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Abstract
Tool wear and borehole quality are two critical issues for high precision drilling processes. In this paper, several drilling 
experiments in terms of different drilling parameters and drill bit with and without coating are conducted according to the 
Taguchi orthogonal arrays. Thrust force and moment were measured during the drilling process. The cutting edge radius 
depending on the wear, roughness and roundness of the borehole were also aquired. By combining the experiment dataset 
with the expert knowledge, a Bayesian prediction network of tool wear radius, surface roughness and borehole roundness is 
established through structure learning and parameter learning algorithms based on GeNIe, a disposable software to create 
Bayesian networks. Up to 89% accuracy were achieved using this approach. The research described in this paper can provide 
a new approach to multivariate prediction and parameter optimization in drilling.
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List of symbols
d  Diameter in mm
f  Feed rate in mm/rev
re  Cutting edge radius in �m
vc  Cutting speed in m/min
Fz  Thrust force in N
Mc  Drilling moment in Ncm
R  Roundness in �m
Ra  Roughness in �m
�  Probability
L(�)  Likelyhood
AI  Artificial intelligence
ANN  Artificial neural network
ANOVA  Analysis for variance

BDe  Bayesian Dirichlet equivalence
BN  Bayesian network
BPNN  Backpropagation neural network
BS  Bayesian search
CPT  Conditional probability table
DAG  Directed acyclic graph
EM  Expectations maximum
GA  Generic algorithm
HC  Hill climbing g algorithm
MLPNN  Multilayer perceptions neural network
NB  Naive Bayes
RBFN  Radial basis function network
RBFNN  Radial basis function neural network
RSM  Response surface methodology
TAN  Tree-augmented Naive Bayes
TCP  Tool center point
WPT  Wavelet packet transform

1 Introduction

Drilling is a common and complex machining process 
extensively used within many manufacturing fields such as 
aerospace and automotive industries [1, 2]. For example, 
a single heat exchanger needs up to 16,000 boreholes and 
a single aero plane requires up to 45,000 boreholes with 
tight tolerance for the assembly [3]. Tool wear and borehole 
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quality are two critical issues for high precision drilling pro-
cesses, which will result in a reduction of drill bit’s life and 
a worse manufacturing accuracy of the products. Therefore, 
tool wear and surface roughness prediction in drilling has 
become a concerned issue of the manufacturers and users.

2  State of the art

To date, a number of researchers have focused the prediction 
of tool wear and surface roughness in drilling processes, and 
relevant works have been reported. However, since many 
uncertain factors have great influence [4] on tool wear and 
surface roughness, it is difficult to establish accurate analytic 
models decribing the underlying mechanisms. Overall, there 
are two main modeling methods mentioned in relevant litera-
tures: (1) statistical approaches and (2) Artificial Intelligence 
(AI) approaches.

As for statistical approaches, the Taguchi method com-
bined with analysis for variance (ANOVA), Response Sur-
face Methodology (RSM) and ANOVA, Linear Regression 
are widely adopted. Krishnaraj et al. [5] adopted the Tagu-
chi method with the analysis for variance (ANOVA) and 
found that the feed rate and diameter are the most signifi-
cant parameters to the thrust force and surface roughness in 
drilling carbon fiber reinforced plastic laminate/aluminum 
stacks. Kivak et al. [6] selected the drill bit, cutting speed 
and feed rate as control factors in drilling of AISI 316 steel 
using uncoated and coated drills. With Taguchi method and 
ANOVA, they found that the drill bit was the most signifi-
cant factor on the surface roughness and the feed rate was the 
most significant factor on the thrust force. Sundeep et al. [7] 
examined the drilling behavior of AISI 316 and optimized 
the drilling parameters using the Taguchi methodology. 
ANOVA was used and the analysis indicated that cutting 
speed dominates on surface roughness and metal removal 
rate. Balaji et al. [8] used the RSM and ANOVA to identify 
significant parameters on surface roughness, flank wear and 
vibration in drilling of TI-6Al-4V alloy, and a multi response 
optimization was performed to optimize the drilling param-
eters for less surface roughness, flank wear and drill vibra-
tion. Murthy and Rodrigues [9] adopted the integration of 
Taguchi method and RSM and analysed the drilling param-
eter settings in drilling of Glass Fiber Reinforced Polymer 
composite laminate using solid carbide drill bits. Motorcu 
et al. [10] developed the predictive surface roughness equa-
tion in drilling of Waspaloy super alloy by using Taguchi 
method with Linear Regression Analysis.

