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Abstract
The process setup of manufacturing processes is generally knowledge-based and carried out once for a material batch. Indus-
try experts observe fluctuations in product quality and tool life, albeit the process setup remains unchanged. These fluctuations 
are mainly attributed to fluctuations in material parameters. An in-situ detection of changes in material parameters would 
enable manufacturers to adapt process parameters like forces or lubrication before turbulences like unexpectedly high tool 
wear or degradation in product quality occurs. This contribution shows the applicability of a deep learning time series clas-
sification architecture that does not rely on handcrafted feature engineering for the classification of hardness fluctuations in 
a sheet-metal coil using magnetic Barkhausen noise emission. This methodology is not limited to the detection of hardness 
fluctuations in sheet-metal coils and can potentially be applied for the in-situ material property classification in different 
manufacturing processes and for different material parameters.

Keywords  Deep learning · Machine learning

1  Introduction

Manufacturing processes are generally parametrized accord-
ing to worker experience and specifications that the material 
supplier provides. These specifications are ensured by mate-
rial sampling and followed destructive testing, e. g. through 
tensile tests or hardness testing. Only when turbulences like 
excess tool wear or a significant degradation in part quality 
occurs during the manufacturing process, process parametri-
zation is changed. This approach assumes that microstruc-
tural parameters of supplied materials remain constant for 
one batch. Industry experts e. g. in fineblanking, however, 
observe fluctuations in tool wear progression and part qual-
ity, both on a sheet-metal coil and batch level, although the 
process setup remains unchanged [1].

Past research has shown that fluctuations in material qual-
ity and microstructural properties occur e. g. in sheet-metal 

forming processes such as deep drawing [2] and bending [3]. 
These fluctuations have proven to have a negative influence 
on product quality. In the case of bending it was found that 
even batch fluctuations have a considerable influence on the 
required bending force, the shape of the workpiece, and the 
springback of the sheet-metal, thus leading to significant 
angular deviations. The material characteristics partly fluc-
tuate so strongly, that it is considered sensible to determine 
the material parameters separately for each batch in separate 
tests. A common method is the flat tensile test, which is a 
destructive material testing method. In practice, however, 
this is often omitted for reasons of time and cost [3].

In order to counteract material fluctuations and to enhance 
process resilience, a methodology is required that non-
destructively detects material properties and deviations in 
real time either before or during the manufacturing process. 
This enables a proactive regulatory intervention through an 
adaptive process parametrization. A promising approach for 
the non-destructive determination of material properties of 
ferromagnetic materials is the measurement and analysis of 
magnetic Barkhausen noise (MBN).

The challenge in analyzing MBN to infer material 
parameters lies in the stochastic nature of the signal. Past 
approaches mainly used hand crafted feature engineering to 
transform the signal as an input for regressors and classifiers. 
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However, this approach reduces the information contained 
in the signal through assumptions made in the time intensive 
feature engineering process. Potentially important features 
that correlate to certain material parameters get lost through 
this transformation. This contribution utilizes MBN to detect 
hardness fluctuations in a sheet-metal material using seg-
mented raw MBN time series as an input for a deep convo-
lutional neural network architecture. The proposed approach 
does not rely on the common transformation of the MBN 
signal to a handcrafted feature space and thus is potentially 
more flexible than traditional approaches to MBN analysis 
by learning meaningful representations of the material state. 
However, the proposed methodology is not limited to hard-
ness or material classification and can potentially be applied 
to other industrial time series classification (TSC) tasks.

2 � Background and state of the art

This section gives a brief overview of the phenomenon of 
MBN and its applicability to non-destructive material test-
ing. Furthermore, state of the art approaches to the task of 
TSC are reviewed and presented.

2.1 � Magnetic Barkhausen noise

The class of non-destructive material testing methods is 
subdivided according to operating principles and includes 
ultrasonic testing, x-ray testing, as well as electrical, 
mechanical and magnetic methods [4]. The selection of the 
optimal method is done individually, since each method is 
characterized by different advantages and disadvantages. 
With regard to the selection of a suitable method for the 
microstructural evaluation of ferromagnetic steels, it was 
found that an analysis of MBN is preferable to ultrasonic 
testing. For experimental proof, the microstructure of dif-
ferent samples was changed by means of heat treatment in a 
first step. Subsequently, the samples were measured in the 
second step with both non-destructive testing methods and 
the results obtained were compared. The results showed 
that MBN reacted much more sensitively to a change in the 
microstructure [5].

