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Abstract
The assessment of the performance of inspection strategies is a crucial element in the design phase of product quality inspections 
of manufacturing companies. The aspects that inspection designers need to consider include: (1) the typology of quality inspec-
tion, (2) the inspection variables involved, (3) the potential interaction between variables and (4) the presence of inspection errors. 
In particular, low-volume inspection design is critical due to the lack of historical data and the inadequacy of traditional statistical 
approaches. By considering these issues, this paper proposes a novel approach to support inspection designers in the prediction of 
offline quality inspection performance. The development of a probabilistic model based on the analysis of the possible variable inter-
actions and inspection errors and the definition of some performance measures may successfully help designers in the early design 
stages of inspection process planning. The approach is supported by a practical application in the Additive Manufacturing field.

Keywords Quality control · Offline inspection · Inspection performance · Variable interaction · Inspection errors · Additive 
manufacturing

List of symbols
Xi  Input variable (i = 1,…,m)
Yj  Output variable (j = 1,…,n)
pYj  Probability of occurrence of a 

defective output variable Yj
�Yj  Probability of erroneously classify-

ing the output variable Yj as 
defective (type I inspection error)

�Yj  Probability of erroneously not 
classifying the output variable Yj as 
defective (type II inspection error)

LSLj  Lower specification limit of Yj

USLj  Upper specification limit of Yj

VAR
(
Yj
)
  Variance of Yj

X =
[
x1,… , xm

]T  Vector of the m input variables

A =
[
a0, a1,… , am

]T  Vector of the mathematical model 
coefficients

K = [X A]T  Vector of size 2 m + 1 of the input 
variables and the coefficients of the 
mathematical

cov(K)  Variance–covariance matrix of K[
�Yj

�K

]
  Vector of the partial derivatives of 

Yj with respect to each component 
of K

HB  Brinell hardness in the scale HBW 
2.5/62.5

P  Laser power (W)
v  Scan speed (mm/s)
hd  Hatching distance (mm)
p
Xi

Yj
  Probability of occurrence of the 

defective-output variable Yj due to 
the input variable Xi

p
Xi

Y1∩Y2∩⋯∩Yk
  Probability that the input variable 

Xi causes k defective-output 
variables, with k ≤ n.

p
X1∩X2∩⋯∩Xs

Yj
  Probability that s input variables 

cause the defective-output variable 
Yj, with s ≤ m.

Wj  Bernoulli random variable related 
to the output variable Yj
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WP  Bernoulli random variable related 
to the product

DYj
  Mean number of real defective-

output undetected for the jth 
output-variable

Dtot  Inspection effectiveness meas-
ure without considering variable 
interactions

D′
tot

  Inspection effectiveness measure 
under variable interactions

D∗
tot

  Inspection effectiveness meas-
ure under variable interactions, 
derived by assuming independence 
between output variables

I  Vector of model inputs related to 
the inspection effectiveness meas-
ure D′

tot

cov(I)  Variance–covariance matrix of 
model inputs

RP  Recycled powder
LT  Layer thickness
PO  Porosity
MP  Mechanical properties
DA  Dimensional accuracy

1 Introduction

Nowadays, in order to fight the competition and maintain 
their market position, manufacturing companies are increas-
ingly interested in quality performance evaluation tools as 
well as quality monitoring and control systems [1]. In par-
ticular, choosing effective quality inspections is a key factor 
within organizations to meet customer needs and maintain 
the competitive advantage in the marketplace [2, 3]. For 
years, manufacturing companies have exploited traditional 
approaches to design quality inspections [4, 5]. Nowadays, 
the increasing complexity and customization of products 
require more sophisticated, flexible and therefore expensive 
quality control strategies [6–8].

There are several aspects that inspection designers have to 
consider during the inspection process planning, including 
(1) the typology of production to be inspected, and (2) the 
kind of quality control to be performed. In particular, regard-
ing production typology, the design of quality-inspections 
for low-volume productions is a remarkable issue because of 
the inadequacy of traditional techniques, e.g., cost–benefit 
models, simulations, optimization models [3, 9, 10]. This 
production typology is characterized by a low production 
rate and often by a high level of complexity and customiza-
tion [11]. As far as quality control is concerned, inspections 
can be performed in-process or offline [12]. Production units 

are inspected during the production process in the case of 
in-process inspections, also referred to as online or in-line 
inspections in the scientific literature [13–16]. Conversely, in 
offline inspections, the finished products are inspected after 
the manufacturing process is completed [13, 17].

Inspection design of low-volume productions is attract-
ing increasing interest from researchers and practitioners. 
Regarding in-process inspections, some studies have pro-
posed methods to design an economical in-process control 
procedure, supporting the choice of the best sampling strat-
egy for low-volume productions [18, 19]. Another line of 
research has focused on the development of suitable defect 
prediction models for low-volume manufacturing processes 
and their use to plan quality inspection strategies [20–27]. 
Also with regard to offline inspections, some studies aimed 
to develop probabilistic models for predicting defects and 
define adequate performance indicators outlining the overall 
effectiveness and affordability of alternative offline inspec-
tion strategies [26, 27]. Despite this general interest, previ-
ous studies concerning offline inspections were based on the 
hypothesis of no interaction between process and inspection 
variables. This assumption, which could be true in some 
cases, can be particularly strong, especially in complex 
contexts such as Additive Manufacturing processes. This 
paper aims to extend previous studies in the field of offline 
inspection design by proposing a quantitative method for 
assessing offline inspection effectiveness considering: (1) 
possible interactions between process and inspection vari-
ables, in terms of cause-and-effect relationships, and (2) 
potential inspection errors. More in detail, the method was 
developed to address the following research question (RQ):

RQ: "How to quantify offline inspection effectiveness 
when the interactions between process and inspec-
tion variables and the inspection errors may not be 
neglected?".

The proposed approach, by providing some performance 
measures of offline inspections, can offer adequate support 
to inspection designers of low-volume productions during 
the early stages of inspection process planning. In detail, the 
proposed probabilistic model and the related performance 
measures can be adopted to support the decision-making 
process in the early design phases on the most effective 
inspection strategy, meant as the combination of inspection 
methods on quality characteristics. Indeed, especially in the 
case of low-volume productions, which are typically char-
acterized by high levels of customization and complexity, 
the choice of the most appropriate inspection is a non-trivial 
problem for two main reasons:

 (i) the variety of products that can be produced with the 
same technology makes it difficult to standardize and 
adopt a unique inspection strategy;
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 (ii) amongst all the different possible inspections, there 
may be several eligible and suitable strategies for the 
considered low-volume production.

In this regard, using adequate inspection performance 
measures to quantify the effectiveness of alternative inspec-
tion strategies from the early inspection design phases is of 
paramount importance and contributes to achieving zero-
defect manufacturing goals.

