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Abstract
Reinforcement learning (RL) offers promising opportunities to handle the ever-increasing complexity in managing modern 
production systems. We apply a Q-learning algorithm in combination with a process-based discrete-event simulation in order 
to train a self-learning, intelligent, and autonomous agent for the decision problem of order dispatching in a complex job 
shop with strict time constraints. For the first time, we combine RL in production control with strict time constraints. The 
simulation represents the characteristics of complex job shops typically found in semiconductor manufacturing. A real-world 
use case from a wafer fab is addressed with a developed and implemented framework. The performance of an RL approach 
and benchmark heuristics are compared. It is shown that RL can be successfully applied to manage order dispatching in a 
complex environment including time constraints. An RL-agent with a gain function rewarding the selection of the least criti-
cal order with respect to time-constraints beats heuristic rules strictly by picking the most critical lot first. Hence, this work 
demonstrates that a self-learning agent can successfully manage time constraints with the agent performing better than the 
traditional benchmark, a time-constraint heuristic combining due date deviations and a classical first-in-first-out approach.
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1  Introduction

Manufacturing companies are subjected to constant trans-
formations of their internal processes and their environ-
ment [24]. Globalization and competition through emerg-
ing industries in developing nations are already well-known 
[11]. Especially, with the ongoing digitalization accelerat-
ing markets are becoming unpredictable, and companies 
are in need to react quickly and decisively [1]. Optimally 
exploiting the operational abilities and resources is of utmost 
importance under these conditions.

In the semiconductor industry, complex job shops are 
facing similar challenges [23]. Job shops are widely evalu-
ated in other industries, since the requirements for flexible 

and rapidly changeable production systems are increasing 
[4]. Complexity, as well as opportunities and the pressure 
to make use of the latter, are therefore essential endeavours 
to ensure a competitive position [23].

The emergence of artificial intelligence methods such 
as deep learning, reinforcement learning (RL) and other 
machine learning approaches bear the potential to encounter 
these challenges with new quantitative methods. The meth-
ods are backed by significantly decreased computational 
times, the development of easy to use open source libraries 
and achievements like beating the human experts in strategic 
games [19].

The objective of this paper is the development and imple-
mentation of an autonomous and self-learning algorithm 
addressing order dispatching with strict time constraints 
in complex job shops. This is the first publication which 
utilizes RL to manage an environment with strict time 
constraints.

The research is structured as follows: Sect. 2 introduces 
the fundamentals of time constrained production plan-
ning and control, the essential characteristics of job shops 
in the semiconductor industry, and the basics of RL. Sec-
tion 3 describes the method and RL-algorithm that has been 
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developed in the present work, leading to the computational 
result in Sect. 4.

2 � Fundamentals and literature review

2.1 � Production planning and control

Production planning and control (PPC) focuses on organ-
izing and optimizing the internal processes within a manu-
facturing system [3]. Production planning predefines the 
production program, including the production process 
setup information. Production control takes these prede-
fined inputs to schedule all processes necessary to fulfill the 
production plan and, thereby, optimally utilize the available 
production factors given changing circumstances such as 
shortages of material, machines or workforce [12, 18]. The 
order release is the interface between production planning 
and production control.

Order dispatching, which is the focus of this work, is one 
PPC task and considers the assignment of orders to the next 
processing machine given a set of available machines and 
orders. Other tasks are, for instance, order sequencing which 
defines the sequences in which individual machines process 
orders [5, 17].

Optimization and decision support methods that are used 
for PPC are often categorized into three classes [14]: first, 
there is mathematical optimization, which allows finding 
the optimal solution but requires high computational effort. 
Second, heuristics are in wide-spread use to overcome the 
computational drawbacks in large real-world problems. 
They achieve acceptable results in much less time but fall 
short of the optimal solution in most cases. Learning-based 
techniques, the third class of methods, are considered in the 
present work.

2.2 � Complex job shops in semiconductor 
manufacturing

Certain features are typical for the wafer fabrication [14]. 
Re-entrant flows let wafers run through the same machine 
group more than once. Some machine types are relatively 
unreliable by nature of the physical manufacturing process 
and need frequent maintenance measures. Within the same 
process chain, there are not only serial but also batch pro-
cesses. As a consequence, massive queues are caused by 
the succession of parallel batching tools with serial tools. 
Moreover, dynamic bottlenecks occur. A multifaceted prod-
uct portfolio and changing product mix ensure constantly 
varying boundary conditions. For some tools, setup times 
and multiple processing times are further challenges. Finally, 
highly competitive due dates prevail.