Crystallite ferromagnetic materials are characterized by 
the fact that they are divided into crystal regions of different 
sizes, which exhibit magnetic moments in the same direction 
in groups. The elementary magnetic moments are aligned 
by coupling forces of adjacent atoms without the influence 
of an external magnetic field. The crystal regions are called 
domains and are of great importance for magnetization and 
are separated by so-called domain walls [6]. Figure 1 shows 
several domains with different orientations of the magnetic 
moments. If an external increasing magnetic field is now 

applied near to the material, the magnetization of the micro-
structure changes and domain walls move depending on the 
field direction and field strength.

At a low field strength of the applied magnetic field, the 
movements of the domain walls are reversible. If the field 
strength exceeds a certain threshold value, the reversibility 
is lost. In this case, lattice disturbances restrict the process to 
the extent that there is a delay in the movement or a tempo-
rary standstill of the domain wall. If the field strength is fur-
ther increased to an individual threshold value, the domain 
wall overcomes the defect and a sudden movement of the 
domain wall occurs, which causes a jerky change in the flux 
density. This phenomenon is called Barkhausen jump and 
is characterized in the magnetization curve by a course that 
resembles a staircase function [7], as visualized in Fig. 2.

The shifts and changes of the materials magnetization 
induce current pulses which are measurable and acoustically 
perceptible via an amplifier and loudspeaker and measurable 
via a sensitive sensor coil. Figure 3 shows an excerpt of one 
second of MBN as a result of an external magnetic field with 
an excitation frequency of fM = 300 Hz with an amplitude 
of U = 0.573 V.

The audible and measurable noise due to the jerky 
increase in field density is referred to as MBN [8]. The 
resulting time series has been subject to past research with 
different approaches. Sorsa et al. used 72 features gener-
ated from the raw time series, the raw root mean square 
(RMS) signal, and from a filtered moving window signal 
as an input for a multivariate linear regression model for 

Fig. 1   Representation of the distribution of domains seperated by 
domain walls in a ferromagnetic material
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hardness and residual stress detection [9]. Tan et al. com-
bined ultrasonic measurements and MBN to determine the 
hardness of 45 steels with different heat treatments [10]. 
From the RMS signal the inherent features distance of two 
peaks, half peak width, and peak position were extracted. 
Luo et al. measured the MBN on hot formed steel of 36.2 
to 62.4 HRC. Their method considered the MBN peaks in 
the raw signal of each period of the alternating field and 
averages them over the entire measurement [11]. Xiucheng 
et al. used the RMS signal to extract the features peak height, 
peak position and peak width at 50 percent and 75 percent 
of the peak height, respectively. Predictions of the hardness 
were performed using both multivariate linear regression 

and a fully connected neural network (FCNN). The FCNN 
outperformed the multivariate linear regression [12]. These 
approaches have in common that they first transform the 
time series to a feature space, e. g. through extraction of 
spectral features, extraction of features from the time domain 
like RMS or through an extraction of both spectral and time 
domain features.

2.2 � Time series classification

TSC is a task where a classifier has to assign a label Y to a 
timely ordered sequence of values

with xi ∈ ℝ
m and m = 1 in case of a univariate and m > 1 in 

case of a multivariate time series of length t.
TSC is subject to intensive research since its applicabil-

