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Abstract
This paper aims to compare the performances of modified confidence intervals based on robust scale estimators with clas-
sical confidence interval for process capability index (Cp) when the process has a non-normal distribution. The estimated 
coverage probability and the average width of the confidence intervals were obtained by a Monte-Carlo simulation under 
different scenarios. Simulation results showed that the modified confidence intervals performed well in terms of coverage 
probability and average width for all cases. Two real-life numerical examples from industry are analyzed to illustrate the 
performance and the implementation of the classical and modified confidence intervals for the process capability index (Cp) 
which also supported the results of the simulation study to some extent.

Keywords  Confidence interval · Coverage probability · Average width · Process capability index · Quality engineering · 
Statistical process control

1  Introduction

Capability indices are widely used in practice to evaluate the 
performance of a process and the information about the pro-
cess is used to improve the capability [20–22]. As capability 
indices can only be estimated in most of the cases, confidence 
intervals can be used to predict a range in which the capabil-
ity index lies with high probability. Therefore, industry and 

science benefit from trustable confidence intervals for the 
capability indices. In recent years, process capability indi-
ces (PCIs) have drawn much attention in industries. Process 
capability (PC) analysis is a method of combining the statisti-
cal tools to find out how well a given process meets a set of 
specification limits [25]. The purpose of the process capability 
analysis is to find the effect of time on both the average and 
the spread of the process. Before evaluating the process capa-
bility, it has to be shown that the process is under the statisti-
cal process control [33]. Although there are several process 
capability indices such as, Cp, Cpk, Cpm and Cpmk, the most 
commonly applied process capability index is Cp [21, 36]. In 
this paper, we focus only on the widely used process capabil-
ity index, Cp, defined by Juran [20] and Kane [21], as follows:

where LSL and USL are the lower and upper specification 
limits, respectively and σ is the process standard deviation. 
The numerator gives the size of the range over which the 
process measurements is allowed to vary. The denominator 
gives the size of the range over which the process actually 
varies [23]. It follows that evaluation of the process capabil-
ity can be based on the following three criteria: (i) variability 
in process; (ii) degree of departure of the process mean from 
the target value, and (iii) location of the process mean in the 

(1)Cp =
USL − LSL
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interval (LSL, USL). The process capability index, Cp, takes 
into account criterion (i) only, as it depends on spread for 
given specification limits. The larger a capability index value 
for a process is, the more capable the process. Most experts 
recommended different values for existing and new processes. 
The quality conditions and the corresponding Cp values are 
given by Chao and Lin [11] and are reported in Table 1.

The process capability index Cp greatly depends on the 
assumption that the underlying quality characteristic meas-
urements are independent and normally distributed. How-
ever, the assumption of normal distribution is not always 
valid and thus the non-normal distribution process is also 
being practiced in an industrial environment. Therefore, the 
classic PCI may not always be available [24, 27, 30]. When 
the population standard deviation (σ) in Eq. (1) is unknown, 
it should be estimated from the sample values. Thus, the 
point estimate of Cp is given as follows:

where S is the sample standard deviation. When normal 
distribution assumption is not assured or when there are 
extreme values in the data, robust estimators may be used 
[22]. An estimator, is said to be robust if it is fully efficient 
or nearly so for an assumed distribution but maintains high 
efficiency for plausible alternatives, for example normal dis-
tribution [3, 32]. Most known for robust measures are the 
pseudo-standard deviation (Sps), the average absolute devia-
tion from the sample median (AADM), the median absolute 
deviation from the sample median (MAD), the Gini’s mean 
difference (GMD) and the Rousseeuw and Croux [29] esti-
mators, Sn and Qn. There are studies on the estimation of 
σ that show better performance of robust estimators in the 
literature [1, 3, 4, 26]. For estimating the population mean 
with a confidence interval, the coverage probability (CP) 
is closer to the nominal confidence level when the data are 
normally distributed but far from nominal level when data 
are from the skewed distribution [5–7, 37].

Since the normality assumption about the data is not 
guaranteed or may not be feasible with some real life 
data, in fact, it would be interesting to construct some 

(2)Ĉp =
USL − LSL

6S

confidence intervals (CIs) for Cp based on various robust 
scale estimators.

The rest of this paper is organized as follows: Sect. 2 pre-
sent the classical and proposed modified CIs for the classical 
PCI. A comprehensive Monte-Carlo simulation study has 
been conducted to compare the performance of confidence 
intervals in Sect. 3. In Sect. 4, two real-life data sets from 
the industry sector are presented and analyzed to illustrate 
the performance and the implementation of the considered 
CIs for Cp. Finally, some concluding remarks are given in 
Sect. 5.

