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Abstract
Product quality in machined parts is governed by many factors, out of which the state of wear of the tool is one of the most 
critical factors. Knowing the condition of the tool wear makes it possible to optimize the tool life and simultaneously maintain 
the surface quality. There are methods of online wear measurement proposed in the literature, like correlating some physical 
parameters to the wear state of the tool. As the processes are indirect, they do not provide exact values of the tool wear, but 
only aids in classifying the wear into different states from mild to severe. This work is focused on developing direct tool 
wear measurement by applying image processing techniques, which is more accurate, and precise. It has a very negligible 
interruption in production, and helps in automation of the task of tool wear monitoring and replacing it. In this paper, a 
novel online tool wear measuring algorithm is proposed using combined techniques of edge detection and segmentation. A 
complementary metal–oxide–semiconductor (CMOS) sensor camera is utilized to capture the wear zone images. The tool’s 
wear value is extracted by establishing wear boundaries through image processing, threshold segmentation, edge detection, 
and morphological operation. The machining tests are performed on a CNC lathe. The tool wear measured by the proposed 
technique is compared with the measurements obtained by an optical microscope. The results demonstrated high detection 
accuracy of the proposed approach enabling online tool wear monitoring during the turning process.

Keywords Flank wear · Image processing · Wear zone segmentation · Global thresholding algorithm · Computer-aided 
engineering

1  Introduction and background

Tool wear and tool life are essential parameters in any 
machining operation. The metal cutting industry thrives on 
optimizing tool life through the selection of various process 
parameters of cutting. Tool fails due to fracture, adhesion, 
thermal stresses, or abrasion [1]. Failure of the tool due to 
fracture is sudden brittle failure because of excessive forces, 
material imperfection, interrupted cutting, or excessive 
vibrations of the tool and workpiece. The high temperature 
at the tool-workpiece interface induces thermal stresses, 
which causes the material to soften and leads to plastic 
deformation of the tool. An adhesive wear occurs due to the 
sticking of tool pieces to chips forming a buildup edge. An 
abrasive wear is caused due to friction between the cutting 

edge of the tool and workpiece. The thermal, adhesive, and 
fracture failures can be avoided by selecting appropriate tool 
material and cutting conditions. An abrasive wear cannot be 
avoided, and it determines the life of the cutting edge as the 
edge becomes blunt due to the continuous usage. Hence, 
the flank wear occurring on the tool cutting edge is gradual 
wear and is the most preferred tool failure because it ensures 
the most extended tool life [1]. So, the study of tool wear 
and tool life involves the analysis of different types of tool 
failures. Whether gradual or sudden, a tool’s failure occurs 
due to fracture, wear, or plastic deformations [2]. Tool wear 
is classified based on the physical phenomenon by which 
wear occurs, and the location on the tool where the wear 
takes place on the surfaces.

In today’s competitive world and customer-driven mar-
ket, demand for high-quality products at a reduced cost is 
increasing day by day. Thus, the industry is striving to pro-
duce goods with high quality and lower price. Automation 
improves the quality of the product manufactured since it 
manufactures parts with high accuracy and consistent quality 
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by automatically monitoring the parameters affecting part 
quality. So automation is the need of today’s manufactur-
ing sector. With the development in hardware, computing 
techniques, and image processing methods, the importance 
of automatic monitoring of tool condition increases [3]. The 
industry is aiming for automation in production processes, 
and the need for unsupervised machining is increasing. The 
condition of the cutting tool directly affects the quality of 
the part being manufactured. These have driven researchers 
to propose automation of cutting tool condition monitoring. 
Traditionally, the tool wear is measured using a toolmaker’s 
microscope. However, this method is not practical as it con-
sumes a lot of time in measurement. The industry generally 
follows one of the two approaches. In the first approach, the 
tool is used till the end of the tool life. After the tool life is 
over and the part quality deteriorates, the tool is discarded. 
This approach is used when the cost of the part is less. In 
another approach, the tool is prematurely discarded before 
tool life is over. This approach is applicable where the work-
piece is costly. In either of the above said two approaches, 
the tool is not used optimally. One of the promising tech-
nologies for online monitoring of cutting tools is computer 
vision systems developed with the advances in digital image 
processing techniques.

One of the essential criteria in machining is tool life, as 
it affects the cost of machining. Using cutting tools up to 
their useful life saves tool cost in machining [4]. Presently, 
monitoring cutting tools for wear is done arbitrarily, and the 
tool is discarded before the tool life is reached. There are 
various methods proposed in the literature about monitoring 
tool wear and its tool life [5]. Computer vision techniques 
for automatic tracking of tool condition is gaining impor-
tance due to the advancement in hardware and computing 
techniques [6]. The damaged tools or dull tools can seriously 
affect the part quality and productivity of the machine. By 
appropriate tool condition monitoring techniques, tools can 
be used to their maximum level without affecting the parts’ 
quality. Predicting the rate of tool wear is possible based on 
past data or experimentation, but it is difficult to correlate it 
to tool life because tool life is dependent on the part require-
ments. The tools are discarded when they no longer produce 
parts with acceptable quality like dimensional accuracy and 
surface finish.

Dutta et al. [6] reviewed the status of image process-
ing techniques used for monitoring tool wear. Tool wear 
measurement techniques were divided into two categories 
as direct and indirect methods. Indirect techniques use physi-
cal parameters as force developed, the power consumed, and 
vibrations generated to correlate with the state of tool wear. 
The direct method uses a tool maker’s microscope, which is 
an offline method, but time-consuming. The indirect online 
method uses images of the part’s surface having tool feed 
marks and analyzing it to correlate with tool wear. An online 

direct tool wear monitoring techniques analyses the image 
captured by the camera and lens system and find the amount 
of wear (the size of maximum flank wear in microns). The 
tool wear monitoring by analysis of surface texture of 
machined products is carried out using texture analysis of 
machined surfaces’ images. The following sections elabo-
rate on the work carried out by researchers in monitoring 
tool wear directly using image processing techniques and 
indirect methods.