All in all, wafer fabs belong to the category of com-
plex job shops as a distinct job shop type with the features 
described above [23].

2.3 � Handling of time constraints in PPC

Time constraints, also called time-coupling constraints, 
describe the maximum time that is allowed to pass between 
the end of one process step and the start of another one (see 
[14]). Time constraints are a significant challenge in mod-
ern manufacturing systems, but in particular present in the 
semiconductor industry [12]. Hence, time constraints are 
an essential part of realistic manufacturing process model-
ling. Some research focused on the incorporation of time 
constraints in PPC methods.

Klemmt and Mönch model time constraints and present 
an approach for solving a scheduling problem with time con-
straints [6]. Besides customer due dates, time constraints can 
also exist between two or more consecutive process steps. 
The authors classify time constraints in five different types, 
depending on the consecutiveness, adjacency, and overlap-
ping of time constraints. Overlapping time constraints occur 
in complex job shops, which makes the computation of an 
optimal solution infeasible for real-world problems.

Sun et al. introduce delay time constraints in the applica-
tion domain of semiconductor manufacturing [2]. Delay time 
constraints refer to a period within a consecutive process 
needs to be started based on a start process step. The authors 
present objective function and constraint formulations that 
are required to consider such time constraints in existing 
manufacturing control systems. The approach is based on 
mixed-integer programming and constrained programming 
models. However, experimental results from an application 
are not presented.

Knopp addresses scheduling problems in complex 
semiconductor job shops with heuristic and metaheuristic 
approaches [7]. The focus of his work is on batching pro-
cesses and time constraints. The time constraints are consid-
ered as maximum time lag constraints and implemented in 
the model as soft constraints with violation costs attached. 
Reworkable and non-reworkable time lags are distinguished. 
Reworkable time lags lead to a lot requiring rework to be 
done in case of violation. This results in increased cycle 
time for the lot itself and additional machine capacity, which 
raises its relevance for the overall fab performance. Non-
reworkable time lags describe a point in time at which the 
risk of the wafers to become defective starts to increase for 
the violation.

2.4 � Basics of RL

Machine learning techniques cover a variety of algorithms 
that can process large amounts of data and identify patterns 
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that can be transferred to new situations [16]. They are suit-
able to meet the demand for dynamic, real-time production 
control applications [21].

In RL, being one type of machine learning algorithms, 
agents constantly adapt and learn strategies in a known or 
unknown environment through feedback received: the agent 
perceives the state of the environment st ∈ S from a finite set 
of possible states at each time t. On this basis, it selects an 
action at ∈ A from the set of possible actions. The environ-
ment responds with the resulting state st+1 and a feedback, 
the reward rt ∈ ℝ , before the next iteration starts [21]. This 
iteration can be described by a Markov decision process, 
i.e.st+1 depends only on st , not on previous states. The agent’s 
goal is to optimize its strategy to maximize the cumulative 
reward. The strategy is represented by a probability distribu-
tion for choosing a specific action in a given state.

For a detailed overview of the latest RL research in the 
domain of production planning and control, we refer to the 
work of [9, 10, 20, 22].

3 � Use case description and RL modelling

This section introduces the use case taken from a real-world 
wafer-fab. The RL modelling with respect to the state and 
action space, reward function, optimization algorithm, as 
well as the time constraint consideration are outlined. Over-
all, the following questions are to be answered:

•	 Is the proposed single-agent based RL approach able to 
learn and, therefore, improve over time its ability in opti-
mizing the adherence to a time constrained schedule?

•	 Can the proposed approach perform better than estab-
lished competitive heuristics?

3.1 � Description of the wafer‑fab use case

The considered use case represents a production pro-
cess with ten specialized machines sub-organized in five 
machine groups. Every machine group, also called work 
center, has a buffer stock with a fixed number of twenty 
buffer slots. Challenges arise from many time-coupled pro-
cess steps ranging over multiple work centers. The high 
share of time coupling constraints for around 30% of the 
operations, increases the complexity of the order process 
flow and the internal logistics. Moreover, machines also 
suffer from reduced availability. Furthermore, order flow 
is re-entrant in earlier visited machine groups. Finally, 
machines require a product specific set-up. Hence, the 
use case incorporates the following complexity drivers 

introduced in Sect. 1: non-linear process flows, re-entrance 
flows, sequence-dependent setup times, and time con-
straints. This renders an appropriate scenario for the appli-
cation of RL to analyse the influence of time constraints 
within a complex environment.