In terms of AI approaches, Artificial neural networks 
(ANN) is the most widely used method. Garg et al. [11, 
12] investigated the performance of backpropagation neural 
network (BPNN) as well as radial basis function neural net-
work (RBFNN) in predicting the flank wear of high speed 

steel drill bits for drilling holes on mild steel and copper 
workpieces, and employed the radial basis function network 
(RBFN) optimized by genetic algorithm (GA) to predict the 
average flank wear. Grzenda et al. [13] employed imputation 
algorithm to supplement the missing values, then applied the 
multilayer perceptions neural networks (MLPNN) to repre-
sent roughness prediction models. A comparable approach 
was used in [14] to predict the resulting burr size in drill-
ing depending on tool and machine tool characteristics as 
well as process parameters. Brinksmeier et al. were dealing 
with hybrid models combining physical and ANN models 
to describe and simulate grinding processes [15]. Rao et al. 
[16] used the input parameters of nose radius, cutting speed, 
feed and volume of material removed, established an ANN 
with Feedforward BP algorithm and aimed at the predic-
tion of surface roughness, tool wear and amplitude of work 
piece vibration. Shetty et al. proposed a novel thrust force 
prediction model, involving genetic algorithm optimized 
multi-layer perceptron neural network (GA-MLPNN) and 
observed that the GA-MLPNN was better than the RSM 
model in prediction of thrust force [17]. Patra et al. [18] 
developed a BPNN model which fused thrust force, cut-
ting speed, spindle speed and feed parameters, to predict 
the borehole number. It could be shown that the prediction 
error of borehole number was less than that of a regression 
model. Corne et al. [19] set up a MLPNN with Levenberg 
Marquart(LM) algorithm. Spindle power data were collected 
and put into the network to predict the tool wear during 
drilling of Inconel 625 superalloy. Xu et al. [20] applied a 
BPNN to predict the corner wear of a high speed steel drill 
bit for drilling on different workpiece materials. Input fea-
tures of BPNN were extracted from the static and dynamic 
components of the resultant force of converted thrust and 
torque by wavelet packet transform (WPT). Bayesian net-
works, consiting of nodes and directed arcs and belonging 
to those graphical models can use the advantages of graphi-
cal structures on the one hand and probabilistic models on 
the other. They form an acyclic directed graph (DAG) and 
represent a formalism of uncertain conclusion in the field 
of artificial intelligence [26, 27]. Correa and Bielza [21, 22] 
introduced Bayesian classifiers to predict surface roughness 
in high-speed milling. Naive Bayes (NB) classifier and the 
Tree-Augmented Naive Bayes (TAN) classifier were used 
and up to 81.2% accuracy was achieved. Bustillo and Cor-
rea [23] used TANBC that consider the cooling system as 
an input variable for the optimization of roughness quality 
in deep hole drilling operations.

As for the prediction or classification of tool wear or 
surface roughness by Bayesian classifier, it is assumed that 
the value of the attributes (drilling parameters, force and 
energy) are conditionally independent of one another given 
the class variable (tool wear or surface roughness) of a sam-
ple. However, there can be dependences between values of 
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attributes. Furthermore, Bayesian classifier can only be used 
for the prediction or classification of one class variable. To 
avoid this limitation, in this paper Bayesian network (BN) 
[24], also called Belief Network, is introduced to predict 
both tool wear and surface roughness in drilling of 42CrMo 
steel. BN is a directed graphical model which can be used 
for classification, diagnosis and prediction. It can reveal the 
causal relationship among nodes and the conditional prob-
ability distribution, while nodes and edges of ANN have no 
such direct interpretation as BN.