Byrne et al. [7] and Liang et al. [8] reported their research 
work on the tool condition monitoring during machining 
using different sensors such as accelerometer, vibrations, 
dynamometer, acoustics emission, temperature, etc. to 
improve the stability of the process, tool breakage detection, 
reduction of non-productive time, optimized tool usage, etc. 
It was also emphasized the need for improvement in knowl-
edge acquisition (feature extraction from ambiguous or noisy 
data, incorporation of previously learned capabilities, etc.) 
and interfacing of machines and subsystems with open archi-
tecture controllers at both the hardware and software levels.

A comprehensive survey of sensor technologies, signal 
processing, and decision-making strategies for process mon-
itoring was presented by Teti et al. [9]. It was discussed that 
an effective tool condition monitoring (TCM) system must 
be capable of performing sensor signal data acquisition, sig-
nal processing, features extraction and selection, and pattern 
recognition for decision making. The collected raw signals 
need to be processed by filtering, amplification, analog to 
digital conversion, and segmentation procedures containing 
a lot of useless and misleading information, including noise. 
Signal features can be extracted in the time domain, like sta-
tistical analysis, singular spectrum analysis, principal com-
ponent analysis, etc. Feature extraction from signal using 
frequency domain includes fast fourier transforms, power 
spectrum density, time–frequency domain, etc. D’Addona 
et al. [10] discussed that the rapid tool wear during machin-
ing is a critical factor as it affects the quality of the machined 
part, tool life, energy consumption, and thus the cost of tool-
ing. The cognitive modeling of tool wear growth based on 
supervised artificial neural network data processing to esti-
mate the tool wear progression during machining of Inconel 
718 was proposed. Low prediction errors were obtained for 
the lower cutting speeds, whereas large forecast errors were 
verified for the highest cutting speed value.

The monitoring of tool condition during machining of 
Inconel 718 using multiple sensors comprising cutting 
force, acoustic emission, and vibration sensing units were 
employed by Segreto et al. [11]. Linear Predictive Analysis 
(LPA) was utilized for feature extraction and to construct 
4-elements feature vectors from each sensor signal speci-
men. The fusion of sensory data was performed by integrat-
ing either couple of sensorial data specimens. The results 
showed the effectiveness of a comprehensive sensor fusion 
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approach. Segreto et al. [12] used an online sensor monitor-
ing procedure based on the acquisition of vibration signals 
during machining of Ni–Ti alloys. The obtained vibration 
data were processed through a signal processing method 
in the time–frequency domain based on the wavelet packet 
transform (WPT). The extracted features were used to con-
struct WPT pattern feature vectors to feed to suitably config-
ured supervised neural networks (NN) to identify machina-
bility conditions.

In recent work, the tool wear estimation using wave-
let packet transform (WPT) signal analysis and machine 
learning paradigms during machining of Inconel 718 was 
proposed by Segreto et al. [13]. Cutting force, acoustic 
emission, and vibration acceleration signals were obtained 
using multiple sensor monitoring systems. The signals thus 
received were subjected to WPT decomposition to extract 
various signal features. The selected WPT signal features 
were utilized to construct different feature pattern vectors 
(FPV) for artificial neural networks (ANNs) for decision 
making on tool wear condition. It was found that the best 
ANNs performance were obtained with the 7-element sensor 
fusion WPT FPV.

The rationale of considering flank wear as a critical 
parameter is that the wear is gradual, and in research [6], it 
is generally taken as a criteria to correlate tool life. Measure-
ment of flank wear requires two-dimensional image process-
ing techniques. It is proposed to measure flank wear using 
image processing techniques and compare the same with 
flank wear as measured using an optical microscope. Image 
processing techniques are the set of mathematical operations 
performed to enhance or obtain useful information in an 
image [14]. Image is treated as a two-dimensional array of 
elements wherein each element represents a corresponding 
pixel’s intensity in an image. Image processing methods are 
applied in application areas like medical imaging, satellite 
images, automatic number plate identification, industrial 
process monitoring, and quality monitoring system. One of 
the application areas is to monitor the tool wear using image 
processing methods.

Lins et al. [3] studied the in-process tool wear monitor-
ing system. The cyber-physical method was proposed in 
four phases of design with optimized hardware and various 
signals and networks implemented on the CNC machine to 
monitor tool wear. Castejón et al. [15] proposed an image 
processing framework to find the tool wear in cutting tools. 
Their exploration concentrated on flank wear measurement 
of turning inserts utilizing image processing techniques and 
classifying the degree of tool wear based on nine geometric 
parameters. Three levels of wear were discovered using a 
model-driven cluster investigation. The wear growth was 
observed for each insert during machining and given by 
the discriminant-analysis. The worn-out state of the tool 
was represented by the probability of fitting to a particular 

cluster. This classification of tool wear provided information 
about replacing the cutting insert at the right time to main-
tain consistency in the part quality. Tool life was improved 
using this methodology.

The monitoring system of wear in the drilling tool used in 
mining was developed by Saeidi et al. [16] using image anal-
ysis. A CCD camera was employed to take images. Fourteen 
images of tools were utilized to create a wear monitoring 
system, and the pre-processing task of removing noise from 
the image was carried out. Results of wear measurement 
were validated using a micrometer and weighing the tool. 
Zhang and Zhang [17] studied the tool wear measurement 
system using the image segmentation method. A CCD cam-
era was used to capture images. The region of interest was 
determined in the image by scanning for the tool tip. Results 
obtained for tool wear measurement were in good agree-
ment with manual wear measurement. D’Addona and Teti 
[18] examined a method to find the tool’s remaining useful 
life using wear measurement by applying image processing 
techniques. Crater wear was measured by image analysis. 
Various image analysis tools were applied to the tool image, 
converting the image to grayscale and histogram equaliza-
tion for stretching contrast. The neural network model was 
developed using a backpropagation algorithm and was 
implemented on images to estimate the tool wear growth.