The remainder of the paper is structured as follows. A 
problem statement that arises from a real application case in 
the Additive Manufacturing field is presented in Sect. 2. In 
Sect. 3, the manufacturing process and the inspection pro-
cess variables are described and integrated into an overall 
probabilistic model. Furthermore, a self-adaptive approach 
is proposed to estimate model probabilities. Section 4 dis-
cusses the approach adopted for predicting inspection per-
formance in terms of effectiveness, including possible vari-
ables interactions and inspection errors. Practical examples 
to illustrate the proposed method applied to the real case 
presented in Sect. 2 are the subject of Sect. 5. Finally, Sect. 6 
proposes closing remarks, research limitations, and future 
developments.

2  Problem statement in a real case 
application

Consider a part produced by the selective laser melting 
(SLM) technique, which is a promising additive manufac-
turing process that fully melts a metal material into a solid 
three-dimensional part. The part is manufactured layer 
by layer by consolidating metal powder particles using a 
focused laser beam that selectively scans the surface of the 
powder bed [28]. In this process, several input variables can 
affect the quality of the finished product, including continu-
ous variables, such as laser power, scan speed and hatching 
distance, and discrete variables, e.g., the use of virgin/recy-
cled powder and the layer thickness [29–33]. These input 
variables can affect a variety of quality characteristics of 
products, which will be called from now on output variables, 
including surface roughness, macro-hardness, porosity, ten-
sile strength and dimensional accuracy [34, 35].

A first problem is to determine which is the probability 
of occurrence of defects related to the selected output vari-
ables. In order to solve this issue, the relationships between 
input and output variables can be exploited to obtain the 
probabilities of occurrence of defective-output variables, as 
will be discussed in Sect. 3.

In order to check the conformity of a product with respect 
to the output variables, offline inspections can be performed, 
such as dimensional verifications, visual checks, comparison 
with reference exemplars, mechanical tests. Two inspection 

errors can be associated with each inspection activity, 
namely detecting a defect when it is not present (type I 
error) and not detecting a defect when it is actually present 
(type II error). Despite inspection designers try to mini-
mize such inspection errors through sophisticated (manual 
and/or automatic) quality monitoring techniques, they can 
never be eliminated. The combination of inspection meth-
ods to perform quality controls on output variables defines 
an inspection strategy. Thus, a second problem is measur-
ing and predicting the performances of alternative quality 
inspection strategies that can be performed on a product. 
A first preliminary methodology to solve this problem was 
proposed in the study of Verna et al. [26]. However, this 
approach does not consider any interactions between output 
variables and inspection errors. In real situations, on the con-
trary, there is often a dependence between the occurrence of 
defective-output variables and/or inspection errors. Accord-
ingly, Sect. 4.1 proposes an approach able to also consider 
variables interactions.

3  Process and inspection modelling

Consider a manufacturing process in ideal settings condition 
with m input variables that influence the final quality of a 
single product, evaluated by measuring n quality character-
istics, i.e., output variables. In addition, each output variable 
can be inspected using a specific offline inspection method, 
which can be subject to inspection errors.

In the proposed model, schematized in Fig. 1, Xi refers to 
the input variable, where the index i ranges between 1 and m, 
being m the total number of input variables. Yj identifies the 
output variable, where j is in the range from 1 to n, being n 
the total number of output variables. Besides, the following 
probabilities can be associated with each jth output variable:

• pYj : probability of occurrence of a defective output vari-
able Yj in nominal operating conditions;

Fig. 1  Representation of a production process with m input variables 
and n output variables with related probabilities (adapted from [26])
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• �Yj : probability of erroneously classifying the output 
variable Yj as defective (i.e., type I inspection error);

• �Yj : probability of erroneously not classifying the output 
variable Yj as defective (i.e., type II inspection error).

The probability pYj concerns the quality of a process and 
it is strictly related to the intrinsic propensity to generate 
defects. The inspection errors �Yj and �Yj depend on the qual-
ity of the jth output variable inspection activity. They are 
strongly related to factors such as the technical skills and 
experience of the inspectors, the type of inspection per-
formed, the time allowed for inspection, the work environ-
ment, and other work- and inspection-related factors [13, 17, 
36, 37]. In practical applications, the probabilities pYj , �Yj 
and �Yj may be a priori estimated using adequate probabilis-
tic models, empirical methods (historical data, previous 
experience on similar processes, process knowledge, etc.) or 
simulations [20, 22, 23, 38, 39]. In the next Sect. 3.2, a self-
adaptive approach will be presented to estimate such 
probabilities.

3.1  Defective‑output probability pYj

As schematized in Fig. 1, the underlying assumption of the 
model is the relationship between input and output variables. 
Therefore, if a defective output occurs, it may be caused 
by some input variables and their interactions. As a conse-
quence, the probabilities of occurrence of defective output 
can be obtained by exploiting the relationships between input 
and output variables. Such relationships can be derived by 
implementing methods proposed in the scientific literature. 
For instance, Eger et al. [7] propose a data-driven analysis 
tool to identify the correlations between process variables in 
multistage production systems. This approach allows deriv-
ing the dependencies between variables in highly connected 
processes [7].

Process input variables can be continuous or discrete. 
Section 3.1.1 reminds how to estimate the probabilities of 
occurrence of defective-output variables for continuous 
variables. Section 3.1.2 proposes a novel methodology for 
discrete variables.

3.1.1  Continuous input variables

When dealing with continuous input variables, a method-
ology to estimate the probabilities of occurrence of defec-
tive-output variables was proposed in a previous study of 
Verna et al. [26]. Specifically, probabilities of occurrence of 
defective-output can be obtained using a linear mathemati-
cal model relating input and output variables by composing 
the uncertainties of the input variables and the coefficients 

of the mathematical model through the law of composition 
of variances [4, 40].

In detail, defined the vector of the m input variables as 
X =

[
x1,… , xm

]T , the variability of each input variable con-
tributes to the variability of the related Yj output variable, 
along with the contribution of the coefficients of the math-
ematical model, A =

[
a0, a1,… , am

]T
, as shown in Eq. (1) 

[26]:

where K is the vector of size 2 m + 1 of the input variables 
and the coefficients of the mathematical model, defined as 
K = [X A]T , cov(K) is the variance–covariance matrix [41] 
and 

[
�Yj

�K

]
 is the vector of the partial derivatives of Yj with 

respect to each component of K.
At this point, if the probability distribution of each output 

variable Yj is known, the probability pYj , representing the 
probability that Yj falls outside the specification limits, can 
be estimated by computing the area of the distribution out-
side the two specification limits, respectively LSLj and USLj, 
as follows:

To clarify this methodology, a simple example is pro-
vided. In a previous study, it was found from planned experi-
mentation that Brinell hardness in the scale HBW 2.5/62.5 
(HB) of parts produced by SLM process can be expressed as 
a function of process parameters, i.e., laser power (P), scan 
speed (v) and hatching distance (hd), as follows [27]:

where the mean value and standard deviation of the param-
eters �0, �1, �2, �3, �4, �5 are provided in Table 1.