Here, two product variants are modelled with an equal 
product mix proportion but different process times and 
lengths of time constraint intervals (Table 1). The first 
product variant is faster but has more stringent time con-
straints than the second. Both product variants can be pro-
cessed on all machines and have the same basic recipes 
and, thus, identical process chains. So, on average, orders 
of both product variants basically have to wait for the same 
time depending on what orders are waiting in front of the 
machine. However, the agent’s decisions could favor one 
product variant over the other (Fig. 1).

Fig. 1   Job shop layout of the wafer-fab use case

Table 1   Parametrization of the simulation in the wafer-fab use case

System parameters Wafer-fab use case

Number of machine groups 5
Number of machines per machine group 4-1-2-1-2
Number of product types 2
Probability of product type being gener-

ated
50%, 50%

Size of buffers before machine groups 20 order slots
WIP restriction 80
Order release time interval 70
Recipe (machine group sequence) (1-2-3-1-4-5) x2
Average RPT (per machine) Between 20 and 80
Machine failures (per machine) MTBF between 1700 and 

4000, MTTR between 
15 and 60

Setup times (per machine) Between 0 and 15
Target flow factor (per product type) 12, 8
Time-coupling constraint (per product 

type)
Between 225 and 600
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3.2 � State space modelling

The state space depicts the information given to the agent 
as basis for decision-making on which action to select.

The state space defined in this work is quite rich and has 
210 entries consisting of the following elements, which are 
described in the remainder of this section:

•	 Current machine where the action is asked for (10 
entries, binary, one-hot coding for 10 work groups)

•	 Loading status of all machines (10 entries, binary, idle 
or busy)

•	 Product setup per machine (50 entries, binary, one-hot 
coding for 5 product variants and ten machines)

•	 Product variant in the current machine’s buffer slots 
(100 entries, binary, one-hot coding for up to twenty 
buffers and 5 product variants)

•	 Order status per buffer slot (20 entries, real-value, 20 
buffer slots)

•	 Full or empty status per buffer slot (20 entries, real-
value, 20 buffer slots)

The state values are mostly binary and ranging from 0 to 
1. In order to normalize categorical data, one-hot encoding 
is applied. The state values are determined based on the 
state of the environment at the point of decision-making.

In this use case, the order status observed by the RL-
agent is given by an order’s rank of “urgency ratios” 
(explained in the next section, taking a value between − 1 
and 1). The three orders with the highest urgency are given 
the rank values 3, 2, and 1. All other orders are labelled 
with a 0. Blank slots in the buffer of a machine group are 
indicated by a value of − 5. Thus, jobs of different prod-
uct variants with different time constraints and different 
processing times are made comparable. In addition to the 
order’s urgency ratio, the benchmark heuristics use a due 
date deviation based on planned cycle time of a job as 
second prioritization rule, determined by the raw process 
time multiplied with a target flow factor. The raw process 
times are given by the technological process parameters 
and the product variant. The target flow factors is a prede-
termined input values, that considers strategic objectives 
such as customer lead times.

It is important to note that the observation of the orders 
waiting at a work center is shuffled with respect to buffer slot 
position before communicating the order status per buffer 
slot to the agent. This procedure leads to a random allocation 
of slots for every order and every empty slot. This is a cru-
cial element in preventing the agent from learning a biased 
policy to pick slot-oriented and not order-specific.

Further, the setup status type of every tool is included, in 
order to enable the agent to optimize setup sequences of the 
machines. Combining the machines’ setups with respect to 

the product variants should result in a better setup and load 
management.

3.3 � Action space modelling

Whenever the agent is requested, it chooses one of 21 options:

•	 Selecting an order from a buffer slot (20 actions)
•	 Idle and choose no order (1 action)

Each of the twenty slots of a buffer is either occupied or empty. 
Only selecting an occupied slot is considered a valid action. 
Invalid actions are not executed (i.e. the simulation state is not 
changed) but used as feedback for learning: the agent is penal-
ized with a negative reward and requested to select another 
action.