Many researchers [19–25] applied the thresholding tech-
nique to segregate the wear region from other image regions 
after pre-processing the image histogram. But, it is challeng-
ing to select threshold value due to a multifaceted pattern 
of tool wear zone. Xiong et al. [25] proposed choosing a 
threshold by implementing active contour for segmenting 
an image. The results obtained by image analysis were very 
close to manual measurement using a micrometer. Wang 
et al. [26] proposed an edge detection technique, which is 
not built on the threshold method, but tool wear is measured 
with sub-pixel accuracy. Experiments were performed with 
three different cutting parameters. Various techniques were 
applied to the tool image, which included median filtering, 
for removing noise in the image; histogram equalization, for 
contrast stretching to categorize foreground and background 
pixels; and Sobel operator, for edge detection. Broken edges 
in the image were joined using morphological operations. 
The wear measured by the algorithm, and manual measure-
ment had a fair agreement. Still, the proposed algorithm’s 
precision is reliant on finding a reference line accurately, 
which in itself may not be precise. Su et al. [27] discussed 
measuring tool wear in micromachining by applying com-
puter vision techniques. The wear region was separated from 
the background region. The edge detection and the flank 
wear measurement were carried out by aligning the refer-
ence line with the bottom edge of the wear zone. The preci-
sion was dependent on finding the reference bottom edge of 
the wear zone. An online method of successive analysis of 



522 Production Engineering (2021) 15:519–533

1 3

images was developed by Wang et al. [28] to measure wear 
in milling cutter. High-speed cameras and low rpm of the 
cutter were selected to reduce the blurring of the images. 
The limitation of the method is that capturing the images 
during the actual cutting condition and preventing blurring 
of images is a challenging task. Liang et al. [23] suggested 
a method of image registration to derive tool wear. The two 
images of the tool wear were matched, and the wear was 
derived.

Sortino [21] proposed a technique that combines high 
and low pass filtering and statistical filtering. Since the 
wear zone in the image is inhomogeneous, it is difficult to 
apply any one algorithm, Sobel or Pivett, to detect the edge. 
The proposed technique was in close agreement with man-
ual measurement. In their paper, Kim et al. [20] studied a 
measuring tool wear system employing a CCD camera, and 
the machining parameters were optimized by applying the 
Taguchi method. The tool wear was detected by manually 
aligning the wear edge with the reference line. Kurada and 
Bradley [29] established that radiant operators and textural 
operators could be applied to find out tool wear in the image. 
The textural method was applied in contrast to the threshold-
ing method, and a median filter was used before performing 
a segmentation operation to preserve edge information. The 
wear region was identified by segregating a group of pixels 
with a particular intensity level. Nevertheless, the presence 
of noise in the image made segregation of pixels to identify 
wear zone a problematic task.

Indirect techniques correlate some physical parameters 
of a machine like vibration, current drawn, acoustic emis-
sions, and images of work-piece surface textures to predict 
the amount of tool wear. Research is also going on corre-
lating physical parameters change with an increase of tool 
wear [30]. Dutta et al. [31] observed that tool wear could be 
monitored by processing the image of the machined surface 
of the part. Image transforms and Voronoi tessellation tech-
niques were used to extract information from the image. Due 
to the change in roughness and feed marks, tool wear can 
be correlated. In their paper, Hou et al. [32] proposed the 
tool wear measurement algorithm based on image matching 
techniques. The edges at the bottom of the wear area were 
segregated and then arranged by rotating within a threshold 
value of part of the angle to fit it and compute the wear 
value. The system had high accuracy, good response speed, 
and low effect of noise.

The tool life of the selected cutting tool is crucial, 
and should be estimated as accurately as possible. An 
artificial neural network (ANN) for automatic tool wear 
recognition: a set of images were standardized in gray-
scale and then processed to extract features for the NN 
training phase. And with the use of a DNA Based Com-
puting method (DBC), the influence of user-settings on 

elaborating a set of images was investigated. It was con-
cluded that the proposed DBC is robust enough to toler-
ate different user-defined settings without affecting its 
performance D’Addona et al. [33].

The precision of the tool wear measurement obtained 
while using indirect methods is not as good as the wear 
measurement precision obtained using direct techniques. 
Due to the noise signal observed in it, a massive data set 
is required to establish a correlation between tool wear and 
the physical parameters under observation. Image process-
ing techniques have the edge over indirect methods as these 
techniques are fast and effortless for automatically detect-
ing tool wear. Although research is carried out on the wear 
measurement of cutting tools built on image processing, 
some issues need to be investigated related to robustness, 
adaptability, and convenience for online tool wear moni-
toring. Thresholding techniques are applied after histogram 
processing to find the wear region in the image. But due 
to roughness in the tool wear region, pixel intensity var-
ies greatly, and selecting threshold value becomes difficult. 
This paper presents a novel approach to measure tool wear 
by acquiring the wear zone image and processing it using 
image processing. A combined edge detection and region 
segmentation technique to measure flank wear is proposed, 
enhancing the measurement system’s precision. The method-
ology adopted for the work is presented graphically in Fig. 1.

2  Development of tool wear measurement 
system

2.1  Tool wear mechanism in turning

The two main types of wearsS, namely flank wear and crater 
wear, can be quantified on the cutting tool. The tool wear 
is defined on the single-point cutting tool’s flank and rake 
faces. The crater wear is defined as the wear of the tool’s 
rake face, and it is due to the flow of chips along the rake 
face resulting in severe friction between the flowing chip and 
the rake face and leaves a scar on the rake face. The crater 
wear reduces the strength of the cutting edge. The crater 
wear is analyzed by measuring crater depth KT, as shown 
in Fig. 2 [34].