ity to a plethora of domains, reaching from machine failure 
detection in an industrial setting [13] to stock market data 
[14] or speech recognition [15]. Hence, manifold approaches 
to TSC exist, each with their own up- and downsides. A 
valuable benchmarking tool for the performance of a TSC 
model is provided through the University of California Riv-
erside (UCR) Time Series Archive [16]. TSC approaches 
can be roughly divided into state of the art TSC models 
that require a transformation of the raw time series to a fea-
ture space (e. g. ensemble classificators) and deep learning 
models that use the raw time series as an input and generate 
features on their own, e. g. through convolution and pool-
ing operations. The Collective Of Transformation-based 
Ensemble (COTE) classifier is based on 35 classifiers and is 
extended through a hierarchical voting system of the COTE 
classifiers to HIVE-COTE. HIVE-COTE is widely recog-
nized as a state of the art TSC model [17]. HIVE-COTE has 
a computational complexity of O(n2 ⋅ t4) for a dataset of size 
n and time series length t and took more than 72,000 s to 
train on a dataset of n = 700 time series of length t = 46 on 
a high end device at the time of publication [18]. It is thus 
not suited for model updates in an industrial setting, where 
sensoric data with high sampling rates like MBN or acous-
tic emission (AE) is collected. Recent research has shown 
that while being much faster since leveraging parallel GPU 
computations, deep learning models like convolutional neu-
ral networks (CNN) perform equally good or, in the case of 
InceptionTime, even outperform HIVE-COTE on the UCR 
dataset both in training and prediction time [18]. The CNN 
architecture InceptionTime by Fawaz et al. was released 
in 2019 and is able to outperform ResNet, which was pro-
posed as a baseline model for TSC by Wang et al. in 2017 
[19], while scaling better [18]. InceptionTime consists of an 
ensemble of five deep learning models for TSC, where each 
classifier consist of a cascade of multiple so called Inception 

(1)X = [x0, x1, ..., xt]

Fig. 2   Visualization of the discontinuous transitions in the magneti-
zation curve

Fig. 3   Excerpt of 20 ms from one second of MBN plotted against the 
exciting field strength
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modules, which where initially proposed by Szegedy et al. 
for computer vision purposes and lead to the rise of CNN in 
computer vision tasks [20]. Especially for computer vision 
tasks like image recognition, deep CNN architectures are 
state of the art. While CNN learn spatial information and 
features from images, they have shown to be able to learn 
temporal information and features from time series. The 
developers of InceptionTime state that ”put simply, the time 
series problem is essentially the same class of problem” as 
image classification, ”just with one less dimension”. CNN 
are a promising and scalable approach to TSC and hence 
suited for industrial purposes for time critical TSC tasks like 
material property or tool health classification.

3 � Methodology

This section describes the experimental setup of this contri-
bution. This includes the hardness and MBN measurements, 
preprocessing of the resulting MBN signals, and training and 
test set configurations for the deep learning model.

3.1 � Dataset generation: hardness measurements

The analyzed specimen stem from a 16MnCr5 (AISI: 5115) 
sheet-metal coil which is a generic fineblanking steel [21]. 
The sheet-metal coil has been cold rolled section-wise to 
specific thicknesses representing industrial standard toler-
ance boundaries. The aim was to generate sections on the 
sheet-metal coil with varying hardness properties that rep-
resent industrial standards. For this purpose, the sections 
varied between thicknesses of 3.95 mm and 4.05 mm. In 
total, 22 specimen of dimensions 16500 mm × 6800 mm 
have been analyzed for their hardness properties. Since 
even specimen-wise material inhomogenities that lead to 
hardness fluctuations are to be expected and to counteract 
inherent uncertainties through hardness measurements, 
every specimen has been divided into 8 cells of dimensions 
3000 mm × 3000 mm. The Brinell hardness test was chosen 
to determine the hardness of the samples. Brinell testing is a 
destructive method widely used in industry to determine the 
hardness of metallic materials. The Brinell test is suitable for 
all steels with smooth surfaces of up to 650 Brinell hardness 
(HBW) [22]. The case hardening steel 16MnCr5 can reach 
up to 207 HBW, depending on the exact composition and 
finishing [23]. The Indentec device from Zwick Roell Test-
ing Systems GmbH was used to perform the Brinell test. The 
Brinell test was carried out according to DIN EN ISO 6506 
[22]. A ball diameter of D = 2.5 mm, a test kilogram-force 
of F = 306.5 N and an exposure time of 10 to 15 s were 
selected as test specifications.

The measured hardness of the samples was in the range 
118–138 HBW. The interval is not considered to be very 

large in materials science, but corresponds to a realistic devi-
ation of the hardness on a sheet-metal coil in the fineblank-
ing industry and likely leads to deviations in the process 
result with a static process setting.