When experimenting with global rewards (see Sect. 3.5) the 
agent is given the option to increase or decrease the rate of new 
order starts to allow control and optimization of the WIP level 
in the line. This leads to two more options for action:

•	 Increase loading by reducing current inter arrival times at 
start buffer

•	 Decrease loading by increasing current inter arrival times 
at start buffer

3.4 � Modelling extensions for time constraints

Time-coupling constraints are measured for every order indi-
vidually. In the present work, time constraints are only consid-
ered between two consecutive process steps. The length of the 
time constraint is product variant-specific and depends on the 
next process step. If a constraint is violated nothing directly 
happens to the affected order, however, it influences the agent’s 
reward. The number of time constraint violations is a key indi-
cator for the performance of a learned strategy or heuristics.

The state space observed by the agent reflects the state 
with respect to time constraint-specific urgency ratio UR. The 
urgency ratio is also considered for the time constraint-specific 
reward function and for the benchmark heuristics. The urgency 
ratio UR indicates how well an order performs according to its 
time constraint ( TC ) and is calculated via:

The time t refers to the current simulation time and 
tfinished last step is the point in time when the last process step 
was completed. Hence, no distinction is made for orders that 
are delayed at least 100% of their time constraint. If an order 
does not have a time constraint for the currently next process 
step, it is set to UR = 1 per default. Therefore, the following 
cases can occur:

(1)UR ∶= max

{
TC − (t − tfinished last step)

TC
,−1

}
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•	 UR > 0 : The order is considered to be on time.
•	 UR = 0 : If the order is not selected in this time step, it 

will violate its time constraint.
•	 UR < 0 : The order has violated its time constraint.

We use as metrics to evaluate the performance of the system 
with respect to time constraint violation avoidance the total 
number of time constraint violation events by one job at any 
machine stock during the production process. Additionally, 
a cumulative variant of the urgency ratio best described as 
cumulated delay Dcum(p) is considered:

which is the average over all lots of product type p of the 
cumulated delays measured at the exit buffer.

3.5 � Reward function modelling

The reward function r is the key element that directs the 
agents behavior and determines the optimal policy. As intro-
duced above, invalid actions, i.e. picking an empty slot, are 
rewarded with r = −1 and a reward of r = 0 is given for the 
idle-action, i.e. doing nothing. The exponential time con-
straint reward function used is modelled as a reward continu-
ously following the UR ratio:

local reward rlocal is different from the global reward rglobal , 
which will be introduced afterwards. As the reward is just 
based on the status at the specific machine for which the 
action had been selected, it is called “local”. The local 
reward is bound between 2 and 10. Contrary to the approach 
used by heuristics, the agent is rewarded for picking orders 
with a low urgency (i.e. UR ≥ 0 ), a reward only sustainable 
achievable if the agent finds a strategy that removes unfa-
vorable, i.e. high urgency orders, from the system.

In addition to the local reward, two global rewards are 
investigated. The first directly awards a low number of aver-
age time constraint violations measured at the end of the 
production line:

Here, Vp is the average number of time constraint violations 
over the last 50 orders for product type p . The notation ⟨ ⟩p 
refers to the average over all products p in the exit buffer. 
The exponential function dampens the reward for increas-
ing Vp.

(2)Dcum(p) ∶=

⟨
∑

j∈production steps

(
1 − URj

)
⟩

finished lots(p)

(3)rlocal = 2 ⋅ 5(UR+1)∕2

(4)rglobal = 10 ⋅

⟨
exp

(
−
Vp

3

)⟩

p

Furthermore, experiments showed a tendency of the agent 
to reduce the order release and reduce new order starts. This 
leads to an overall less loaded system where time constraints 
are easier to handle. Therefore, two additional actions are 
included to increase and decrease order starts and combine 
this option with a second global reward component rWIP 
awarding adherence to a predefined WIP level over all buff-
ers i:

WIP
target

i
 refers to the target WIP level in buffer i and � rep-

resents a balancing parameter which controls exceeding the 
target WIP level. Hence, � controls the trade-off between a 
production line prioritizing high WIP levels at the cost of 
cycle time and time constraint violations, on the one hand, 
and a line favoring cycle time and time constraint violation 
avoidance over high WIP levels, on the other hand.