The variance of HB can be obtained by composing the 
variance of the mathematical model parameters, reported in 
Table 1, and the standard uncertainty of process variables, 

(1)VAR
(
Yj
)
≈

[
�Yj

�K

]T
⋅ cov(K) ⋅

[
�Yj

�K

]
(j = 1,… , n)

(2)pYj = 1 − P
(
LSLj ≤ Yj ≤ USLj

)

(3)HB = �0 + �1 ⋅ P + �2 ⋅ v + �3 ⋅ hd + �4 ⋅ v
2 + �5 ⋅ v ⋅ hd

Table 1  Mean value and standard deviation of the model parameters 
of Eq. (3) [27]

Parameter Mean value Standard deviation

β0 [HB] − 5.12·101 3.57·101

β1 [HB/W] − 1.42·10–1 7.16·10–2

β2 [HB/(mm/s)] 2.19·10–1 3.28·10–2

β3 [HB/mm] 4.85·102 1.10·102

β4 [HB/(mm/s)2] − 5.46·10–5 1.16·10–5

β5 [HB/(mm2/s)] − 2.69·10–1 8.22·10–2
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evaluated as the resolution of the AM machine under the 
assumption of uniform distribution, see Table 2 [27].

Accordingly, the variance of HB can be obtained as 
follows:

where K =
[
P, v, hd, v ⋅ v, v ⋅ hd, �0, �1, �2, �3, �4, �5

]T and 
cov(K) includes respectively their variances and covariances.

Finally, under the hypothesis of normal distribution, the 
probability of hardness-defect, pHB, was obtained by Eq. (2). 
In detail, given the nominal value of hardness (122.45 HB), 
the variance shown in Eq. (4), and the lower specification 
limit (LSL = 114 HB), the resulting probability is the fol-
lowing [27]:

It has to be specified that, in this case, technological 
requirements only impose a lower, and not an upper, speci-
fication limit.

3.1.2  Discrete input variables

The probability of occurrence of the jth defective-output, 
pYj , can be derived from the probabilities of occurrence of 
defects caused by the input variables. Accordingly, each ith 
input variable is associated with a probability pXi

 , i.e., the 
probability of occurrence of defects in the final part due to 
the input variable Xi.

The relation between input and output variables is repre-
sented through the probability pXi

Yj
 , i.e., the probability of 

occurrence of the defective-output variable Yj due to the 
input variable Xi. Besides, each input variable may be a 
source of more defective-output variables. In this situation, 
the probability that the input variable Xi causes k defective-
output variables is denoted as pXi

Y1∩Y2∩⋯∩Yk
 , with k ≤ n . Simi-

larly, each defective-output variable may be caused by more 
input variables. In such a case, the probability that s input 
variables cause the defective-output variable Yj is identified 
with the probability pX1∩X2∩⋯∩Xs

Yj
 , with s ≤ m.

Consider an exemplifying process with 3 input variables 
and 4 output variables, as shown in Fig. 2.

(4)VAR(HB) ≈
[
�HB

�K

]T
⋅ cov(K) ⋅

[
�HB

�K

]
= 4.62 HB2

(5)pHB = P(HB ≤ LSL) = 0.55%

In this specific example, the probabilities of occurrence 
of defects in the product due to the input variables, pXi

(i = 1,2,3), are:

More in general, pXi
 can be calculated, for each 

i ∈ {1, 2,… ,m} , as follows:

where each sum 
∑

j1<j2<⋯<jr
 is calculated for all the 

(
k

r

)
 

possible subsets of r elements of the set {1, 2,… , k} , and k 
is the total number of defective-output variables caused by 
the input variable Xi, with k ≤ n.

At this point, the probabilities of occurrence of defective-
output variables of the example illustrated in Fig. 2, pYj 
(j = 1,2,3,4), can be derived as follows:

(6a)pX1
= p

X1

Y1
+ p

X1

Y2
− p

X1

Y1∩Y2

(6b)pX2
= p

X2

Y2
+ p

X2

Y3
− p

X2

Y2∩Y3

(6c)pX3
= p

X3

Y4

(7)

pXi
=

k∑
j=1

p
Xi

Yj
−
∑
j
1
<j

2

pXi
Yj1

∩Yj2
+⋯ + (−1)r+1⋅

∑
j
1
<j

2
<⋯<jr

p
Xi

Yj1
∩Yj2

∩⋯∩Yjr
+⋯ + (−1)k+1 ⋅ pXi

Y
1
∩Y

2
∩⋯∩Yk

(8a)pY1 = p
X1

Y1

(8b)pY2 = p
X1

Y2
+ p

X2

Y2
− p

X1∩X2

Y2

(8c)pY3 = p
X2

Y3

Table 2  Standard uncertainty of process variables

Process variable Standard uncertainty

P (W) 2.89 ⋅ 10
−2

v (mm/s) 2.89 ⋅ 10
−2

hd (mm) 2.89 ⋅ 10
−3

Fig. 2  Representation of an exemplifying process with 3 input vari-
ables and 4 output variables
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where the probability pX1∩X2

Y2
 in Eq. (8b) can be calculated, 

according to the definition of conditional probability [4], as 
follows:

In Eq. (9), pX1|X2

Y2
 is the conditional probability that the 

defective-output variable Y2 caused by X1 occurs, given that 
the defective-output variable Y2 caused by X2 has occurred 
(or vice versa for pX2|X1

Y2
).

More in general, pYj can be calculated, for each 
j ∈ {1, 2,… , n} , as follows:

where each sum 
∑

j1<j2<⋯<jr
 is calculated for all the 

(
s

r

)
 

possible subsets of r elements of the set {1, 2,… , s} , and s 
is the total number of input variables that cause the defec-
tive-output variable Yj jointly, with s ≤ m . The generic prob-
ability p

Xi1
∩Xi2

∩⋯∩Xir

Yj
 , expressed in Eq. (10), can be derived 

by exploiting the definition of conditional probability [4] 
according to the logic-causal criteria between input varia-
bles. However, when independence between input variables 
can be assumed, i.e., when only controlled independent 
inputs of the process affecting the quality of the finished 
product are considered, it can be expressed as shown in 
Eq. (11).

3.2  Self‑adaptive approach to estimate defect 
and inspection error probabilities

The estimation of the probability of occurrence of the defec-
tive-output variables, both continuous and discrete, and the 
probability of inspection errors—see Sect. 3, is a key point 
of the proposed probabilistic model. Since the approach 
proposed in this study is mainly beneficial for low-volume 

(8d)pY4 = p
X3

Y4

(9)p
X1∩X2

Y2
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

p
X1

Y2
⋅ p

X2

Y2
if the occurrence ofX1 and that ofX2 are independent

p
X2�X1

Y2
⋅ p

X1

Y2
if the occurrence ofX1 and that ofX2 are dependent�

the occurrence ofX1 is the conditioning event
�

p
X1�X2

Y2
⋅ p

X2

Y2
if the occurrence ofX1 and that ofX2 are dependent�

the occurrence ofX2 is the conditioning event
�

(10)

pYj =

s∑
i=1

p
Xi

Yj
−
∑
i
1
<i

2

p
Xi1

∩Xi2

Yj
+⋯ + (−1)r+1⋅

∑
i
1
<i

2
<⋯<ir

p
Xi1

∩Xi2
∩⋯∩Xir

Yj
+⋯ + (−1)s+1 ⋅ p

X
1
∩X

2
∩⋯∩Xs

Yj

(11)p
Xi1

∩Xi2
∩⋯∩Xir

Yj
= p

Xi1

Yj
⋅ p

Xi2

Yj
⋅ ⋯ ⋅ p

Xir

Yj
j ∈ {1, 2,… , n}

productions, where few historical data are available, the 
estimation of such probabilities may not be straightforward. 
Therefore, in order to estimate the above probabilities, the 
adoption of a self-adaptive approach is suggested. In particu-
lar, the probabilities of defective-output variables presented 

in Sect. 3.1 may be estimated in the design stages of inspec-
tions by Eqs. (2) and (10) and using, as a first approxima-
tion, historical data relevant to similar products of the same 
manufacturing process—with slightly different characteris-
tics. Then, as new experimental data becomes available, the 
prediction models described in Sects. 3.1.1 and 3.1.2 can be 
updated accordingly to improve estimates accuracy.