The flank wear results in the formation of wear land on 
the cutting tool, which is not uniform along the tool’s cutting 
edges. Hence, to measure the flank wear, the primary cut-
ting edge is divided into three different zones, as illustrated 
in Fig. 2. Generally, the average width  (VBb) and maximum 
width  (VBmax) of the flank wear land is considered for the 
measurement of flank wear [35]. The tool’s useful life can 
be defined when the value of flank wear reaches a specified 
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dimension. The flank wear is a significant form of tool wear 
in metal cutting, which further affects the product’s surface 
integrity and dimensional accuracy. Hence, the investiga-
tion related to the study and measurement of tool wear is of 
much importance.

2.2  Approach of online tool wear measurement

In the proposed work, a flank wear measurement system of 
cutting tools used in the CNC lathe machine is developed by 
applying image processing techniques and automating wear 

Fig. 1  The methodology adopted for the work

Fig. 2  The pattern of tool wear 
[34]
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measurement. Automation is one of the vital ingredients in 
the current manufacturing sector. High-quality products with 
low cost can be produced using automation, which has led 
to unsupervised manufacturing requirements, and has moti-
vated researchers to automate the tool condition monitoring 
system. Computer vision techniques are the most promising 
technologies for online measurement and monitoring of cut-
ting tool condition. After going through a literature review, 
it is observed that there is much opportunity for developing 
a commercially practical system for efficiently automating 
the task of tool condition monitoring.

A novel method of measuring flank wear based on 
computer vision techniques on the CNC lathe machine is 
designed. In this method, wear measurement occurs inter-
mittently, wherein after machining, the tool arrives at a fixed 
designated place, and the image of the tool is captured, and 
wear is calculated. The proposed method is accurate but has 
a drawback in that it measures the wear intermittently. But 
since there is no interference of the machining processes 
during image capturing and its processing, it is more precise. 

During image capturing, materials like chips, coolant, etc., 
and machine parameters like temperature, acoustic, and 
vibration signals arising from machining processes do not 
affect the image capturing. Whereas, using the indirect 
technique of tool wear estimation by capturing physical 
parameters like vibration, the temperature is influenced by 
the machining processes. The flow chart showing the meth-
odology adopted for measuring tool wear is shown in Fig. 3. 
It mainly includes image capturing, finding the region of 
interest, noise removal, edge detection, segmentation, cali-
bration, and wear amount calculation.

2.3  Image capturing

The flank wear measurement system uses an 18MP, APS-C 
CMOS sensor camera to capture the wear zone images with 
sensor size 35.9 × 24.0 mm, 0.8 × magnification with USB 
interfacing. The lens with a focusing distance of 0.25 m, 
angle of view 45°×64° with aperture range f/3.5–22 is used. 
The camera with the lens is mounted on the machine for 

Fig. 3  Flow chart of tool wear 
monitoring system
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image capturing. The camera is fixed on the stand on the 
CNC machine, as shown in Fig. 4. For obtaining more con-
stant conditions of the sharp contrast between the wear zone 
and other regions in the image, sufficient illumination of the 
tool area is obtained using a LED ring light and machining 
is carried out without using coolant. The line diagram of the 
experimental setup is shown in Fig. 5.

Images of tool flank wear zone are captured after the tool 
turret is moved away from the machining operation and is 
positioned against the camera at a predefined place in the 
CNC lathe machine. The positional accuracy in terms of 
microns is achieved for capturing the images, which makes 
the task of the image capturing and analysis simple. The 
tool is positioned in such a way that a clear focus of the 
wear region is achieved. The light intensity is fine-tuned to 
get bright contrast between the background of the tool and 
the wear region. There is a high amount of environmental 
noise in the image taken because the tool wear region itself 
is rough, making it challenging to obtain a noise-free image 

of the wear zone. There are other environmental noises like 
dirt and dust. The tool’s wear region is cleaned with pressur-
ized air each time before the image is captured to decrease 
its noise.

2.4  Image processing techniques applied for tool 
wear measurement

The flank wear is measured in microns (µm) by converting 
the distance measured in terms of the number of pixels to 
microns. The calibration process is carried out by consider-
ing two opposite parallel edges identified on the tool itself, 
and the distance between them is measured using an optical 
microscope. This known distance is used to calibrate the 
pixel distance. The fixture is developed for accurate posi-
tioning of the camera and lens. The position and orientation 
of the cutting tool are kept the same every time the image 
is captured. The positional accuracy of the cutting tool is a 
built-in program of a CNC lathe machine. Since the tool’s 
position accuracy while capturing the images is maintained, 
a constant magnification is achieved. The cutting tool’s 
thickness represented by the distance between two opposite 
edges of the tool is constant and known priory. So, the two 
cutting edges distance is used to convert distance measured 
in pixels to units of length. The standard grid method can 
be applied, but it increases computational steps. By exploit-
ing the tool and camera’s position and orientation accuracy 
while capturing images, distortions can be safely neglected.

The wear region is measured by analyzing the tool images 
taken with a width ranging from 50 to 2000 microns. The 
gray scan values of this area’s image are very different from 
the grayscale values of other parts of the tool surface and 
background. This sharp change in greyscale values in the 
tool wear region is essential for identifying the wear region. 
For achieving the task of extracting wear, initially, the area Fig. 4  Experimental setup mounted on a CNC lathe machine

Fig. 5  Line diagram of the 
experimental setup
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of interest is located, followed by identifying edges in the 
wear region. The wear region is then optimized, and finally, 
region properties are found, which provides the amount of 
wear on the tool. The following paragraphs describe the 
tool wear identification process for coated carbide inserts 
mounted on the CNC lathe machine’s tool holder.

2.4.1  Determination of region of interest

The image consists of various entities and backgrounds, and 
this step is performed to recognize the region of interest. 
The image is separated into the background and foreground 
pixels to identify the correct area containing the wear zone. 
The process of identifying a region of interest begins by con-
verting the image into a binary image to determine the tool’s 
tip and then extract the region of interest surrounding the 
tool tip. The cutting tool’s background is deliberately made 
light so that the histogram of the image becomes bimodal, 
as shown in Fig. 6.

