h e  al-  

g o r i t h m s  are  ava i l ab le .  A l t h o u g h  w e  d id  n o t  g ive  t h e  

s t r i c t  p r o o f s  of m a t h e m a t i c a l  r e s u l t s  for  c o n v e r g e n c e  a n d  

c o m p l e x i t y  for  t h e s e  t w o  a l g o r i t h m s  so f a r ,  w e  conjec-  

t u r e  t h a t  t h e  a l g o r i t h m s  h a v e ,  a t  l e a s t ,  b e t t e r  p r o p e r t i e s  

t h a n  t h e  P R S .  W e  wil l  do  t h e  r e s e a r c h  f u r t h e r  to  se t  up  

sol id  m a t h e m a t i c a l  f o u n d a t i o n s  for  t h e  a l g o r i t h m s .  In  

Tables 1 and 2, index (1)  refers to the simulated an- 

nealing method (see Ref. [141) ,  (2) to multi-level sin- 
gle l i n k a g e ,  u s i n g  a p e n a l t y  f u n c t i o n  for  h a n d i n g  t h e  

constraints (see Ref. [ 16 ~),  ( 3 )  is random direction 

method (see Ref. [ 1 7 ] )  and (4 )  is method based on 

stochastic differential equations (see Ref. E 18 ] ). 
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