A similar approach can be applied to the estimation of 
inspection errors. As abovementioned, inspection errors, �Yj 
and �Yj , are affected by a plurality of factors, including oper-
ators/inspectors’ experience and technical skills of opera-
tors/inspectors, the typology of inspection performed (man-
ual, automatic or a mixture of both), the time allowed for 
inspection, the work environment, and other work- and 
inspection-related factors. Owing to this large number of 
factors that can lead to inspection errors, it is challenging to 
estimate the corresponding probabilities. In the scientific 
literature, some papers treat inspection errors only from a 
theoretical point of view [13, 38, 42, 43]; instead, others 
estimate them by adopting approaches based on prior knowl-
edge of the inspection process [11, 12, 20, 23, 26]. As the 
inspection errors are mostly related to the measuring proce-
dure (instrument, operator and working conditions), empiri-
cal data relevant to different products of similar manufactur-
ing processes can be used as a first approximation to estimate 
them, especially in the case of new productions or in the 
design stages of inspections. Indeed, most of the controls 
performed in a company are common to different typologies 
of products, as for electromechanical products [23]. There-
after, a self-adaptive approach can be implemented, which 
involves updating and refining the estimates with new data 
acquired as production progresses.

Such an auto-adaptive approach allows for up-to-date 
and accurate estimates of model (process and inspection) 
probabilities. Clearly, the more data used and the greater 
the periodicity of the self-adaptation, the greater the model's 
accuracy and the resulting prediction of the performance 
measures described in the next Sect. 4.
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4  Performance assessment of inspection 
strategies

According to the process and inspection modelling proposed 
in Sect. 3 and the tree diagram shown in Fig. 3, for each jth 
output variable (j = 1,…,n) the following probabilities can 
be obtained [26]:

As stated in Eq. (12), an output variable can be classified 
as defective when it is actually defective, with a probability 
pYj ⋅

(
1 − �Yj

)
 , or when it is conforming (false positive), 

with a probability 
(
1 − pYj

)
⋅ �Yj . On the other hand, an out-

put variable Yj can be classified as conforming when there is 
an inspection error (false negative), with a probability 
pYj ⋅ �Yj , or when there is the real absence of any defect, with 
a probability 

(
1 − pYj

)
⋅

(
1 − �Yj

)
 , as shown in Eq. (13).

Then, n Bernoulli random variables ( Wj ) are defined as 
follows:

• Wj = 0, when either (1) the truly defective output variable 
Yj is detected as such or (2) the output variable Yj is not 
defective;

• Wj = 1, the truly defective output variable Yj is not 
detected as such (false negative).

Since defects that are not detected by inspections are 
the objective of this study, the following probability can be 
obtained according to Eq. (13) (j = 1,…,n):

(12)
P
(
classify the output variable Yj as defective

)

= pYj
⋅

(
1 − βYj

)
+
(
1 − pYj

)
⋅ αYj

(13)
P
(
classify the output variable Yj as conforming

)

= pYj
⋅ βYj

+
(
1 − pYj

)
⋅

(
1 − αYj

)

as the term 
(
1 − pYj

)
⋅

(
1 − �Yj

)
 represents the probability 

of classifying conforming outputs as conforming.
Therefore, the mean number of real defective-output 

undetected for the jth output-variable is:

When considering the overall inspection strategy, the 
mean total number of defective-output variables which are 
erroneously not detected can be defined as:

In first approximation, Dtot can be considered a reason-
able estimate of the inspection effectiveness as it provides a 
measure of the overall effectiveness of the inspection strat-
egy performed on the product. It has to be pointed out that 
Eq. (16) is obtained under the hypothesis of no interaction 
between inspection errors and defect probabilities of dif-
ferent output variables. As a consequence, the two output 
variables can be considered decoupled.

For each output variable Yj, a total cost related to the 
inspection, including costs for the inspection activity, defects 
removal and undetected defects, can also be considered, 
as described in the study of Verna et al. [26]. However, a 
detailed cost analysis will be the object of future develop-
ments of this research.

4.1  Interaction between model variables

As mentioned above, Eq. (16) is obtained under the assump-
tion of no interaction between defects and inspections errors 
of different output variables. This allows to decouple the 
corresponding output variables and, therefore, to consider 
the related events as mutually exclusive, i.e., disjoint events. 

(14)P
(
Wj = 1

)
= pYj

⋅ βYj

(15)DYj
= E

(
Wj

)
= pYj ⋅ �Yj

(16)Dtot =

n∑
j=1

E
(
Wj

)
=

n∑
j=1

pYj ⋅ �Yj

Fig. 3  Tree diagram of the 
inspection process of each jth 
output variable
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However, in practical situations, different defective-output 
variables can occur jointly, requiring the proposed model 
and performance measures to be refined.

It is worth noting that possible interactions between vari-
ables are intended in this study as cause-and-effect relation-
ships and not merely as correlations. Indeed, a correlation is 
a statistical measure of the relationship between two or more 
variables that, however, does not provide information about 
the cause-and-effect relationship of the data [7]. Besides, 
it has to be clarified the distinction between the concept of 
variables interaction and that of independence. Interaction 
may arise when the effect of one causal variable on an out-
come depends on the state of a second causal variable (i.e., 
when effects of the two causes are not additive) [44]. On the 
other hand, two events are independent if the occurrence 
of one does not affect the probability of occurrence of the 
other. Similarly, two random variables are independent if the 
realization of one does not affect the probability distribu-
tion of the other [41]. Accordingly, in a scenario of variable 
interactions, there can be situations of either dependence or 
independence between events or variables.

A summary reporting the assumptions (dependence/inde-
pendence) introduced in this study in the modeling of the 
interaction between variables is provided in Table 3.

Consider, for example, two output variables denoted by Y1 
and Y2 that are inspected on the final product. In the case of 
interaction between defects and inspections errors of Y1 and 
Y2 , there are 16 different possibilities in such an inspection 
process, including some cases of misclassifications and other 
of correct classifications. This scenario is depicted in Fig. 4.