The global thresholding techniques are generally applied 
to divide the image into background and foreground areas 

having a bimodal histogram. Looking at the image of the 
tool, it has the bimodal nature of the histogram. Any gen-
eral thresholding algorithm converts an image into a binary 
image as per the following Eq. 1.

Here T is the thresholding value selected to segment the 
image. The global thresholding algorithm based on the Otsu 
technique [36] is applied to convert a greyscale image into a 
binary image based on the pixel’s intensity threshold value. 
The algorithm selects the threshold intensity value in the 
image to reduce the intraclass variation of the image’s inten-
sity values. Within class, variance is given by Eq. 2.

where,
�band�f  = weights of pixel values of background and 

foreground pixels, and
�
2

b
and�2

f
 = the variance of pixel intensity values below 

and above the threshold.
The variance for each intensity value of a pixel is calcu-

lated as per Eq. 2 given above. The pixel’s intensity value, 
which offers the lowest sum of weighted amount, is chosen 
for thresholding the image. Then the cutting tool image is 
transformed into a binary image, as shown in Fig. 7.

Once the image is converted to binary form, it has only 
two values of a pixel that is either 0 for the black portion 
identified as objects in the image or 255 for the white part 
identified as the image’s background. The next task is find-
ing the region of interest by locating the tool’s tip in the 
image. The image is captured while the tool is on the tur-
ret placed in an inclined position against the camera. The 
tool position and orientation in the CNC lathe machine will 
remain the same each time the image is taken, as shown in 
Fig. 8. The tool tip is located by scanning the image in a 
downward and leftward direction starting from the top right 

P(i, j) = 0 if P(i, j) > T

(1)= 255 otherwise

(2)�
2(T) = �

2

b
(T)�2

b
+ �

2

f
(T)�2

f

Fig. 6  Histogram of a grayscale image

Fig. 7  a Original greyscale 
image. b Conversion of an 
image into a binary image
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corner in the image, sequentially scanning each row. The 
top right corner of the image is assumed to be a white back-
ground. The tool tip is identified when a pixel value of 0 is 
located during scanning.

A window surrounding the tool tip is identified, and the 
original image is cropped to the window size, as shown in 
Fig. 9.

Once the region of interest is found and cropped to the 
region of interest area, the image is transformed to a gray-
scale image using 8-bit intensity levels. Thus the range of 
intensity levels of each pixel varies from 0 to 255.

2.4.2  Finding edges in the image

The next action is finding edges of the wear region. There is 
a considerable variation in the intensity level in the image 
where the wear region is encountered. This wear region is 
filled with the edges where there are abrupt changes in inten-
sity values. There are numerous edge detection algorithms 

proposed in the literature [21]. The Sobel edge detection 
algorithm is selected due to its simplicity in computational 
complexity and ability to detect the orientation of edges. 
This method calculates a pixel gradient by convoluting 
the image pixels with two filters, each of size 3 × 3. Each 
operator applied to find slope in x-direction and y-direction, 
respectively shown in Fig. 10.

The amount of gradient at each pixel is derived using 
Eq. 3.

2.4.3  Reducing effects of noise in the image

It is expected to obtain a precise result of tool wear measure-
ment by reducing the image’s noise before further processing 
it (Fig. 11). The type of noise in the tool image is salt and 
paper noise, as shown in Fig. 12. The noise can be removed 
by blurring the region of the image where noise is present. 
When applying any techniques to reduce noise in the image, 
noise must be removed, but at the same time, image details 
like edges are preserved. Accordingly, the median filtering 
is applied to remove noise in the image, which satisfies the 

(3)G =

√

G2
x
+ G2

y

Fig. 8  Finding the tip of the tool in the binary image

Fig. 9  Cropped image

-1 0 +1  +1 +2 +1 

-2 0 +2  0 0 0 

-1 0 +1  -1 -2 -1 

Fig. 10  Two filters  Gx and  Gy

Fig. 11  Edge detection using a Sobel operator
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above conditions. These image pre-processing tasks aids in 
accurately identifying tool wear measurement tasks. 

The filter, shown in Fig. 13, utilizes neighborhood pixel 
values to carry out filtering. By selecting the median value, 
pixel value information is not lost, unlike the averaging 
method, and the noise is reduced.

2.4.4  Morphological operation

Morphological operations using dilation are applied to the 
image to complete the wear region profile. Once the wear 
region in the image is filled, the wear region’s geometric 
descriptors can be derived to measure the flank wear. Mor-
phological operations are of various types like dilation, 
erosion, opening, and closing. The dilation operation is 

performed to complete the image’s wear region by inflating 
the object’s area. In turn, it fills the holes and connects the 
wear zone. A structuring element has a binary mask of 54 × 
54 pixels, and its center pixel is selected as origin. Then it 
is is convoluted to the tool wear image. The structuring ele-
ment convolutes with each pixel in the image and compares 
the structuring element’s pixel intensity value at the origin 
and the corresponding pixel value in the image. Whenever 
the neighborhood pixels of the structuring element’s ori-
gin overlaps with the corresponding image pixels, then the 
structuring element’s origin concerning the tool image is 
turned on. This process is carried out for all elements, and 
the resultant image is obtained, as shown in Fig. 14.

Before applying wear measurement techniques, post-
processing of the image is carried out to fill the holes in 
the image to complete the wear profile, and then properties 
of connected components can be found. Filling the gap is 
achieved by applying a flood filling algorithm [37], as shown 
in Fig. 15a, b.