3  Experiment setup and dataset collection

3.1  Experiment setup and measurement results

In the tests, 42CrMo4 plates have been used as workpieces. 
Nine uncoated and nine TiAlN coated drills with a diameter 
of d = 5 mm were prepared to conduct drilling experiments 
according to the Taguchi L 

18
1
2x23 mixed-level orthogonal 

arrays illustrated in Table 1 (with f = feed, vc = cutting 
speed). The bore holes were drilled to a depth of l = 10 mm,

Fig. 1 shows the experiment and measurement setup. The 
drilling process was conducted on a milling machine type 
HERMLE 1202H. The drilling tests were conducted with-
out cooling lubricant. In order to still ensure reliable chip 
removal, the bore holes were not drilled continuously but 
with 5 strokes each to break the chips. The test series with 
a single drill each were divided into 2 different work piece 
samples type A and B, which were prepared accordingly 
for an in- and post-processing measurement. The machining 
parameters and the bore hole depth were identical for both 
type A and B samples. The boreholes in a certain interval 
as 1, 10, 20, 30, 50, 100, 150, 200, 250, 300, and 350 were 
measured in terms of thrust force Fz, drilling moment Mz, 
cutting edge radius re, roughness Ra and roundness R. Type 
A sample (20 × 20 × 50 mm) was used to record the rela-
tive thrust force Fz and drilling moment Mz. Type A sample 
(20 × 20 × 50 mm) was used to record the relative thrust 
force Fz and drilling moment Mz. Due to its special shape, 

the sample could be clamped in a four-jaw chuck, mounted 
on a piezoelectric dynamometer. The clamped sample was 
aligned with respect to the TCP of the milling machine. Type 
A samples were thus used to drill 4 bore holes each. Thrust 

Table 1  Design of experiment 
(Taguchi L 

18
1
2x23 mixed-level 

orthogonal arrays). Coat: 0 
uncoated, 1 coated, f in mm/rev, 
vc in m/min

Trials Coat f vc Trials Coat f vc

1 0 0.1 30 10 1 0.1 30
2 0 0.1 50 11 1 0.1 50
3 0 0.1 65 12 1 0.1 65
4 0 0.14 30 13 1 0.14 30
5 0 0.14 50 14 1 0.14 50
6 0 0.14 65 15 1 0.14 65
7 0 0.18 30 16 1 0.18 30
8 0 0.18 50 17 1 0.18 50
9 0 0.18 65 18 1 0.18 65

Fig. 1  Experiment setup for drilling operations
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force and drilling moment were measured by using a type 
9372 dynamometer in conjunction with a type 5070 charge 
amplifier (both Kistler AG).

According to its specification, the dynamometer permits 
measurement of relative forces and moments in a radius 
of 20 mm (valid until 2000 kp) around the dynamometer 
center. Type B samples (75 × 200 × 25 mm) were used to 
achieve intervals with a large number of boreholes in order 
to increase tool wear between the individual records of force 
and moment on the type A samples. Analyses of machining 
quality were then conducted on the type B samples, always 
following the last bore hole made on the type A sample. 
A Taylor Hobson TALYROND 252 tester and a Mitutoyo 
C-3200 Formtracer were adopted to measure the borehole 
roundness R and roughness Ra, respectively. The main cut-
ting edge radius re of the drill bit is used to denote the tool 

wear. It was tested by MikroCAD micro-optical 3D scanner. 
The measurement results are illustrated in Table 2.

The results of the exemplary trials 1, 2 and 18 are listed 
in the table above. In trials with uncoated drills, tool break-
age occurred with various parameter combinations, in some 
cases even at low numbers of bore holes. In Table 2 the 
respective bore interval in which the drill broke is marked 
with the letter ‘B’. Although these test series were not con-
sistent, they were taken over into the later model elaboration 
in order to be able to consider the two cases ‘tool fails’ and 
‘tool holds up’ as categorical criteria. Bayesian networks 
use previous knowledge gained from projects, studies and 
research already carried out and apply this to the current 
case by means of probability calculation. The goal of Bayes-
ian networks is it to quantify this knowledge and to use it 
for making predictions by means of probability theory. With 

Table 2  Dataset of experiment Trials Hole no. In-process measure-
ment

Post-process measurement

Fz (N) Mz (Ncm) re ( �m) R ( �m) Ra ( �m)