It has to be highlighted that the events represented in 
Fig. 4, both related to the occurrence of defects and inspec-
tion errors, are considered independent. For instance, the 
occurrence of the defective-output variable Y2 is independ-
ent of the occurrence of the defective output-variable Y1 . 
Besides, inspections on Y1 and Y2 are performed separately, 
as it happens in most practical cases, and the correspond-
ing inspection errors do not depend on the typology of the 
defect. Accordingly, as shown in Fig. 4, the type I and type II 
inspection errors are the same in all the paths of the graphi-
cal model. In graphical terms, this situation is indicated by 
the absence of any direct arrow between the nodes of the 
events in the tree diagram.

However, in real situations, the assumption of independ-
ence between the defective-output variables can be an over-
simplification. In general, probabilities are context sensitive. 
For instance, the probability of occurrence of the defective-
output variable Y2 can be conditioned on the occurrence of 
the other defective-output variable Y1 , or vice versa. Refer-
ring to the application case described in Sect. 2, consider as 
output variables mechanical properties (MP) and porosity 
(PO). Suppose that the probabilities of occurrence of defects 
are pPO = 2% and pMP = 2.98%. If the occurrence of MP and 
that of PO are independent, then the probability that the two 
defective-output variables occur jointly, pMP∩PO

 , will be 
pMP∩PO = pMP ⋅ pPO = 0.06% . On the other hand, in case of 
dependence between the occurrences of the defects, and sup-
posing that the occurrence of MP is conditioned to the 

Table 3  Summary of the assumptions (dependence/independence) 
introduced in the modeling of interaction between variables

Occurrence of 
defects

Inspection errors Occurrence 
of defects and 
inspection errors

Figure 4 Independence Independence Independence
Figure 5 Dependence Independence Independence
Figure 6 Dependence Independence Dependence

Fig. 4  Tree diagram of the 
inspection process of 2 output 
variables in case of independ-
ence between the occurrence of 
defects, inspection errors and 
both
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occur rence  of  PO  ( i . e .  pMP|PO  =  80%) ,  t hen 
pMP∩PO = pMP|PO ⋅ pPO = 1.6% . Thus, in this case, assuming 
independence between MP and PO would result in underes-
timating the joint probability pMP∩PO

.
In such a case, i.e., when there is a dependence between 

the occurrence of defective-output variables, the scenario is 
depicted in Fig. 5. The four possible combinations of defects 
in such a scenario are: Event (A): Y1 defective and Y2 defec-
tive; Event (B): Y1 deffective and Y2 conforming; Event (C):Y1 
conforming and Y2 defective; Event (D): Y1 conforming and 
Y2 conforming. The probabilities associated with each event 
are reported in Fig. 5. Specifically, the probability that the 
two defective-output variables occur jointly, pY1∩Y2 , can be 
obtained, according to the definition of conditional prob-
ability [4], as follows:

In light of this, according to the structure of the prob-
lem and the directionality of the cause-and-effect relation-
ship between the output variables, in the graphical model 
depicted in Fig. 5, pY1∩Y2 should be replaced by the probabili-
ties reported in Eq. (17). It should be noted that, when the 
occurrence of Y1 and that of Y2 are independent, the diagram 
in Fig. 5 can lead back to the diagram in Fig. 4.

As far as inspection errors are concerned, their probabil-
ity could also be related to the occurrence of the defective-
output variables, i.e., to the four different events (A), (B), 
(C) and (D). In this case, simple probabilities should be 

(17)pY1∩Y2 =

⎧
⎪⎪⎨⎪⎪⎩

pY2 ⋅ pY1 if the occurrence of Y1 and that ofY2 are independent

pY2�Y1 ⋅ pY1 if the occurrence ofY1and that ofY2 are dependent
(the occurrence ofY1 is the conditioning event)

pY1�Y2 ⋅ pY2 if the occurrence of Y1 and that ofY2 are dependent

(the occurrence of Y2 is the conditioning event)

replaced by conditional probabilities, as shown in Fig. 6. 
In detail, four different inspection errors can occur when 
inspecting Y1 ( �Y1|A , �Y1|B , �Y1|C and �Y1|D ), and other four 
when inspecting Y2 ( �Y2|A , �Y2|C , �Y2|B , �Y2|D ). It has to be 
noted that, for Y1 , the errors �Y1|C and �Y1|D are not considered 
because in the events (C) and (D) the output Y1 is conform-
ing. Accordingly, we are not interested in evaluating type II 
errors for those scenarios. Similarly, type I errors �Y1|A and 
�Y1|B related to Y1 are not of interest in events (A) and (B), 
respectively, in which Y1 is defective. The same reasoning 
can be applied to Y2 , for which inspection errors �Y2|B , �Y2|D , 
�Y2|A and �Y2|C are not regarded.

In practical applications, inspection errors are not mainly 
related to the part to be inspected and its defects. Instead, 
they depend closely on factors such as the measuring device 

and procedure, the inspector abilities, and other work- and 
inspection-related factors [45, 46]. For that reason, as a first 
approximation, the model and performance measure pro-
posed in this study rely on the independence between inspec-
tion errors, and between inspection errors and the occur-
rence of defects, as depicted in Fig. 5. Such a hypothesis 
helps obtain a generalization of the performance measure 
with n output variables, which will be described in the next 
section.

In order to generalize the proposed model to n output 
variables inspected, the possible combinations in which the 

Fig. 5  Tree diagram of the 
inspection process of 2 output 
dependent variables in case of 
independence between inspec-
tion errors, and between inspec-
tion errors and the occurrence 
of defects
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defects can occur are  2n, each one associated with  2n pos-
sible combinations of inspection errors, resulting in a total 
of  22n combinations (i.e., all possible branches of the tree 
diagram).

4.1.1  Inspection effectiveness

Again, a Bernoulli random variable related to the product 
( WP ) can be defined as follows: 

• WP = 0 , when either (1) a truly defective output variable 
is classified as defective or (2) an output variable is not 
defective;

• WP = 1 , a truly defective output variable is not classified 
as defective.

According to the graphical models of Figs. 4, 5 and 6, 
P
(
WP = 0

)
 can be obtained by multiplying the probabili-

ties on the paths where conforming (both false positive and 
truly conforming) and truly defective output variables are 
encountered. On the other hand, P

(
WP = 1

)
 can be derived 

by multiplying the probabilities on the paths where false 
negative output variables are encountered. In the specific 
case of independence between inspection errors and the 
related defective-output variables (see Fig. 5), the follow-
ing two relationships are obtained, given that the two prob-
abilities are complementary:

(18)
P
(
WP = 0

)
= 1 − pY1

⋅ βY1
− pY2

⋅ βY2
+ pY1∩Y2

⋅ βY1
⋅ βY2

Therefore, according to Eqs. (18) and (19), the mean total 
number of defective-output variables which are erroneously 
not detected in the inspection process for the two variables 
Y1 and Y2 can be defined as:

Thus, if the inspection process is examined in its total-
ity and, therefore, the two output variables are not decou-
pled, Eq.  (20) differs from Eq.  (16) for the component 
pY1∩Y2 ⋅ �Y1 ⋅ �Y2 , which represents the mean total number of 
undetected defects of Y1 and Y2 when they occur jointly in 
the product.