2.4.5  Segmentation and wear measurement

A group of pixels continuously connects the wear zone of 
the tool. The wear region is separated from the background 
region to find the amount of wear using the connected area 
labeling process. It is applied to binary images, and the pro-
gressive scanning does labeling. The grouping of pixels in 
an image is done based on the connectivity of the pixel. The 
connected component in an image shares the same value of 
pixel intensity. The labeling of disjoint parts in an image is 
done to extract the wear area in it. The connectivity variable 
represents neighborhood pixels locations using n-connectiv-
ity to center pixel, where n is 4 or 8 for a two-dimensional 

Fig. 12  Salt and pepper noise

Neighborhood pixel values: 

135 139 140 143 144 145 146 147 170 

Median value: 144 

143 145 146 150 160

142 144 146 147 155

138 140 170 145 154

139 135 139 143 153

131 136 130 140 150

Fig. 13  Finding the median value of pixel using the filter size of 3 × 
3 Fig. 14  Result of dilation wear region in the image of the tool
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image. Since the wear region has an irregular shape, eight 
connectivity is suitable and is selected for connected com-
ponent operations.

Connected area labeling is dual-pass labeling process. 
The connected region of wear zone is found by labeling in 
the form of numbers is given to pixel location belonging to 
different objects in the image. Each pixel location visited is 
scanned iteratively. If the pixel does not have a neighbor, 
a new number is assigned to the pixel. In this approach, 
the operator of connected components labeling carries out 
scanning of each pixel row until it finds a pixel intensity 
for which B = (1). It then scans the neighbors of the said 
pixel. Now the labeling of the said pixel is done if the neigh-
bors are 0; a new label is assigned. If only one neighbor has 
B = (1), then this neighbor’s label is attached to the current 
pixel being scanned. If two or more neighbors have B = (1), 
then one of the labels is assigned to the current pixel, and the 
note of the equivalences is made. Once the scanning is com-
pleted, matching label pairs are arranged into equivalence 
classes, and an exclusive label is assigned to each class. The 
second scanning of image pixel each label encountered is 
substituted by the label attached to its corresponding classes.

After finding the tool wear region in the image using con-
nected components, the MATLAB® image processing tool-
box is applied to find the size of a wear zone, as shown in 
Fig. 16. The maximum flank wear measurement in terms of 
the number of pixels is obtained, which is then transformed 
into microns’ length using calibrated value.

3  Experimental verification

The algorithm developed can measure the maximum flank 
wear  (VBmax), as shown in Fig. 16. The tool wear monitor-
ing system is developed using imaging hardware and MAT-
LAB® software to calculate the maximum flank wear on 
the CNC lathe machine. The image of the wear zone of the 
tool is taken.

3.1  Experimental details

Experiments have been conducted on a CNC lathe machine 
(HMT Starturn) to verify the proposed approach’s applica-
bility. Commercially available Inconel 718 (ASTM SB 637) 
is utilized as workpiece material with a dimension of 60 mm 
diameter and 300 mm length. This material is a nickel-based 
alloy with excellent thermo-mechanical properties with 
broad applications in various industrial sectors such as aero-
space, nuclear, etc. In turning tests, PVD-TiAlN/TiN coated 
carbide tool (ISO designation: CNMG 120408) is utilized 
with a tool holder with ISO designation PCLNR2020M12. 
An optical microscope (Make: Radical Instrument, India) 
equipped with a camera and an image analysis software with 
the magnification of 20X–50X has been utilized to monitor 
the tool wear after each experimental test. The maximum 
flank wear  (VBmax) is considered for comparison.

It is understood that a well-designed experimental design 
can reduce the efforts and time. Hence, in this work, the 

Fig. 15  a Image with holes to 
be filled. b Image with filled 
holes

Fig. 16  Flank wear region in the image
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experiments have been designed using Taguchi  L9 orthogo-
nal array. Three cutting parameters, namely cutting speed, 
feed, and depth of cut, with three levels each as shown in 
Table 1. The levels of parameters are selected based on the 
literature review and trial machining experiments.

The design matrix with three parameters with three-level 
is as shown in Table 2.

Each time the tool’s image is captured, the tool position 
and orientation are kept the same because of the high posi-
tional accuracy in the CNC lathe machine. Thus, the process 
of determining the region of interest is simple. The global 
thresholding algorithm is applied to the histogram’s bimodal 
nature, and the image is converted into black and white. 

The image scanning is carried out to determine the tool tip, 
and the region of interest is derived. The process of edge 
detection and image segmentation is performed. The pixels 
are dilated using morphological operations, and holes in the 
wear zone are filled in the image. The connected region of 
the image wear zone is determined. The wear measurement 
is found by deriving the properties of connected compo-
nents. With the aid of calibration of the image, the maximum 
flank wear in microns is attained.

For each value of flank wear measurement by the algo-
rithm, three readings are taken, and the average of the three 
readings is recorded, as shown in Table 3. Manual measure-
ment of the flank wear using a toolmakers microscope is 
compared with the image processing algorithm’s results. The 
results of the measurements are given in Table 3 and Fig. 17.

The comparison presented in Fig. 17 and Table 3 shows 
that the measurement value obtained manually through the 
optical microscope and the proposed algorithm’s value is 
almost the same. The variation in the measurement of wear 
done manually and by the algorithm is 4.79%. The devel-
oped system of computing the flank wear can help find the 
maximum flank wear in CNC turning machine. The sys-
tem can easily be integrated with the CNC turning center 
and aids in optimum use of the cutting tool. The task of 
monitoring the tool wear is simplified by using the newly 
developed system. This system is useful for fully automating 
tool monitoring in machining and optimizing the tool’s use 
without affecting part quality. The combined approach of 
edge detection and area segmentation effectively calculated 
the amount of flank wear.