1 (0 / 0.1 / 30) (Broken in the 21st hole) 1 1350 26 4.1 23.6 4.58
10 1400 29 7.03 27.85 5.73
30 B B B B B
50 – – – – –
100 – – – – –
150 – – – – –
200 – – – – –
250 – – – – –
300 – – – – –
350 – – – – –

2 (0 / 0.1 / 50) (Broken in the 34th hole) 1 1483 31 2.85 20.83 2.67
10 1321 24.3 10 9.49 1.16
30 1366.9 24.2 25.89 11 0.98
50 B B B B B
100 – – – – –
150 – – – – –
200 – – – – –
250 – – – – –
300 – – – – –
350 – – – – –

3 ...17 ... ... ... ... ... ...
18 (1 / 0.18 / 65) (350 holes are drilled) 1 1634.9 33.6 21.9 16.43 1.94

10 1516.3 33.3 13.8 16.21 2.23
30 1395.2 31 13.3 16.88 1.92
50 1372.5 37.6 10.45 16.18 2.43
100 1376 38 19.41 17.32 2.34
150 1343.4 36.7 14.85 16.24 2.52
200 1209 34.9 26.87 16.16 2.28
250 1249 35.2 29.52 14.34 1.56
300 1402 37.9 30.12 15.49 1.84
350 1382.1 35 17.8 15.13 1.71
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Bayesian networks it is possible to draw conclusions on the 
basis of uncertain knowledge. The preliminary or empiri-
cal knowledge (a posteriori knowledge) of the optimization 
approach presented here consists of knowledge about the 
qualitative correlations between the influencing input vari-
ables and the dependent output variables of a drilling pro-
cess. The input variables include, for example, tool proper-
ties, machining parameters and tool wear. Output variables 
are mechanical loads, criteria of machining quality but also 
the respective tool condition. Tool wear plays a special role 
here because it is both an influencing input variable and 
a dependent output variable. An example of a case-related 
increase in experience is the understanding that the borehole 
intervals, which are set narrower at the beginning of a test 
series, can be set wider with an increasing number of bore 
holes without losing essential information about the devel-
opment of the output variables.

3.2  Thrust force and drilling moment analysis

Regarding the mechanical loads shown in Fig. 2 there are 
five opreration steps during the drilling of each borehole 
according to a certain chip removal. Since the drilling pro-
cess from 2nd to 4th feed are more stable, the mean thrust 
force Fz and drilling moment Mz were calculated with the 
measurement data from the 2nd to 4th feed.

Fig. 3 shows the thrust force variations depending on the 
borehole number under variable feed f and cutting speed 
vc. Since the uncoated drills were broken after drilling only 
several dozens of boreholes, the force data are much less 
than that of the coated one. It can be seen from Fig. 3a that 
the feed force of uncoated drill bits is significantly higher 
than that of the coated one, and the force value rising with 
increasing of the borehole number, which is due to the dras-
tic tool wear of the uncoated drill bits under the higher fric-
tion heat. For the coated one, TiAlN coating can offer high resist-

ance to heat and oxidation, hence the cutting edge radius 
is reduced. It also indicates that the force value gets higher 
with increasing of feed amount, but it is less sensitive to the 
cutting speed for the coated drill bits, as shown in Fig. 3b. It 
can be seen that the borehole roughness values of the coated 
drills are generally higher than that of the uncoated ones. For 
the coated drills, the roughness values of the first few dozen 
boreholes are higher due to the resitance of the coating. 
With the hole drilling continuing, the situation of coating 
becomes stable and the borehole roughness also decreases 
to an approximate value.

3.3  Roughness, roundness and cutting edge radius 
analysis

Figure 4 illustrates the bore hole roughness variations 
depending on the borehole number under different feed 

Fig. 2  The thrust force Fz and drilling moment Mz measurement 
result of one borehole

Fig. 3  Thrust force Fz variations depending on the borehole number 
under different feed f and cutting speed vc
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amount f and cutting speed vc. With Bayesian networks, 
bidirectional reasoning is possible under uncertainty, i.e. 
under uncertain information. The tool wear represents 
a variable that is both influencing and dependent in the 
model to be created later. In order to be able to consider 
the use of uncertain information, the wear-related cut-
ting edge radius re was used as a criterion instead of the 
the commonly considered flank wear. The mean cutting 
edge radius is the average value of a total of 12 individual 
measurements (6 measurements each along the two cutting 
edges of the tool). For this purpose, 2 individual measure-
ments ( spacing 0.5 mm) were taken at a distance of 1 mm, 
3 mm and 5 mm from each cutting edge.