More in general, if there are n output variables to be 
inspected on the product, by exploiting the total prob-
ability theorem [47], the inspection effectiveness indicator 
becomes:

where each sum 
∑

j1<j2<⋯<jt

 is calculated for all the 
(
n

t

)
 pos-

sible subsets of t elements of the set {1, 2,… , n} . Thus, D'tot 
is obtained by summing the probabilities of occurrence of 

(19)

P
(
WP = 1

)
=pY1∩Y2 ⋅

[
�Y1 +

(
1 − �Y1

)
⋅�Y2

]
+
(
pY1 − pY1∩Y2

)
⋅�Y1

+
(
pY2 − pY1∩Y2

)
⋅�Y1

⋅�Y2
+
(
pY2 − pY1∩Y2

)

⋅(1 − �Y1
)⋅�Y2

= pY1 ⋅�Y1
+ pY2 ⋅�Y2

− pY1∩Y2 ⋅�Y1
⋅�Y2

(20)
D�

tot
= E

(
WP

)
= pY1 ⋅ �Y1 + pY2 ⋅ �Y2 − pY1∩Y2 ⋅ �Y1 ⋅ �Y2

(21)

D
�

tot =
�n

j=1

�
pYj ⋅𝛽Yj

�
−
�

j1<j2

��
pYj1∩Yj2

�
⋅

�
𝛽Yj1

⋅𝛽Yj2

��

+⋯ + (−1)t+1 ⋅
�

j1<j2<⋯<jt

��
pYj1∩Yj2∩⋯∩Yjt

�
⋅

�
𝛽Yj1

⋅𝛽Yj2
⋅ ⋯ ⋅ 𝛽Yjt

��

+⋯ + (−1)n+1 ⋅
��
pY1∩Y2∩⋯∩Yn

�
⋅

�
𝛽Y1 ⋅𝛽Y2

⋅ ⋯ ⋅ 𝛽Yn

��
=
�n

j=1
(−1)j+1

⋅

�
1≤k1

<⋯<k j≤n

��
p⋂j

q=1
Ykq

�
⋅

�
j�

q=1

𝛽Ykq

��

Fig. 6  Tree diagram of the 
inspection process of 2 output 
dependent variables in case of 
independence between inspec-
tion errors, and dependence 
between inspection errors and 
the occurrence of defects
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defects multiplied by the related type II errors, minus the 
probabilities associated with defects appearing in even num-
bers, also multiplied by the related type II errors, and by 
summing again the probabilities associated with defects 
appearing in odd numbers, also multiplied by the related 
type II errors. Although Eq. (21) is formulated for the case 
of independence between inspection errors and the related 
defective-output variables, it can be considered a reasonable 
approximation of the indicator of inspection effectiveness 
when n defective-output variables can occur jointly.

4.2  Variability evaluation of performance measures

The reliability of the performance measure of inspection 
effectiveness can be assessed by providing a quantitative 
evaluation of the variability of the estimate. The approach 
that can be used to this aim is the method based on the 
law of composition of variances [4, 20]. According to this 
approach, the variability affecting all the model inputs, i.e., 
probabilities of occurrence of defects and inspection errors, 
can be combined and propagated to obtain the variability of 
the performance measure D′

tot
 . In detail, known the equation 

model relating model inputs and the performance measure, 
see Eq. (21), the variability, expressed in terms of vari-
ance (VAR), of the inspection effectiveness measure may be 
defined as follows:

where I is the vector of model inputs and cov(I) is the vari-
ance–covariance matrix of model inputs.

It has to be remarked that Eq. (22), in case of absence of 
variable interactions, i.e., when considering Eq. (16) instead 
of Eq. (21), leads to the simplified model given in Eq. (23):

5  Case study application

Referring to the case study described in Sect. 2, consider a 
part produced by SLM for which the probabilities of occur-
rence of defective-output variables are evaluated by the two 
discrete variables: recycled powder (RP) and layer thick-
ness (LT). The use of recycled powder may be considered a 
Boolean variable (use or not of the recycled powder). The 
second variable, the layer thickness, is primarily chosen 

(22)VAR
(
D�

tot

)
=

[
�D�

tot

�I

]T
⋅ cov(I) ⋅

[
�D�

tot

�I

]

(23)

VAR
�
Dtot

�
=

n�
j=1

⎡
⎢⎢⎣

�
�Dtot

�pYj

�2

⋅ VAR
�
pYj

�
+

�
�Dtot

��Yj

�2

⋅ VAR
�
�Yj

�⎤⎥⎥⎦

=

n�
j=1

�
�2
Yj
⋅ VAR

�
pYj

�
+ p2

Yj
⋅ VAR

�
�Yj

��

based on the particle size and cannot be thinner than the larg-
est particle in the powder [48]. Besides, in AM machines, 
the layer thickness can typically assume discrete values in 
the permissible range. For instance, in the  EOSINT® M 270 
metal sintering system [49], the layer thickness can vary 
from 20 µm to 100 µm (20 µm, 30 µm, 40 µm, 50 µm, 60 µm, 
70 µm, 80 µm, 90 µm and 100 µm) depending on the mate-
rial. Extensive studies in the scientific literature have shown 
the effect of recycled powder and layer thickness on porosity 
(PO), mechanical properties (MP) and dimensional accu-
racy (DA) of components produced with SLM technique. In 
particular, some authors found empirically that the use of 
recycled powder may affect porosity and mechanical proper-
ties, e.g., tensile strength [31, 32, 50], while layer thickness 
on dimensional accuracy as well as mechanical properties 
[51–53]. Although recycled powder and layer thickness 
may also affect other output variables, e.g., surface rough-
ness [54], this example is restricted to analyzing porosity, 
mechanical properties and dimensional accuracy (Fig. 7). 
However, the proposed approach can be extended to further 
output variables.

Assume that the probabilities of occurrence of defects in 
the product due to RP and LT, pRP and pLT, are respectively 
2% and 3%. In detail, RP can cause PO, MP and joint PO 
and MP defects with, respectively, probabilities pRP

PO
 , pRP

MP
 

and pRP
PO∩MP

 (see Eq. (24a)). On the other hand, LT can cause 
MP, DA and joint MP and DA defects with probabilities pLT

MP
 , 

pLT
DA

 , and pLT
MP∩DA

 , respectively (see Eq. (24b)).

Probabilities in Eqs. (24a) and (24b) can be estimated 
with real data based on literature data and/or previous direct 
manufacturing experience gained in producing the same 
(or similar) parts via SLM. Alternatively, if such data are 
not easily available, preliminary experimental campaigns 

(24a)pRP = pRP
PO

+ pRP
MP

− pRP
PO∩MP

= 2%

(24b)pLT = pLT
MP

+ pLT
DA

− pLT
MP∩DA

= 3%

Fig. 7  Schematic of the SLM process with 2 input variables (RP 
and LT) and 3 output variables (PO, MP, DA) with the related prob-
abilities. RP recycled powder, LT layer thickness, PO porosity, MP 
mechanical properties, DA dimensional accuracy
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could be conducted. In detail, the following steps should 
be followed.