Figure 18 represents the main effect plot for flank 
wear. It can be seen from the plots that the tool wear is 
varied with the machining parameters, and it is signifi-
cantly affected by cutting speed and depth of cut. Mini-
mum flank wear has resulted in a lower value of cutting 
speed (80 m/min) and depth of cut (0.5 mm). However, 
higher cutting speed and depth of cut have resulted in 
increased tool wear and reduced tool life. In actuality, 

Table 1  Process parameters with their levels

Parameters Unit Levels

−1 0  + 1

Speed  (vc) m/min 80 120 160
Feed (f) mm/rev 0.10 0.25 0.40
Depth of cut  (ap) Mm 0.5 1 1.5

Table 2  Experimental design with  L9 orthogonal array

Exp No Machining parameters

Cutting speed (m/
min)

Feed (mm/rev) Depth of 
cut (mm)

1 80 0.10 0.5
2 80 0.25 1
3 80 0.40 1.5
4 120 0.10 1
5 120 0.25 1.5
6 120 0.40 0.5
7 160 0.10 1.5
8 160 0.25 0.5
9 160 0.40 1

Table 3  Comparison of manual 
measurement and measurement 
by the proposed method

Exp No Maximum flank wear meas-
ured using algorithm (µm)

Maximum flank wear meas-
ured using microscope (µm)

Difference in 
readings 
(µm)

Percentage 
difference (%)

1 457 450 7 1.56
2 438 440 − 2 0.45
3 302 310 − 8 2.58
4 378 397 − 19 4.79
5 645 650 − 5 0.77
6 377 360 17 4.72
7 911 880 31 3.52
8 346 331 15 4.53
9 553 528 25 4.73
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higher cutting speed surges higher cutting temperature 
in the machining zone and results in rapid tool wear. A 
similar trend in the form of an increase in tool wear with a 
change in depth of cut is observed. The trend is observed 
because, during dry machining, a higher amount of heat 
is generated between tool-work and chip-tool interface, 
which results in rapid tool wear with the increase in cut-
ting speed and depth of cut. However, a change in feed 
value doesn’t significantly affect the tool wear due to 
shorter contact time between tool and workpiece with 
higher feed during machining.

3.2  Future scope of work

The developed tool wear measurement system can be modi-
fied to measure the flank wear for other CNC machines. 
Further combination of wear measurement and wear pre-
diction techniques can be proposed to provide the user with 
calculating the tool’s remaining useful life. The proposed 
system measures two-dimensional flank wear. This work can 
be extended to measure three-dimensional wear like crater 
wear or crater area.

4  Conclusions

Efforts have been made to develop a direct tool wear meas-
urement system by applying image processing techniques. 
Following important conclusions are drawn from the study:

1. A tool wear measurement system is proposed, which 
integrated both hardware and software systems to iden-
tify flank wear on the carbide inserts mounted on the 
CNC lathe machine. The system consisted of a CMOS 
camera and other devices for effectively capturing the 
images of the tool wear zone. A tool wear measurement 
algorithm is developed to identify the amount of wear 
from the images captured automatically.

2. The tool wear monitoring system investigated the pro-
cess of determining maximum flank wear measurement 
of the cutting tool on the CNC lathe machine. Since 
the CNC lathe machine has good positional and orienta-
tion accuracy, the image capturing task and finding the 
region of interest is simplified.

Fig. 17  Comparison of wear size measured manually and by the 
newly developed algorithm

Fig. 18  Main effect plots for 
tool wear
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3. Noise reduction in the tool image is performed, and 
image segmentation is done to identify the wear region. 
Morphological operation is done to find out connected 
components. The properties of connected components 
are derived to find out maximum flank wear.

4. The variation in the derived value of tool wear and 
manual measurement is in reasonable agreement with a 
maximum error of around 4.79%. The average absolute 
values of difference in manual measurement and meas-
urement by the software are less than 0.016 mm.

5. The advantage of using the proposed method for wear 
measurement is to automate wear monitoring and to 
achieve optimum use of the tool, which can save the 
machining cost with the consistent quality of surface 
finish is obtained. A robust lighting system is required 
to accurately and precisely process the images of tool 
wear using an image processing algorithm because the 
tool surface itself has a noise like rough surface, dirt, or 
dust. Hence, the proper illumination of the wear region 
is vital in developing a robust algorithm. The LED ring 
light illuminated the tool wear region, which provided 
precise and accurate results through the algorithm.

Funding The work was supported by Nirma University in the form 
of the Minor Research Project Grant with letter number “NU/DRI/
MinResPrj/IT/21-22”.

Compliance with ethical standards 

Conflicts of interest The authors have no conflicts of interest to declare 
that are relevant to the content of this article.

References

 1. Karandikar JM, Abbas AE, Schmitz TL (2014) Tool life predic-
tion using Bayesian updating. Part 2: turning tool life using a 
Markov Chain Monte Carlo approach. Precis Eng 38(1):18–27

 2. Stephenson DA, Agapiou JS (2016) Metal cutting theory and 
practice, 3rd edn. CRC Press. https ://doi.org/10.1201/97813 
15373 119

 3. Lins RG, de Araujo PRM, Corazzim M (2020) In-process 
machine vision monitoring of tool wear for Cyber-Physical 
Production Systems. Robot Comput Integr Manuf 61:101859

 4. Liang, S., & Shih, A. J. (2015). Analysis of machining and 
machine tools. Springer.

 5. Zhou Y, Xue W (2018) Review of tool condition monitor-
ing methods in milling processes. Int J Adv Manuf Technol 
96(5–8):2509–2523

 6. Dutta S, Pal SK, Mukhopadhyay S, Sen R (2013) Application of 
digital image processing in tool condition monitoring: a review. 
CIRP J Manuf Sci Technol 6(3):212–232

 7. Byrne G, Dornfeld D, Inasaki I, Ketteler G, König W, Teti 
R (1995) Tool condition monitoring (TCM)—the status of 
research and industrial application. CIRP Ann 44(2):541–567

 8. Liang SY, Hecker RL, Landers RG (2004) Machining process 
monitoring and control: the state-of-the-art. J Manuf Sci Eng 
126(2):297–310

 9. Teti R, Jemielniak K, O’Donnell G, Dornfeld D (2010) 
Advanced monitoring of machining operations. CIRP Ann 
59(2):717–739

 10. D’Addona D, Segreto T, Simeone A, Teti R (2011) ANN tool 
wear modeling in the machining of nickel superalloy industrial 
products. CIRP J Manuf Sci Tech 4(1):33–37