2 � The confidence interval (CI) and modified 
confidence intervals for Cp

Suppose that X1, X2,…,Xn are from a normal distri-
bution  with mean μ and standard deviation σ, then a 
(1 − �) 100% confidence interval for the classical process 
capability index, Cp, is constructed by using a pivotal quan-
tity: Q = (n − 1) S2

/
�2 and is given as follows:

where LCL = lower confidence limit and UCL = upper con-
fidence limit, �2(

�

2
, n−1

) and �2(
1−

�

2
, n−1

) are the “α/2 and 

1 − α/2” quantiles of the central Chi squared distribution 
with n − 1 degrees of freedom respectively. The confidence 
interval for Cp shown above is to be used for normal distribu-
tion data. The underlying process distributions are non-nor-
mal in many industrial processes (e.g., Chen and Pearn [13], 
Bittanti and Moiraghi [9], Wu and Messimer [35], Chang 
et al. [10], Ding [15]). For a given nominal level of the con-
fidence interval, a high coverage probability is desirable [7]. 
However, for a non-normal distribution, the coverage prob-
ability of the confidence interval is quite low (Balamurali 
and Kalyanasundaram [8]).

The main goal of this paper is to obtain some modified 
confidence intervals for Cp by comparing the performance 
of confidence intervals based on the robust scale estimators 
as an alternative to the sample standard deviation (S) instead 
of bootstrap method. In this study, we proposed six modi-
fied confidence intervals for estimating the classical process 
capability index, Cp, for non-normal distributions based on 
the robust methods. Since the process capability index, Cp 
greatly depends on the population standard deviation (σ), we 

LCL =
USL − LSL

6S
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Table 1   Quality conditions and Cp values for centered process

Quality condition Cp values

Supper excellent Cp ≥ 2.00
Excellent 1.67 ≤ Cp < 2.00
Satisfactory 1.33 ≤ Cp < 1.67
Capable 1.00 ≤ Cp < 1.33
Inadequate 0.67 ≤ Cp < 1.00
Poor Cp < 0.67
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want to estimate it by robust method so that the proposed 
confidence intervals can be used when data are not from 
normal distribution. Following Wooluru et al. [34], we will 
propose some confidence intervals for the process capability 
index, Cp, in this section follow.

2.1 � CI based on Sps

The Sps is defined as Sps =
IQR

1.349
 , where IQR stands for inter-

quartile range. Thus, the (1 − α) 100% confidence interval 
for the classical process capability index, Cp, based on Sps 
is given as follows:

where �2(
�

2
, n−1

) and �2(
1−

�

2
, n−1

) are α/2th and 1 − α/2th quin-

tiles of the Chi squared distribution with n − 1 degrees of 
freedom.

2.2 � CI based on AADM

The average absolute deviation from the sample median 
(AADM) is a robust scale estimator that measures the 
deviation of the data from the sample median, MD, 
which is less influenced by outliers. It is defined as 
AADM =

√
�∕ 2

n

∑n

i=1
��Xi −MD�� . The median is best 

known for being insensitive to outliers and has a maximal 
50% breakdown point [29]. For main properties of MD, 
see for example Abu-Shawiesh and Kibria [2]. As stated 
in Gastwirth [17], AADM is a consistent estimate of σ and 
is asymptotically normally distributed. The (1 − α) 100% 
confidence interval for the classical process capability index, 
Cp, based on AADM is given as follows:

where �2(
�

2
, n−1

) and �2(
1−

�

2
, n−1

) are α/2th and 1 − α/2th quin-

tiles of the Chi squared distribution with n − 1 degrees of 
freedom.
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2.3 � CI based on MAD

The mean absolute deviation from the sample median (MAD) 
was first introduced by Hampel [19] and is widely used in var-
ious applications as an alternative to S. The MAD is defined 
asMAD = 1.4826MD

{ ||Xi −MD||
}
, i = 1, 2, 3,… , n . The 

1.4826 factor given in MAD adjusts the scale for maximum 
efficiency when the data comes from a normal distribution. 
The (1 − �) 100% confidence interval for the classical pro-
cess capability index, Cp, based on MAD is given as follows:

where �2(
�

2
, n−1

) and �2(
1−

�

2
, n−1

) are α/2th and 1 − α/2th quin-

tiles of the Chi squared distribution with n − 1 degrees of 
freedom.