Figure 4 shows a boxplot diagram of the measured hard-
ness values in HBW of the 22 samples. Each specimen is 
represented in the boxplot through the observed hardness 
quartiles of 8 measurements.

3.2 � Dataset generation: magnetic Barkhausen 
noise measurement and labeling

A sensor of the type �magnetic of the company QASS GmbH 
was used to measure the MBN. The sensor consists of three 
coils, two excitation coils for generating the magnetic field 
and the sensor coil for measuring the MBN. At a given exci-
tation frequency, the excitation coils carry out a continuous 
alternating magnetization of the sample. A power ampli-
fier is connected behind the sensor to amplify the meas-
ured MBN. The measured data is recorded on a measuring 
computer.

In the experimental setup of this contribution the MBN 
measurements were performed with an excitation frequency 
of fM = 300 Hz with an amplitude of U = 0.573 V. The 
research question whether this configuration leads to an 
optimal correlation between the resulting MBN signal of 
this specific material and the hardness of the material is, 
albeit important for future research, out of the scope of this 
contribution. The depth of the MBN analysis is especially 
dependent on the used excitation frequency due to the skin 
effect [24]. Thus, higher excitation frequencies lead to analy-
sis closer to the material surface. The parameter configura-
tion has been chosen according to recommendations of the 
company QASS GmbH for the given material and has proven 
to lead to meaningful results with this material and mate-
rial thickness in past works [25]. Sensor and specimen were 
separated by galvanic isolation through a 0.05 mm thick 
polypropylene layer during measurements. Since MBN is a 
stochastic signal and every measurement contains potentially 
different information, each cell has been measured in total 5 

Fig. 4   Boxplot of the resulting intra- and interspecimen hardness dis-
tribution
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times for 1 s with a sensor sampling rate of fS = 4 MHz. In 
total, 880 MBN measurements have been performed, each 
time series containing approximately 4 million datapoints. 
The resulting signal is measured in arbitrary units (a. u.) 
with the device, which, albeit not a SI-unit, can be used for 
comparisons between measurements executed by this device 
with the same settings.

3.3 � Preprocessing

Each sample contained approximately 4 million datapoints 
and, because of the excitation frequency of fM = 300 Hz, 
approximately 600 Barkhausen jumps. Thus, each time 
series has been segmented into subsegments containing 2 
excitation cycles and thus 4 Barkhausen jumps. To prevent 
phase shifts in the segments, the first incomplete excita-
tion period was cut off. When measuring the MBN with 
the device from QASS GmbH, no information on the phase 
of the external magnetic field was recorded. Therefore, 
the local minimum of the RMS signal within the length of 
half a period of excitation of the external magnetic field 
is determined as the cut-off point. The local minimum is 
a reasonable value, since by squaring when generating the 
RMS signal, this point can be considered as the point with 
the lowest activity or oscillation of the MBN. Figure 5 shows 
two resulting segments of a MBN measurement and the cor-
responding RMS signal.

To generate samples with the same length, the last incom-
plete segment was removed from the sample pool. The 
resulting segments had a length of t = 26,666 each. Preproc-
essing has been been implemented with Python 3.7 using the 
libraries SciPy, numpy and pandas.

3.4 � Train and test set generation

The models have been trained with the preprocessed seg-
ments of different specimen in 4 different training and test 
set configurations C1,C2,C3,C4 . Configurations C1,C2 , and 
C3 have been put together as a binary classification problem 
and segments have been divided into two classes around the 
median hardness of the dataset 124.7 HBW. Configuration 
C4 was set up as a classification task with 3 different hard-
ness classes with class boundaries at 125.46 HBW and at 
129.91 HBW.

Table 1 gives an overview of the configurations that have 
been used for training and testing the model. Numbers indi-
cate which specimen the utilized segments stem from.