The effective total reward transits over the course of the 
exploration phase from rlocal to rglobal to smoothly aim at 
global learning:

3.6 � RL algorithm and simulation of environment

The DQN-agent [13] provided by the library Keras-RL [15] 
is the RL-agent used in this research. Hereinafter, a short 
overview of some of the most important settings and hyper-
parameters is given (see Table 2), based on a review of other 
DQN applications (e.g. [22]). A sequential replay memory 
is used with a limit of one million experiences. The policy 
deployment uses linear annealing with an � starting at 100% 

(5)rWIP =
∏

i∈buffers

1 +max
{
� ⋅ (WIPi −WIP

target

i
), 0

}

(6)rtotal = rWIP ⋅ rlocal ⟶ rWIP ⋅ rglobal

Table 2   The settings for the DQN-agent used in this work for the 
wafer-fab use case scenario

Parameter Default value

Number of decisions by the agent 1.2 million steps
Learning until 600,000 steps
Inner policy Epsilon greedy Q policy
Policy Linear annealed policy
Exploration/exploitation � = 100% → 1% / 1%
Target model update Every 10,000 steps
Metric Mean absolute error (MAE)
Warm-up phase 10,000 steps
Size of sequential memory 1,000,000
Discount factor � = 0.9

Optimizer Adaptive moment estimation 
(Adam)

Learning rate � = 0.00025
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and linearly decreasing to 1% over time. Depending on � 
the policy chooses either to “explore” by taking a random 
action with probability � or to “exploit” by going for the 
best learned action with probability 1 − � . The agent warms 
up for the first 10,000 steps, as the simulation first needs to 
fill up and pass the transient phase. The target network is 
updated every 10,000 steps. The discounting factor is set 
to � = 0.9 and mean absolute error is used as metric. The 
adaptive moment estimation optimizer (Adam) is used with 
a learning rate of � = 0.00025.

3.7 � Benchmark heuristics

The performance of the RL approach is compared to a 
benchmark, state-of-the-art time constraint control heu-
ristics. A combined time constraint heuristic (short, TC) 
chooses the order with the lowest urgency ratio minUR , 
if minUR ≤ 0.5 and, otherwise, the order with the largest 
due date deviation. The idea behind the combined rule is to 
model a more realistic approach with time constraints only 
being considered if an order comes close to violating its 
time constraint.

Additionally, a first-in-first-out (FIFO) heuristics is 
included as benchmark heuristic that is well-established in 
production control application but not directly considering 
time constraints and due dates.

4 � Results

The computational results are based on simulation runs for 
the above presented scenario. In every experiment, 1.2 mil-
lion simulation steps are performed, whereby a simulation 

step is defined as an agent’s action selection and execution. 
The exploration value � , which refers to the share of explora-
tive actions, is initially set to 1 and decreases linearly to 
0.01 over the first 600,000 steps. Hence, for the last 600,000 
steps the agent just exploits the best learned action so far. 
However, it is important to note that learning will not stop 
after the exploitation phase because random machine fail-
ures and order sequence will introduce randomness into the 
learning process.

4.1 � RL‑agent and heuristic performance analysis—
time constraint violations

The benchmark heuristics results are shown in Fig. 2 in the 
first two charts to the left, the two charts to the right show 
the results of the RL-agent for local and global rewards. The 
charts show the frequency of time constraint violations Vp 
per product type after finishing processing. The entire data 
set of 1.2 million simulation steps is split into six equal-sized 
phases with a length of 200,000 simulation steps that are 
shown separately in order to see the learning process for the 
learning-based agents.

First, one can see that the values spread significantly, 
especially for the rule-based heuristics on the left due to 
the system immanent stochastic processes. As expected, the 
heuristic performance does not change over the course of 
the phases, as no learning process applies. More interest-
ingly, the TC benchmark achieves results which are similar 
to FIFO (see Sect. 3.7). For both products, the two heuristics 
achieve an average number and standard deviation of time 
constraint violations of 3.7 ± 1.6 for product 0 and 3.1 ± 1.5 
for product 1 (FIFO), respectively 3.7 ± 1.6 and 3.7 ± 1.6 

Fig. 2   Count of average number of time constraint violation events for both products measured at the exit buffer. The entire learning process is 
separated into six phase with equal length. Vertical red lines correspond to the mean (solid) and mean ± one standard deviation (dashed)
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(TC). Focusing only on time constraints, one would expect 
the TC heuristic to perform better in avoiding violations.