The cutting edge radius variations with borehole number 
under different feed amount and cutting speed are indicated 
in Fig. 5. It is observed that the cutting edge radius of the 
new coated drills is larger than the used one due to the shape 

of the coating at the cutting edge, as shown by the 3D pro-
files in Table 3.

With the hole drilling continuing, the cutting edge radius 
of the coated drills decreases firstly and then maintain at a 

Fig. 4  Borehole roughness Ra variations with bore hole number 
under different f and vc

Fig. 5  Cutting edge radius variations with borehole number under 
different f and vc

Table 3  Tool wear shapes with borehole numbers
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certain value under the protection of TiAlN coating. The 
value of cutting edge radius of the new uncoated drill bits 
is much smaller than the new coated one, but it increases 
rapidly because of the severe wear during the hole drilling, 
as illustrated in Table 3. The unsteady curves represent data 
based on uncertain information.

4  Bayesian network of cutting edge radius, 
roundness and roughness

4.1  Bayesian theory

A Bayesian network is a joint distribution over a set of 
random (discrete) variables X = X

1
, ⋅ ⋅ ⋅Xi, ⋅ ⋅ ⋅Xn from the 

domain, which is represented by a directed acyclic graph 
along with a conditional probability table (CPT) for each 
node Xi, defining P(Xi

|
|parent(Xi)) . The DAG and CPT of 

BN are obtained through structure learning and parameter 
learning. Bayesian Search (BS) algorithm is utilized to train 
the network’s structure. This algorithm does a Hill Climbing 
(HC) search starting with a random network structure, then 
a series of models is generated in forms of changing arcs 
step by step according to a search procedure. Afterwards, 
the score for all arc changes on this network is evaluated 
according to the Bayesian Dirichlet equivalence (BDe) scor-
ing metric and the one that has the maximum BDe score 
value is chosen. This process is continued until no more arc 
changes increase the score. The probability parameters are 
learned using the Expectations Maximum (EM) algorithm. 
It initializes �(0) randomly or heuristically according to any 
prior knowledge, iteratively improves the estimate of the 
probability � by alternating between computing a conditional 
expectation and solving a maximization problem and stops 
when the likelihood L(�) converges.

4.2  Qualitative model

The acyclic directed graph of a Bayesian network consists 
of independent root nodes and dependent non-root nodes 
both representing probabilistically distributed variables. 
The nodes are connected by arcs, which in turn represent 

the conditional dependencies. In the present study, the tool 
property coated/non-coated and the two setting variables 
feed rate f and cutting speed vc were implemented as inde-
pendent root nodes whereas the thrust force Fz was selected 
as an exclusively dependent output variable, which therefore 
only has incoming arcs. Since the achievable number of bore 
holes depends very clearly on whether the tool is coated 
or not, the node which reprents the number of holes only 
depends on the coating, but influences itself the cutting edge 
radius re and, via this, also the other output variables rough-
ness Ra and roundness R. The thrust force Fz and drilling 
moment Mz also depend on the three root nodes. In the pre-
sent work the influence of the thrust force on the roughness 
was additionally examined and implemented by an according 
arc. The nodes representing thrust force and drilling moment 
are independent of each other. In addition to the categorical 
criterion of the ‘coating’ node (yes/no), all other nodes are 
quantifiable, numerical criteria that must be appropriately 
discretized before they can be applied to a Bayesian network

4.3  Model training and validation

The elaborated qualitative model, based on existing previous 
experience and additional information from the machining 
tests, now has to be transferred to a Bayesian network. To 
discretize the variables feed rate f and cutting speed vc, the 
three varied values are taken from the machining tests and 
transfered to the according root nodes. These and all other 
nodes were implemented as so-called chance nodes. The 
available data for all non-root nodes were discretised into 5 
ranges each, in order not to detail them too much compared 
to the input variables, but nevertheless to resolve them suf-
ficiently for a probability mapping. The minima and maxima 
of the resulting data ranges are shown for individual machin-
ing parameters and evaluation criteria in Table 4.