The configurations were put together under certain 
assumptions. The first assumption was that segments from 
the same measurement contain inherent biases, since con-
secutive Barkhausen jumps influence each other. In a con-
figuration that contains different segments from the same 
measurement in both the training and test set, the model 
would potentially be able to easily identify patterns from 
this exact measurement. For this reason, all test sets contain 
only segments from unknown specimen and measurements 
across all configurations, while maintaining equally distrib-
uted class sizes. Furthermore, it was assumed that a clas-
sification of segments belonging to specimen that showed 
an average hardness closer to the class boundaries is a more 
difficult task for the model than a classification of segments 
with a larger hardness difference to the class boundaries. 
Finally, it was assumed that a low amount of variability in 
measurements in the training set (e. g. many segments of 
fewer measurements) hinder a generalization on the test set.

Configuration C1 has been chosen to contain segments 
from measurements that showed the largest hardness differ-
ence to the class boundary, but not a high amount of varia-
bility of specimen for the training and test set. Therefore, the 
training set consisted of all segments from all measurements 
of specimen 1, 2, 9, and 10. The segments for the test set 
have been randomly sampled as 30 % of all segments from 
specimen 3 and 8. C2 was chosen to contain more variability 
in the training set and assigned the same test set as C1 . The 
training set was put together through randomly sampling 
30 % of all segments from all measurements of specimen 1, 

Fig. 5   Visualization of 2 segments with each 2 exitation cycles from 
a MBN measurement (blue) and the corresponding RMS signal used 
for segmentation (red)

Table 1   Overview of tested segment configurations

C1 C2 C3 C4

Train 1, 2, 9, and 10 1, 2, 4, 5, 6, 
7, 9, and 
10

1, 2, 3, 4, 7, 
8, 9, and 
10

1, 2, 4, 5, 6, 7, 
9, 10, 13, 14, 
15, and 17

Test 3 and 8 3 and 8 5 and 6 3, 8, and 16
Classes 2 2 2 3
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2, 4, 5, 6, 7, 9, and 10. Configuration C3 has been set up with 
a similar training set as C2 , except for specimen 5 and 6 that 
have been used as test segments and 3 and 4 that have been 
used as training segments. Thus, the test set of configuration 
C3 contained specimen that were closer to the class bound-
ary than configurations C1 and C2 . Finally, configuration C4 
showed the highest amount of variability in terms of meas-
urements in the training set with segments from 12 specimen 
in total. The training set has been put together by randomly 
sampling 23 % of all segments from all measurements of 
specimen 1, 2, 4, 5, 6, 7, 9, 10, 13, 14, 15, and 17. For the 
test set 30 % of all segments from all measurements of speci-
men 3, 8, and 16 have been randomly sampled. Table 2 gives 
an overview of the resulting trainings and test set sizes.

3.5 � Model training and testing

The training and testing in this contribution have been done 
with the originally proposed InceptionTime architecture. 
This architecture consists of so called Inception modules. An 
Inception module in InceptionTime consists of filters of var-
ying lengths that allow them to extract relevant and, through 
cascading multiple Inception modules, also hierarchical 

features from time series. Figure 6 shows the schematics of 
one Inception module.

In the schematic, both the input and the output time series 
are labelled as multivariate time series. The application of 
m filters of length 1 to a univariate time series of length 
l results in a multivariate time series with m channels of 
length l. Thus, although the initial input in the Inception-
Time architecture can be a univariate time series, the rep-
resentation of the time series that is propagated through the 
InceptionTime layers can be considered multivariate [17]. 
The bottleneck layer consists of 32 channels in the origi-
nally proposed architecture and is followed by a combina-
tion of three convolutional layers. The convolutional lay-
ers are, unlike in the Inception architecture proposed for 
image classification tasks, not of length l like the input, but 
rather perform a sliding window operation different lengths 
( d ∈ {10, 20, 40} ). The sliding window operation is useful to 
consider the sequential behavior of time series. A max pool-
ing layer with a bottleneck is utilized for dimension reduc-
tion. All convolutional layers and pooling layers contain 32 
units, so that the final output of an InceptionTime module 
has 4 ⋅ 32 = 128 channels. Three InceptionTime modules 
form one InceptionTime block. These blocks are connected 
through skip connections in order to mitigate the vanishing 
gradient problem [18]. The last InceptionTime module is 
followed by a global average pooling and a fully connected 
layer.