On the one hand, the FIFO heuristic does not specifi-
cally consider time constraints, it is following waiting times. 
Hence, it is profiting from the correlation between the wait-
ing time of an order in the current buffer and the probabil-
ity of an order violating its time constraint. As shown in 
Table 1, orders of product type 0 have 25% less time to finish 
than orders of type 1. The heterogeneous product types are 
not addressed accordingly by FIFO and, hence, the viola-
tions are about 20% more frequent for product type 0. On the 
other hand, TC levels the number of violations for both prod-
uct types better than FIFO. As it always picks the order with 
the lowest urgency ratio, neither product type is preferred.

Next, the two charts to the right in Fig. 2 show the result 
of the RL-agents (DQN-agent). The first represents the agent 
just with the local reward function rlocal and the second the 
reward of the second agent transitioning between Phase 4 
and Phase 6 from a purely local reward to an entirely global 
reward rtotal . After Phase 3, no-deliberate random actions 
due to � are chosen and the agent decisions are taken as is.

Overall, one can say that the developed reward functions 
succeed in minimizing the violations against time constraints 
and clearly outperform both benchmark heuristics. Moreo-
ver, the trend over the six phases reveals that the agent is 
successfully minimizing the number of violations and the 
average sum of deviations is reduced. For both products, a 
local reward trained agent achieves an average number of 
time constraint violations of 3.1 ± 1.0 and 2.1 ± 0.8 , respec-
tively, and a global reward trained agent even 2.4 ± 0.5 and 
1.7 ± 0.5 , respectively. Note, that in Eq. (4) Vp is explicitly 
entering the global reward function, while in Eq. (3) the 
urgency ratio UR is taken into account for the local reward.

Figure 3 shows the same simulation experiments but 
with respect to the summed delay Dcum(p) per product type. 
This parameter measures the cumulative UR-performance 
and not only the number of TC constraint violation events. 
Distribution averages and standard deviations for product 
types 0/1 are: for FIFO 7.9 ± 2.6/6.6 ± 2.3 , TC 8.0 ± 2.6

/8.0 ± 2.6 , RL local 6.8 ± 1.8/5.2 ± 1.6 , and RL global 
5.6 ± 0.9/4.1 ± 0.9 , respectively.

The RL-agent learns based on a cumulative reward that 
confronts it with the consequences of past actions, espe-
cially relevant in a re-entrant flow scenario like it is used 
here. This fact makes the difference between the agent and 
heuristic approaches, as the latter are limited to a rule-
based procedure with local information that is included 
in the decision rule. In contrast to this, the agent captures 
during the training phase the relationship between the 
product type, the order’s urgency ratio, and the combined 
information of product types and urgency ratios of the 
other orders in the buffer. Moreover, in the case of the 
local reward, the agent is rewarded for picking orders with 
a low criticality (i.e., high urgency ratio), which leads to 
a strategy that ultimately avoids the occurrence of criti-
cal orders. In the case of the global reward, the agent is 
awarded higher if the final count of time constraint viola-
tions after processing is as low as feasible. All this results 
in agents that are not simply picking the order with the 
lowest urgency ratio, but instead the order most endan-
gered to a negative urgency ratio. In other words, it is 
able to create a farsighted control strategy which is more 
successful than the myopic and greedy approach used by 
heuristics.

Fig. 3   Density plot of cumulated delay Dcum(p) measured at the exit buffer for both products. The entire learning process is separated into six 
phase with equal length. Vertical red lines correspond to the mean (solid) and mean ± one standard deviation (dashed)
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4.2 � Investigation of RL‑agent’s action selection 
policy

The local reward function awards high positive urgency 
ratios UR according to Eq. (3).

On the left of Fig. 4 it is shown how the local reward 
approaches over the course of the exploratory learning 
phase during the first 600,000 steps an average value of 
about 7.5 by increasingly eliminating invalid actions and 
neutral actions as well as selecting positive UR orders, as 
any UR > 0 leads to a positive reward larger than 2 ⋅

√
5 . 

The upper and lower bounds of the local reward according 
Eq. (3), the zero reward for idle actions and the punish-
ment for invalid actions at −1 , are also clearly visible.

In contrast to that, the global reward directly awards 
the desired overall result, i.e. a small number of time 
constraint violations Vp (see Eq. 4). Moreover, it creates 
an even more complex behaviour due to two additional 
actions, which increase or lower the number of order 
releases at the start of the production line. As discussed 
above, these actions are balanced by a WIP-sensitive mul-
tiplicative reward component as defined in Eq. (5) to pre-
vent an under-loaded system.