This discretization was performed using the k-Means 
algorithm according to the Lloyd approach, in which the 
data sets were assigned to 5 randomly selected mean val-
ues according to their variance and then the mean val-
ues were iteratively recalculated. The Bayesian network 
of hole drilling is established in the commercial software 
tool ‘GeNIe’, which is developed by the Decision Systems 

Table 4  Discrete Variables State Hole no. Processing measurement Post-process measurement/ prediction 
variables

Fz (N) Mz (Nm) r ( �m) R ( �m) Ra ( �m)

1 [0, 35) B B B B B
2 [35, 50) [0, 1245) [0, 28) [0, 13) [0, 12) [0, 1.6)
3 [50, 150) [1245, 1600) [28, 38) [13, 21) [12, 17) [1.6, 3.2)
4 [150, 250) [1600, 2500) [38, 53) [21, 29) [17, 24) [3.2, 6.3)
5 ≥ 250 ≥ 2500 ≥ 53 ≥ 29 ≥ 24 ≥ 6.3
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Laboratory of the University of Pittsburgh [25] and distrib-
uted by BayesFusion, LLC. The 10-fold cross-validation 
method [18–20] is selected to validate the performance of 
the BN. After the validation, the confusion matrixes and 
corresponding accuracy results of the predictive variables 
are generated as illustrated in Tables 5, 6 and 7.

Fig. 6 shows the establishment of the Bayesian network. 
The expert knowledge can be referred and defined by using 
‘GeNIe’ in advance, which can avoid the network structure 
going against common sense and make the obtained net-
work structure more reasonable. The discrete experimen-
tal datasets are input. After the structure and parameter 
learning, some new relationships between the variables 
are discovered and the Bayesian network of hole drilling is 
established. The average accuracy of the Bayesian network 
is 89 %, and the prediction accuracy of hole roughness, 
hole roundness and cutting edge radius are 94.8 %, 83.7 % 
and 88.5 %, respectively. It is found that accuracy for the 
state B (Broken) is best with more than 98.6% in terms of 
hole roughness, hole roundness and cutting edge radius. 
However, there are greater confusion with certain state, 
that is, state (3.2, 6.3] of hole roughness, state (17, 24] 
of hole roundness and state (0, 13] of cutting edge radius, 
there accuracy are 42.1 %, 40 % and 70.2 %, respectively. 
This confusion may be due to the number of datasets, num-
ber of these states and a limited quantity of training data 
belonging to them, for example, some singular measure-
ment data. In addition, the datasets that locate nearby the 
discrete boundary also influence the accuracy.

4.4  Case studies

After obtaining the Bayesian network with the probability 
parameters of each state of the variables, the prediction 
and drilling parameter optimization can be conducted by 
use of the network.

4.4.1  Prediction of cutting edge radius, hole roundness 
and roughness

Considering certain drilling parameters, such as fixed coat-
ing status, borehole number, feed amount and cutting speed, 
the cutting edge radius, borehole roundness and roughness 
are predicted. Fig. 7 shows the prediction results of two 
cases. Here, the state ‘s1_below_0’ of the variables such 
as cutting edge radius re, roundness R and roughness Ra 
represents that the drill bit is broken. It can be concluded 
from Fig. 7a that for coated drill bits, feed amount f  =  0.18 
mm/rev, cutting speed vc = 30 m/min and hole number > 
250, the network computes the following predictions: cut-
ting edge radius in state ‘s5_29_up’ is with a probability of 
60% , roundness in both state ‘s2_0_12’ and ‘s3_12_17’ are 
with a probability of 33 %, roughness in state ‘s3_1_3’ is 
with a probability of 83 %. When feed amount decreases to 
f = 0.10 mm/rev and cutting speed increases to vc = 65 m/
min, as shown in Fig. 7b, the network makes the correspond-
ing predictions: 60 % probability of cutting edge radius is 
achieved in state ‘s3_13_21’, 41 % probability of round-
ness is achieved in state ‘s3_12_17’ and 85 % probability of 
roughness in state ‘s3_1_3’.