Step 1) Parts manufacturing
To evaluate the effect of RP, a number Np of parts should 
be manufactured in the same build, in optimal working 
conditions, by using recycled powder. It should be clari-
fied that the term "build" and "job" indicate, in industry 
and the literature, the stack of parts produced via SLM in 
one single process run [55]. On the other hand, to evalu-
ate the effect of LT, a number Nq of parts should be manu-
factured in the same build, by using optimal parameters 
settings and a fixed layer thickness.
Step 2) Inspections
Appropriate quality controls should be performed to 
evaluate the defectiveness in terms of PO and MP for the 
Np parts of the first campaign, and MP and DA for the 
Nq parts of the second campaign. A part is recorded as 
defective if the considered quality characteristic value is 
out of a specification range.
Step 3) Probability estimation
The probabilities of occurrence of defects should be esti-
mated by using the classical definition of probability, i.e., 
number of defective parts over total number of produced 
parts. For instance, if Np = 50 and 1 part is signaled as 
defective in terms of porosity, then pRP

PO
 = 1/50 = 2%. It has 

to be clarified that, when estimating pRP
PO

 , all the parts that 
present porosity-defects should be accounted, even those 
with mechanical properties-defects. Similarly, in pRP

MP
 , 

all parts with mechanical properties-defects should be 
included. On the other hand, pRP

PO∩MP
 is obtained consid-

ering only the parts with both defects of PO and MP. The 
same method should be applied for evaluating pLT

MP
 , pLT

DA
 

and pLT
MP∩DA

 . For instance, if Nq = 100 and 3 parts are sig-
naled as defective in terms of DA, then pLT

DA
 = 3/100 = 3%.

Then, the probabilities of occurrence of defective-output 
variables can be derived, according to Eqs. (10) and (11):

Now, combining the type II inspection errors of each 
output variable (see Table 4) with the related defect prob-
abilities, the indicator of effectiveness may be derived. Such 
inspection errors may be estimated by the use of predic-
tion models and/or empirical methods—based on historical 
data, previous experience and process knowledge [22, 23, 
26]—or by adopting the self-adaptive approach described 

(25a)pPO = pRP
PO

= 2%

(25b)
pMP = pRP

MP
+ pLT

MP
− pRP∩LT

MP
= 1% + 2% − (1% ⋅ 2%) = 2.98%

(25c)pDA = pLT
DA

= 3%

in Sect. 3.2. In this case study, inspection errors were firstly 
experimentally estimated as the fraction of false negative 
parts out of the total number of inspected parts, based on his-
torical data related to 100 similar parts manufactured by the 
SLM process. Such values are listed in Table 4. For instance, 
�PO was 7.0% as 7 parts were classified as non-defective 
(when actually defective) out of a total of 100 inspected 
parts.

When the interaction between variables is not consid-
ered, the effectiveness indicator can be derived by exploiting 
Eq. (16):

As mentioned in Sect. 4.1, interactions between variables 
can be commonplace in a complex contest such as AM pro-
cesses. Thus, when considering the interaction, the indicator 
of effectiveness should be evaluated according to Eq. (21):

A first preliminary estimate of the probabilities that 
defects can occur jointly, i.e., pMP∩PO

 , pDA∩PO , pDA∩MP
 

and pMP∩DA∩PO
 , can be derived by assuming independence 

between output variables. As a consequence, Eq. (27) may 
be re-written as:

where pMP ⋅ pPO = 0.06% , pDA ⋅ pPO = 0.06% , pDA ⋅ pMP

= 0.09% and pMP ⋅ pDA ⋅ pPO = 0.006%.
It can be shown that, in the assumption of independence 

between output variables, the following relationship holds: 
Dtot > D∗

tot
 , being all defect probabilities and inspection 

errors values ranged between 0 and 1. In light of the rela-
tionship existing between Dtot and D∗

tot
 , and also considering 

(26)
Dtot = pPO ⋅ �PO + pMP ⋅ �MP + pDA ⋅ �DA = 4.39 ⋅ 10−3

(27)

D�
tot

= pPO ⋅ �PO + pMP ⋅ �MP + pDA ⋅ �DA

−
(
pMP∩PO ⋅ �MP ⋅ �PO

)
−
(
pDA∩PO ⋅ �DA ⋅ �PO

)
−
(
pDA∩MP ⋅ �DA ⋅ �MP

)
+
(
pMP∩DA∩PO ⋅ �MP ⋅ �DA ⋅ �PO

)

(28)

D∗
tot

= pPO ⋅ �PO + pMP ⋅ �MP + pDA ⋅ �DA

−
(
pMP ⋅ pPO ⋅ �MP ⋅ �PO

)
−
(
pDA ⋅ pPO ⋅ �DA ⋅ �PO

)
−
(
pDA ⋅ pMP ⋅ �DA ⋅ �MP

)
+
(
pMP ⋅ pDA ⋅ pPO ⋅ �MP ⋅ �DA ⋅ �PO

)

= 4.38 ⋅ 10
−3

Table 4  Inspection errors 
related to porosity PO, 
mechanical properties MP and 
dimensional accuracy DA, 
based on historical data related 
to 100 parts

Output variable Yj �Yj (%)

PO 7.0
MP 5.0
DA 5.0
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that the defect probabilities and inspection errors are typi-
cally low values in nominal working conditions, the dif-
ference between the two indicators is typically negligible. 
Thus, in conservative terms, the performance measure Dtot 
can represent a reasonable overestimation of the inspection 
effectiveness in the case of independence between defective 
output variables.

In order to verify if Dtot can also be a reasonable approxi-
mation for evaluating D′

tot
 in the assumption of dependence 

of the occurrence of defects (see Eq. (27)) joint probabilities 
should be estimated experimentally. In this latter case, litera-
ture data or previous similar manufacturing experience may 
be used. Alternatively, a specific experimentation should be 
conducted to estimate the joint probabilities ( pMP∩PO

 , 
pDA∩PO , pDA∩MP

 and pMP∩DA∩PO
 ). For instance, suppose we 

experimentally obtain the following values (by quantifying 
the number of defective parts in which joint defects occurs 
over the total number of produced parts): pMP∩PO = 1.6% , 
pDA∩PO = 1.3% , pDA∩MP = 1.8% and pMP∩DA∩PO = 0.06% . In 
this case, the assumption of independence between variables 
is not valid. Indeed, joint probabilities are not equal to the 
product of single probabilities. Instead, they are derived 
from the related conditional probabilities (i.e., 
pMP|PO =

pMP∩PO

pPO
= 80%  ,  pDA|PO =

pDA∩PO

pPO
= 65%  , 

pDA|MP =
pDA∩MP

pMP

= 3% , p(MP∩DA)|PO =
pMP∩DA∩PO

pPO
= 60%).

Now, by applying Eq. (27) in case of dependence between 
variables, the following value is obtained:

The estimates of inspection effectiveness obtained by 
Eq. (26), (28) and (29) should be complemented with their 
estimated variabilities. As a first approximation, the standard 
deviation of each model input (i.e., probabilities of occur-
rence of defects and inspection errors) are assumed to be 5% 

(29)D�
tot

= 4.25 ⋅ 10−3

of the relevant value of the input itself. Then, the variances 
related to inspection effectiveness measures D′

tot
 and D∗

tot
 are 

calculated by applying Eq. (22), and for Dtot by implement-
ing Eq. (23). The 95% Confidence Intervals (CI) are finally 
obtained from the variability of the performance measures, 
as shown in Fig. 8.