2.4 � CI based on GMD

The Gini’s mean difference (GMD) was developed by Gini 
[16] and defined as follows:

Gini’s mean difference may be more appropriate in case 
of a small departure from normality as it has an asymptotic 
relative efficiency 98% at the normal distribution [31]. It is 
more efficient than S if the normal distribution is contami-
nated by a small fraction [14, 18]. The (1 − �) 100% con-
fidence interval for the classical process capability index, 
Cp, based on GMD is given as follows:

where �2(
�

2
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2
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) are α/2th and 1 − α/2th quin-

tiles of the Chi squared distribution with n − 1 degrees of 
freedom.
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2.5 � CI based on Sn

The Sn estimator was proposed by Rousseeuw and Croux 
[29] and is defined as the median of the n medians of the 
absolute differences between values. The Sn estimator can 
be defined as follows:

A (1 − �) 100% confidence interval for the classical 
process capability index, Cp, based on Sn is given as 
follows:

where �2(
�

2
, n−1

) and �2(
1−

�

2
, n−1

) are α/2th and 1 − α/2th quin-

tiles of the Chi squared distribution with n − 1 degrees of 
freedom.

2.6 � CI based on Qn

The Qn estimator was proposed by Rousseeuw and Croux 
[29], which is also a powerful alternative to the MAD. It 
is defined as follows:

where g =

(
h

2

)
=

h (h−1)

2
 , h =

[
n

2

]
+ 1 and 

[
n

2

]
 is the integer 

part of the fraction n
2
 . Here the symbol (.) represents the 

combination. The Qn estimator is 2.2219 times the g-th order 

statistic of the 
(
n

2

)
 distances between data points. A 

(1 − �) 100% confidence interval for the classical process 
capability index, Cp, based on Qn is given as follows:

Sn = 1.1926 MDi

{
MDj

|||Xi − Xj
|||
}
,

i = 1, 2, 3,… , n, j = 1, 2, 3,… , n
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Qn = 2.2219
{ |||Xi − Xj

|||; i < j
}

(g)
,

i = 1, 2, 3,… , n; j = 1, 2, 3, … , n

LCL =
USL − LSL

6Qn
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where �2(
�

2
, n−1

) and �2(
1−

�

2
, n−1

) are α/2th and 1 − α/2th quin-

tiles of a Chi squared distribution with n − 1 degrees of 
freedom.

3 � Simulation study

In this section, a Monte-Carlo simulation study is conducted 
using the statistical software MATLAB to compare perfor-
mances of the classical and proposed confidence intervals 
given in this paper. Since, our obejctive is to find some good 
intervals for non-normal cases, we consider normal, t, Chi 
square, Exponnetial, Gamma, Lognorma and Beta distribi-
tions, which cover a wide range of non-normal distributions. 
The simulation study was designed as follows:

	 (i)	 Normal distribution, N(50, 1)
	 (ii)	 Student-t distribution, t(5).
	 (iii)	 Chi Square distribution, �2

(1)
.

	 (iv)	 Exponential distribution, Exp (2).
	 (v)	 Gamma distribution, G(1, 6).
	 (vi)	 Lognormal distribution, LN(0, 1).
	(vii)	 Beta distributions, Beta (3, 3) and Beta (1, 10).

The number of simulation replications was M = 50,000 for 
each case. Random samples were generated from each of the 
above mentioned distributions with Cp = 1.0 and samples sizes 
n = 10, 25, 50 and 100. Coverage probability (CP) and average 
width (AW) of the selected confidence intervals were meas-
ured for each case. The most common 95% confidence inter-
val (α = 0.05) is used for measuring coverage probability and 
average width of the confidence intervals. When (α = 0.05), 
an interval has perfect performance in terms of coverage prob-
ability that will capture the true process capability index, Cp, 
between the lower and upper limits 95% of the times. The 
estimated coverage probability and estimated average width 
for this simulation study are respectively given as:

where #
(
L ≤ Cp ≤ U

)
 denotes the number of simulation runs 

for which Cp lies within confidence interval. The simulated 
coverage probabilities and average widths for each of the dis-
tributions described above are presented in Tables 2 and  3, 
respectively. For clear understanding, coverage probabilities 
and average widths for considered sample sizes are presented 
in Figs. 1a, 2b, respectively. In the Table 2, we have reported 
coverage probabilities for selected confidence intervals of 
Cp for the various distributions and also for all considered 
values of n. For clear understanding, in Fig. 1a, b, we have 
presented coverage probabilities and average widths values 

ĈP =
#
�
L ≤ Cp ≤ U

�
M

and ÂW =

∑M

i=1

�
Ui − Li

�
M
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for sample size n = 10 to observe effects on all considered 
distributions. Our observations from Fig. 1a are follows:    

	 (i)	 Coverage probability for the classical interval, the 
AADM interval, the Sn interval and the Qn interval 
are close to the nominal level 0.95, while others are 
not when data are generated from the distributions 
for skewness 0.