 11. Segreto T, Simeone A, Teti R (2013) Multiple sensor monitoring 
n nickel alloy turning for tool wear assessment via sensor fusion. 
Proc CIRP 12:85–90

 12. Segreto T, Caggiano A, Karam S, Teti R (2017) Vibration sen-
sor monitoring of nickel-titanium alloy turning for machinability 
evaluation. Sensors 17(12):2885

 13. Segreto T, D’Addona D, Teti R (2020) Tool wear estimation in 
turning of Inconel 718 based on wavelet sensor signal analysis and 
machine learning paradigms. Prod Eng Res Devel 14(5):693–705

 14. Ong P, Lee WK, Lau RJH (2019) Tool condition monitoring in 
CNC end milling using wavelet neural network based on machine 
vision. Int J Adv Manuf Technol 104(1–4):1369–1379

 15. Castejón M, Alegre E, Barreiro J, Hernández LK (2007) On-line 
tool wear monitoring using geometric descriptors from digital 
images. Int J Mach Tools Manuf 47(12–13):1847–1853

 16. Saeidi O, Torabi SR, Ataei M (2013) Development of a new 
index to assess the rock mass drillability. Geotech Geol Eng 
31(5):1477–1495

 17. Zhang C, Zhang J (2013) On-line tool wear measurement for 
ball-end milling cutter based on machine vision. Comput Ind 
64(6):708–719

 18. D’Addona DM, Teti R (2013) Image data processing via neural 
networks for tool wear prediction. Procedia CIRP 12:252–257

 19. Pfeifer T, Wiegers L (2000) Reliable tool wear monitoring by 
optimized image and illumination control in machine vision. 
Measurement 28(3):209–218

 20. Kim JH, Moon DK, Lee DW, Kim JS, Kang MC, Kim KH (2002) 
Tool wear measuring technique on the machine using CCD and 
exclusive jig. J Mater Process Technol 130:668–674

 21. Sortino M (2003) Application of statistical filtering for optical 
detection of tool wear. Int J Mach Tools Manuf 43(5):493–497.

 22. Obikawa T, Shinozuka J (2004) Monitoring of flank wear of 
coated tools in high speed machining with a neural network 
ART2. Int J Mach Tools Manuf 44(12–13):1311–1318

 23. Liang, Y. T., Chiou, Y. C., & Louh, C. J. (2005). Automatic wear 
measurement of Ti-based coatings milling via image registration. 
In MVA (pp. 88–91).

 24. Jurkovic J, Korosec M, Kopac J (2005) New approach in tool wear 
measuring technique using CCD vision system. Int J Mach Tools 
Manuf 45(9):1023–1030

 25. Xiong, G., Liu, J., & Avila, A. (2011, August). Cutting tool wear 
measurement by using active contour model based image process-
ing. In 2011 IEEE International Conference on Mechatronics and 
Automation (pp. 670–675). IEEE.

 26. Wang WH, Hong GS, Wong YS (2006) Flank wear measurement 
by a threshold independent method with sub-pixel accuracy. Int J 
Mach Tools Manuf 46(2):199–207

 27. Su JC, Huang CK, Tarng YS (2006) An automated flank wear 
measurement of microdrills using machine vision. J Mater Process 
Technol 180(1–3):328–335

 28. Wang W, Wong YS, Hong GS (2005) Flank wear measurement 
by successive image analysis. Comput Ind 56(8–9):816–830

 29. Kurada S, Bradley C (1997) A machine vision system for tool 
wear assessment. Tribol Int 30(4):295–304

 30. Kene AP, Choudhury SK (2019) Analytical modeling of tool 
health monitoring system using multiple sensor data fusion 
approach in hard machining. Measurement 145:118–129

https://doi.org/10.1201/9781315373119
https://doi.org/10.1201/9781315373119


533Production Engineering (2021) 15:519–533 

1 3

 31. Dutta S, Pal SK, Sen R (2016) On-machine tool prediction of flank 
wear from machined surface images using texture analyses and 
support vector regression. Precis Eng 43:34–42

 32. Hou Q, Sun J, Huang P (2019) A novel algorithm for tool wear 
online inspection based on machine vision. Int J Adv Manuf Tech-
nol 101(9–12):2415–2423

 33. D’Addona DM, Matarazzo D, Ullah AS, Teti R (2015) Tool wear 
control through cognitive paradigms. Procedia CIRP 33:221–226

 34. Astakhov VP (2011) Turning., Chapter 1 in book “MODERN 
MACHINING TECHNOLOGY: A practical guide”. In: Davim 
JP (eds) WOODHEAD/CHANDOS Oxford (UK), pp 1–78

 35. Astakhov VP (2004) The assessment of cutting tool wear. Int J 
Mach Tools Manuf 44(6):637–647

 36. Moldovan OG, Dzitac S, Moga I, Vesselenyi T, Dzitac I (2017) 
Tool-wear analysis using image processing of the tool flank. Sym-
metry 9(12):296

 37. Wayalun, P., Chomphuwiset, P., Laopracha, N., & Wanchanthuek, 
P. (2012, August). Images Enhancement of G-band Chromosome 
Using histogram equalization, OTSU thresholding, morphological 
dilation and flood fill techniques. In 2012 8th International Con-
ference on Computing and Networking Technology (INC, ICCIS 
and ICMIC) (pp. 163–168). IEEE.

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	A novel approach of combined edge detection and segmentation for tool wear measurement in machining
	Abstract
	1 Introduction and background
	2 Development of tool wear measurement system
	2.1 Tool wear mechanism in turning
	2.2 Approach of online tool wear measurement
	2.3 Image capturing
	2.4 Image processing techniques applied for tool wear measurement
	2.4.1 Determination of region of interest
	2.4.2 Finding edges in the image
	2.4.3 Reducing effects of noise in the image
	2.4.4 Morphological operation
	2.4.5 Segmentation and wear measurement


	3 Experimental verification
	3.1 Experimental details
	3.2 Future scope of work

	4 Conclusions
	References