The resulting reward is displayed on the right in Fig. 4. 
Note the difference in the y-axis scaling due to the multi-
plication with the WIP reward component. It is interesting 
to observe how fluctuations induced by WIP imbalances 
are narrowed down as a balance between order starts, time 
constraint violations, and predefined WIP target is reached 
over the learning process.

It should also be emphasized how a minor extension of 
the action space to include order release actions balanced 
by a corresponding WIP reward allows to broaden the 
problem scope and thus solution space. This demonstrates 

the superior versatility of RL approaches in complex real-
world manufacturing settings.

Figure 5 compares the agent’s action selection with two 
graphs showing the actual buffer slot selected by the agent. 
Recall that the actions are shuffled in every step and it is, 
therefore, prevented that the agent memorizes single slots 
instead of actually learning a control policy. Recall also, 
that FIFO strictly picks the first slot, i.e. slot 0, which is 
also preferred but not strictly adhered to by the TC heuris-
tic. However, the two RL-agent strategies vary this pattern 
by including also late entries to the buffer, i.e. higher slot 
numbers. While the local reward function favors orders that 
are well in time compared to their time constraint, possibly 
letting a certain amount of orders run entirely out of time, 
the global reward function focuses on minimization of time 
constraint violations, which also means taking care of poten-
tial time constraint violations more holistically.

Most of the time, human decision makers would choose 
orders that can be avoided from running out of time. But 
this is apparently not the case for the locally rewarded agent, 
which goes with the two “extremes” of reaping high rewards 
for many orders and no rewards for late orders. Interest-
ingly, the global reward mitigates this drastic local strategy 
by continuously smoothing the order picking between the 
first entered lot all the way down to the last lot.

5 � Summary and outlook

5.1 � Summary

The opportunities and challenges of manufacturing in times 
of pervasive digitalization lead to a new era of operations 
management. Intelligent and autonomous control approaches 

Fig. 4   Development of the RL reward over the entire training process. The moving average over the last 100 values (red) as well as a running 
median (blue) are highlighted
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of complex job-shops are enhanced by reinforcement learn-
ing. This work contributes to this research by an investi-
gation of order dispatching under time-constraints in com-
plex job-shops. The computational results are based on a 
discrete-event simulation of a semiconductor wafer fab and 
reveal the high potential of a model-free temporal-difference 
Q-learning algorithm (DQN).

The results show that RL-agents can be successfully 
applied to control order dispatching in a real-world-sized 
application use case. Moreover, time constraints are man-
aged better than industry-wide established benchmarks, i.e. a 
heuristic that optimizes time constraints or a FIFO-oriented 
heuristic.

Furthermore, the experiments show that modelling 
of rewards is a major and critical part for successful RL 
applications. This is, in particular, relevant for constraint 
problems such as order-based time constraints. Thereby, this 
research contributes to the research question of how to best 
enforce RL-agents to optimize action validity. Moreover, it is 
shown how a minor extension of the action space in conjunc-
tion with a complementing reward allows to easily increase 
the scope of action and policy space.

5.2 � Outlook

Elaborating and optimizing reward functions as well as the 
state space seem to offer further potentials for even more 
improved results. For instance, including the buffer utili-
zation or expected residual machine life time in the state 
space would allow the agent to optimize the WIP flow and 
even preventive maintenance schedules [8]. With respect 
to the deep learning capabilities, inserting additional lay-
ers and more sophisticated layer structures should be envis-
aged. Moreover, the numerous opportunities for hyper-par-
ametrizing RL-agents are so far exploited only to a certain 

degree. Finally, alternative RL-agents, e.g. advanced policy-
based RL algorithms, might achieve good results, too, as 
they especially prove to be robust given changing problem 
characteristics.

The long-term vision of self-learning manufacturing sys-
tems in real-world is certainly still a long way down the road. 
For this to happen, improvements need to be made in mul-
tiple areas: data availability and quality is still a core issue 
and a decisive constraint for many companies. Additionally, 
cyber-security and management of anomalies are major con-
cerns when implementing autonomous systems. Humans 
need to get convinced to understand and accept autonomous 
decisions. Therefore, RL, being the most promising way to 
go, still needs to be understood deeper and developed further 
in order to be used as single decision-making controller in 
manufacturing systems.
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