As can be noted, the dependence between the occur-
rences of defects results in a slight decrease (about 3.5%) in 
the mean number of undetected defective-output variables 
with respect to Dtot and D∗

tot
 (see respectively Eqs. (26) and 

(28)). However, in all three cases (i.e., Dtot , D∗
tot

 and D′
tot

 ), 
given a production of 1000 components, there are nearly 5 
defective-output variables that are erroneously not identi-
fied. Moreover, as represented in Fig. 8, the three confidence 
intervals overlap, thereby highlighting no systematic differ-
ence between the three performance measures. As a result, 
the indicator Dtot can represent a preliminary conservative 
estimation of inspection effectiveness also in case of depend-
ence between output variables.

As mentioned in Sect. 3.2, the estimates of model prob-
abilities can be gradually refined using a self-adaptive 
approach. Consider, as an example, that a new job of 30 
parts is produced and a 100% inspection is performed. This 
quality control enables the refinement of the inspection 
error estimates shown in Table 4. In detail, regarding PO, 2 
parts were classified as non-defective when actually defec-
tive, whereas 1 false negative part was identified for MP 
and 0 for DA. Taking PO as an example, 2 false negative 
parts were added to the previous 7 parts (historical data, cf. 
Table 4) out of a total of 130 inspected parts (100 previously 
inspected and 30 related to the new produced job), resulting 
in �PO =

(2+7)

130
= 6.9%. The probabilities estimates listed in 

Table 4 were accordingly updated, as shown in Table 5.
Using such new estimates of inspection errors, the per-

formance measures derived by Eqs. (26), (27) and (28) can 
be refined to improve the accuracy of the prediction, as rep-
resented in Fig. 9.

It is worth noting that the empirical validation of the pro-
posed approach and performance measure is a delicate issue. 
Since the mean number of undetected defects is, generally, 
very low (as in this case which is of the order of 10−3 ) and, 
typically, AM productions involved some tens per build, a 
real data collection cannot be easily completed in a short 
time. For instance, referring to the proposed case study, 1000 
parts should be produced to observe about 4 or 5 defective-
output variables which are not detected. However, as a first 

Fig. 8  Graphical comparison of the 95% confidence intervals (CI) of 
the inspection effectiveness measures D

tot
 , D∗

tot
 and D′

tot

Table 5  Inspection errors 
related to porosity PO, 
mechanical properties MP and 
dimensional accuracy DA, 
updated according to the self-
adaptive approach (cf. Sect. 3.2) 
after a new produced job

Output variable Yj �Yj (%)

PO 6.9
MP 4.6
DA 3.8
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approximation, data relevant to different parts produced 
by SLM may be put together, considering similar geom-
etries, similar materials, similar AM systems and the same 
application field (e.g., aerospace and automotive). At least a 
thousand parts should be collected to experimentally count 
the average number of defects undetected and then compare 
it with the estimated measures of inspection effectiveness. 
This can represent a preliminary validation procedure of the 
proposed methodology. In the long term, the real data col-
lection may be completed for a more refined estimation of 
inspection effectiveness performance. Through the use of 
the performance measures, inspection designers can quan-
tify the effectiveness of alternative inspection strategies 
and, as a result, implement changes and improvements to 
the inspection methods adopted with the goal of achieving 
zero defects.

6  Conclusion

For manufacturing companies, planning effective inspection 
strategies has always been a key factor in gaining competi-
tive advantage. Several are the aspects that designers need 
to consider when designing quality inspections, including 
the typology of production as well as the typology of con-
trols. To date, the assessment of performances of offline 
inspections in low-volume productions is still critical due 
to the complexity of the process, resulting in (1) possible 
interactions between process and inspection variables and 
(2) potential inspection errors. By considering these issues, 
this paper attempted to answer the following research ques-
tion (RQ): “How to quantify offline inspection effectiveness 
when the interactions between process and inspection vari-
ables and the inspection errors may not be neglected?”. To 

address this question, a general methodology is proposed 
throughout the manuscript to evaluate and predict, from 
the early stages of inspection design, the offline inspection 
effectiveness under variables interactions and inspection 
errors. The method is based on a probabilistic model for 
defect prediction based on the relationships between process 
variables and output variables inspected on the final product 
(i.e., quality characteristics). From the early design phases 
of inspection planning, model probabilities can be estimated 
using a self-adaptive approach that allows for up-to-date and 
accurate predictions. This method initially requires the use 
of available historical data, also related to productions simi-
lar to the one considered, and then includes experimental 
data that are progressively collected to enhance the accuracy 
of estimates. Moreover, an effectiveness performance indi-
cator is proposed, together with a method for evaluating its 
variability, to assist designers in the early design stages of 
inspection planning. An excerpt of application of the method 
to a real case study in the field of Additive Manufacturing 
processes is proposed. The findings reported in this study 
revealed that evaluating inspection effectiveness by consid-
ering or not the interaction amongst output variables leads to 
comparable results. This is because low-volume productions 
under nominal working conditions are considered, where 
the probability of occurrence of defects and that of inspec-
tion errors is typically low. From an operational perspective, 
neglecting the interaction between output variables means 
slightly overestimating the number of defects not detected 
by the inspection strategy. However, this can be considered 
a reasonable approach in most real cases, also given the 
limited number of parts produced. As a result, inspection 
designers can, as a first approximation, avoid estimating the 
joint probabilities of occurrence of defects and still obtain 
reasonable estimations of inspection effectiveness. The pro-
posed approach can be applied to (1) evaluate the perfor-
mance of alternative inspection strategies in terms of effec-
tiveness, (2) select the most appropriate according to the 
manufacturer requirements, and (3) stimulate the improve-
ment of each inspection methods adopted in the inspection 
strategies with the goal of achieving zero-defects.

Some limitations of this study have to be highlighted. 
First of all, the proposed model and related performance 
measure require the estimation of some not-so-easily-quanti-
fiable probabilities. Thorough knowledge of the process, the 
operator/inspector experience and preliminary experimental 
tests can help overcome this issue. Secondly, the validation 
of the method would require a long time given the low pro-
duction volume, as in the case of AM processes. However, 
a preliminary validation can be performed by collecting 
real data of similar parts produced with the same technol-
ogy, characterized e.g., by similar geometries, materials 
and application fields. Future research steps will include 
implementing the proposed methodology to sheet metal 

Fig. 9  Graphical comparison of the 95% confidence intervals (CI) 
of the inspection effectiveness measures D

tot
,  D∗

tot
 and D′

tot
 , obtained 

after the refinement of inspection error estimates using the self-adap-
tive approach (cf. Sect. 3.2)
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production, which allows scalability and taking into account 
errors that are mutually dependent. Besides, the authors are 
planning to extend this methodology to evaluate the overall 
inspection costs and include it within a broader costs' assess-
ment related to the entire product life cycle.
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