InceptionTime is an ensemble of 5 classifiers with the 
same structure. The classifiers are randomly initiated with 
different weights. The probability of a time series xi belong-
ing to a class c from a class space [1, C] is then calculated 
as the average of the sum of the logistic outputs �c

of each classifier �j [18]. This work utilized an architecture 
with 6 InceptionTime modules in each InceptionTime clas-
sifer and ReLU as an activation function. The training and 
testing of the InceptionTime model has been done with the 
Python library tsai1, that provides an InceptionTime imple-
mentation for the PyTorch and the fastai v2 API [26]. The 
models have been trained for 50 epochs with a batch size 
of 4 on a Tesla P100 GPU. As an optimizer the algorithm 
Adam has been used [27]. The training has been done with 
the fit_one_cycle function of the fastai v2 library with a 
maximum learning rate of 10−5 . This function starts with 
a lower learning rate and increases the learning rate until 
hitting the maximum learning rate and decreases the learn-
ing rate again, while doing the inverse for momentum [26]. 

(2)ŷi,c =
1

n

n
∑

j=1

𝜎c(xi, 𝜃j)

Table 2   Overview of trainings and test set sizes for the different con-
figurations

C1 C2 C3 C4

Training set size 23,840 14,304 14,304 16,450
Test set size 3,576 3,576 3,576 5,364

Fig. 6   Schematic of an Inception module in InceptionTime

1  https://github.com/timeseriesAI.
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This approach is called 1cycle policy and was originally pro-
posed by Smith in 2018 [28]. According to the author, this 
approach leads to faster model convergence.

4 � Results and discussion

Table 3 shows the achieved test set accuracies of the clas-
sifier after training the models for 50 epochs. Furthermore 
the highest achieved accuracy and the corresponding 
epoch is presented. The test accuracy denotes the propor-
tion of correctly classified samples on the test set.

The highest accuracy both overall and for the binary 
classification task was achieved with configuration C2 
after 41 epochs with 0.995. This confirms the assumption 
presented in 3.4 that the binary classification task with 
the highest hardness differences contained in the test set 
leads to the best classifier performance and thus streng-
htens the applicability of this TSC approach to hardness 
classification. It is, however, remarkable, that configura-
tion C2 outperforms configuration C1 accuracy wise in the 
test set although the training set is significantly smaller. 
The overall second highest accuracy was achieved with 

configuration C4 after 48 epochs with 0.982. This is 
remarkable, since the training set consists of the hardness 
wise most heterogeneous samples of all configurations 
utilized. The higher variability in sample hardness in the 
training set may be an important aspect for the classifier 
to learn more meaningful features and to avoid overfit-
ting and thus to enhance the generalization capability of 
the model. These findings suggest further research with 
samples from different material charges and even models 
trained with different materials.

All models reached their top accuracy before the 50th 
epoch. Figure 7 shows the test set performance of configura-
tion C2 . It is apparent that the accuracy and the loss oscillate 
significantly until epoch 29. Towards the end of the train-
ing the accuracy and loss converge. A similar effect could 
be observed with configuration C4 , although both accuracy 
and loss showed a less significant oscillation. This oscilla-
tion is most likely due to the higher learning rates through 
the 1cycle policy, since it occurs in all configurations in the 
same epoch interval. Furthermore, the high amount of vari-
ability in the training set of configuration C4 lead to a more 
steady improvement of the model (Fig. 8). 

The originally proposed InceptionTime architecture has 
been used to train the models. A more knowledge-based 
approach to adapting the architecture based on the given data 
structure, e. g. through adaptions of the receptive field of 
the model, could lead to an even better model performance. 
Furthermore future research will have to test trained models 
for a specific sheet-metal coil on another sheet-metal coil of 
the same material and examine whether the performance is 
reproducible. Utilizing transfer learning could be a promis-
ing approach to both classifying different sheet-metal coil 
specimen and even different material specimen. Whether 
learned features of the models could be generalized is an 

Fig. 7   Test set accuracy and loss of segment configuration C2 
improved over 50 epochs

Table 3   Achieved classification accuracies for the different configura-
tions after 50th epoch and top accuracy

C1 C2 C3 C4

Test accuracy after 
epoch 50

0.788 0.993 0.874 0.979

Highest accuracy 
(epoch)

0.882 (45) 0.995 (41) 0.925 (20) 0.982 (48)

Classes 2 2 2 3

Fig. 8   Test set accuracy and loss of segment configuration C4 
improved over 50 epochs
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important question that has to be answered in order to use 
this methodology in an industrial setting.