Table 5  Confusion matrix of Ra (94.8 % accuracy)

Ra states B [0, 1.6) [1.6, 3.2) [3.2, 6.3) ≥6.3

B 295 0 0 0 0
(100%)

[0, 1.6) 0 71 14 0 0
(83.5%)

[1.6, 3.2) 1 9 260 0 0
(96.3%)

[3.2, 6.3) 0 0 9 8 2
(42.1%)

≥6.3 0 0 0 0 7
(100%)

Table 6  Confusion matrix of R (83.7 % accuracy)

R states B [0, 12) [12, 17) [17, 24) ≥24

B 295 0 0 0 0
(100 %)

[0, 12) 0 54 29 1 0
(64.3 %)

[12, 17) 1 18 166 14 1
(86.5 %)

[17, 24) 0 2 46 34 3
(40 %)

≥24 0 0 0 3 17
(85 %)

Table 7  Confusion matrix of re (88.5 % accuracy)

r e states B [0, 13) [13, 21) [21, 29) ≥29

B 291) 0 0 0 0
(98.6%)

[0, 13) 0 59 21 2 2
(70,2 %)

[13, 21) 0 13 68 4 5
(75, 6%)

[21, 29) 0 3 7 114 7
(87%)

≥29 0 3 2 5 66
(86, 8%)
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4.4.2  Optimization of drilling parameters

Once the required situation of cutting edge radius r e and 
borehole quality have been selected for the certain drill bit 
and hole numbers, the posterior probability of the drilling 
parameters can be obtained.

In Fig. 8a, supposed that we need to drill the hole with a 
small cutting edge radius (tool wear) and a good hole quality, 
that is, roundness R in state ‘s2_0_12, roughness Ra in state 
‘s2_0_1’ and cutting edge radius re in state ‘s2_0_1, the drill 
bit and hole number are selected as ‘state_1’ (coated) and 
‘s5_250_up’, then the network recommends drilling param-
eter f in state ‘s1_0_10’ (0.10 mm/rev) with the posterior 
probability of 70 %, and vc in state ‘s2_50’ (50 m/min) with 
the posterior probability of 42 %. If the value of cutting edge 
radius is greater than 29  � m, that is in state ‘s5_29_up’ 
in Fig. 8b, the probability of parameter f in state ‘s1_010’ 
(0.10 mm/rev) decreases from previous 70– 23 %, and f in 
state ‘s3_018’ (0.18 mm/rev) increases from previous 20 % 
to 46 %. Meanwhile, the probability of parameter vc in state 
‘s1_30’ (30  m/min) increases from previous 19  to 49   and 
vc in state ‘s3_65’ (65 m/min) decreases from previous 38 % 
to 13 %. Hence, it is inferred from the Bayesian network that 
it is possible for the coated drill bit to reduce the cutting 
edge radius with the configuration of a smaller feed amount 
and a higher cutting speed.

5  Conclusion

In this paper, a Bayesian network for drilling of 42CrMo 
steel is investigated in order to to predict cutting edge 
radius of drill bits, hole roundness and roughness. Several 
drill experiments under different drilling parameters were 
conducted according to the Taguchi orthogonal arrays. The 
variables of thrust force and moment, cutting edge radius, 
hole roundness and roughness were measured, and the 
change rules of these variables were analyzed. Afterwards, 
the Bayesian network of hole drilling was established uti-
lizing relevant learning algorithms in software ‘GeNIe’. 
The 10-fold cross-validation method was adapted to verify 
the network’s performance. It is indicated that the average 
accuracy of the predictive variables is 89 %. Finally, the 
prediction and drilling parameter optimization are conducted 
with advantages of forward and backward inference of BN. 
This research provides a new approach for the multivari-
able prediction and parameter optimization in the drilling 
process. The future work will concentrate on improving the 
Bayesian network of drilling. More drilling experiments will 
be conducted to enlarge the datasets. Some other relative 
feature variables like material property, tool geometry, lubri-
cation and drilling temperature will be taken into account to 
enhance the prediction accuracy and function of the network.

Fig. 6  Qualitative model and established Bayesian network
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