A comparison of the deep learning approach to a feature 
engineering based approach of MBN analysis is out of the 
scope of this contribution, albeit being an interesting ques-
tion for future works. Recent work focussing on TSC sug-
gests that, given enough data, the deep learning approach 
will be superior. Moreover, the deep learning approach can 
be utilized without explicit knowledge of relevant features.

5 � Summary and outlook

Uncertainties on a material level, namely fluctuations of 
microstructural parameters, lead to process uncertainties 
in industrial manufacturing processes. Manufacturing pro-
cesses are generally parameterized once to the provided 
specifications of a material charge and only changed when 
turbulences already occurred. The specifications are chosen 
according to a sample from the a material charge that pre-
sumably resembles the specifications of the whole charge, 
e. g. in sheet-metal forming with samples from sheet-metal 
coils taken from the beginning and the end of a coil. Past 
research showed that even on a single sheet-metal coil level, 
this assumption does not hold. Hence, to increase process 
resilience, e. g. through anticipative adaption on a process 
level through process forces or lubrication, uncertainties on 
a material level have to be dissolved to reduce scrap and 
increase efficiency manufacturing processes in general.

MBN is a well established non-destructive testing method. 
In the past the MBN signal has been used to infer microstruc-
tural parameters such as hardness and residual stresses. Past 
research has shown that through feature extraction from the 
time and spectral domain and a following regression analy-
sis (e. g. through linear regression or through fully connected 
neural networks), it is possible to successfully predict micro-
structural parameters. However, this approach requires fea-
ture engineering, which can be viewed as a transformation 
of the actual signal to a hand crafted feature space. Possibly 
important information about the raw signal is discarded. For 
industrial purposes, a flexible prediction approach that utilizes 
the raw MBN signal can potentially help to dissolve material 
uncertainties through using the raw MBN signal as a repre-
sentation of the material state. By gathering labels through 
process and product feedback (e.g. through acoustic emission 
sensors to model the remaining useful tool life), influences 
of the MBN signal as a representation of the material state 
could be utilized to predict process configurations, e.g. forces 
or lubrication, that lead to the optimal process outcome. This 
contribution used the raw MBN signal to predict the hard-
ness of sheet-metal material with a deep learning approach. A 
state of the art TSC architecture has been used to classify seg-
ments from MBN measurements regarding the corresponding 

measured hardness of the material. The utilized model was 
able to reliably distinguish the varying hardness of the samples 
from a sheet-metal coil that has been cold rolled to fulfill the 
tolerance boundaries that sheet-metal manufacturers guaran-
tee. The main findings can be summarized as follows: 

1.	 InceptionTime with its parameters optimized for the 
UCR dataset can be utilized for MBN analysis

2.	 Thus, feature engineering is not mandatory for achieving 
exceptional results in MBN analysis

3.	 The utilized architecture performed best on samples with 
the highest differences in hardness

4.	 The second best performance was achieved with the 
highest sample- and hardness heterogeneity in the train-
ing set

Since the hardness variance that was observed in this contri-
bution is rather low compared to past scientific approaches 
to non-destructive testing with MBN it is to be expected 
that this approach could be leveraged for different materials 
and different classes of manufacturing processes outside of 
sheet-metal forming.

This methodology is a promising approach to handling 
industrial sensory data, since TSC is a common task in an 
industrial setting. However, more work has to be done to 
adapt the model architecture to the given data. This contribu-
tion used the originally proposed architecture of Inception-
Time, without changes in the receptive field of the model. 
It is reasonable to assume that this architectural choice is 
not optimal for the given data structure, and a model chosen 
optimally for the given data is not optimal for a classifica-
tion of e.g. force measurements. Finally, a more fine-grained 
class distribution with a larger dataset is desirable for future 
works. Furthermore, approaches like Grad-CAM [29] that 
provide explainability for decisions of deep learning models 
are an interesting approach for future research in this area.
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