	 (ii)	 Coverage probability for the classical interval, the 
AADM interval and the MAD interval are close to 
the nominal level 0.95 compared to other consid-
ered intervals when data are generated from the Chi 
square distribution with df 1 and skewness 2.8284.

	 (iii)	 Coverage probability only for the GMD interval is 
close to the nominal level 0.95 compared to other 

considered intervals when data are generated from 
exponential distribution for skewness 2.

	 (iv)	 Coverage probability only for the GMD interval is 
very close to the nominal level 0.95 compared to 
other considered intervals when data are generated 
from the gamma distribution for skewness 0.8165.

	 (v)	 Coverage probability for the classical interval, the 
AADM interval and the GMD interval is close to 
the nominal level 0.95 compared to other considered 
intervals when data are generated from the lognormal 
distribution for skewness 8.1074. It is very interest-
ing to note that the GMD confidence interval per-
formed best compared to other intervals.

	 (vi)	 Coverage probability for the classical interval, the 
AADM interval, the GMD interval, the Sn interval 

Table 2   Estimated coverage 
probabilites of 95% CI for 
Cp = 1.00

Distribution n CP for Cp

Existing and proposed methods

CI CISps CIAADM CIMAD CIGMD CISn CIQn

N(50,1) 10 0.9440 0.8444 0.9198 0.8100 0.9988 0.9080 0.9126
25 0.9484 0.8460 0.9244 0.8192 0.9968 0.9168 0.9258
50 0.9506 0.8550 0.9282 0.8266 0.9906 0.9174 0.9266

100 0.9500 0.8526 0.9246 0.8342 0.9808 0.9048 0.9276
t(5) 10 0.9704 0.8450 0.9264 0.8160 1.0000 0.9146 0.9234

25 0.9626 0.8592 0.9366 0.8216 0.9974 0.9160 0.9260
50 0.9594 0.8600 0.9428 0.8336 0.9934 0.9190 0.9330

100 0.9558 0.8604 0.9526 0.8400 0.9836 0.9234 0.9484
�2

(1)
10 0.9066 0.7554 0.8538 0.6944 0.9946 0.7474 0.7444
25 0.9088 0.7758 0.8656 0.7290 0.9872 0.8048 0.8066
50 0.9188 0.8096 0.8828 0.7576 0.9796 0.8426 0.8596

100 0.9234 0.8144 0.8896 0.7656 0.9686 0.8730 0.8796
Exp(2) 10 0.7846 0.2708 0.4002 0.2490 0.8510 0.3416 0.2322

25 0.7850 0.5484 0.6390 0.3292 0.8510 0.3622 0.2458
50 0.7860 0.5650 0.6492 0.3434 0.8608 0.3680 0.2566

100 0.8014 0.6768 0.7352 0.5208 0.8686 0.6096 0.5934
Gamma(1,6) 10 0.9002 0.7244 0.8326 0.6464 0.9616 0.6762 0.6490

25 0.9028 0.7564 0.8494 0.6904 0.9784 0.7644 0.7492
50 0.9068 0.7896 0.8624 0.7188 0.9836 0.8096 0.8282

100 0.9116 0.8162 0.8728 0.7528 0.9952 0.8598 0.8596
LN(0,1) 10 0.9364 0.8128 0.9100 0.4970 0.9618 0.4976 0.3574

25 0.9742 0.8286 0.9482 0.5716 0.9868 0.6024 0.5258
50 0.9970 0.8318 0.9846 0.6342 0.9982 0.6826 0.6548

100 0.9994 0.8736 0.9966 0.6862 1.0000 0.7636 0.7866
Beta(3,3) 10 0.9696 0.8972 0.9500 0.8590 0.9874 0.9288 0.9384

25 0.9740 0.9274 0.9626 0.8992 0.9960 0.9634 0.9624
50 0.9764 0.9444 0.9734 0.9322 0.9994 0.9726 0.9776

100 0.9808 0.9688 0.9848 0.9636 1.0000 0.9872 0.9898
Beta(1,10) 10 0.8760 0.6886 0.7358 0.4060 0.9404 0.3904 0.4932

25 0.8774 0.7382 0.7876 0.5376 0.9480 0.5430 0.6134
50 0.8810 0.7678 0.8160 0.5974 0.9614 0.6538 0.7352

100 0.8928 0.7812 0.8482 0.6628 0.9694 0.7496 0.9440
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and the Qn interval are very close to the nominal level 
0.95 compared to other considered intervals when data 
are generated from the Beta (3,3) distribution for skew-
ness 0. When data are generated from the Beta (1, 10) 
distribution for skewness 1.5170, it is noted that only 
the GMD interval has coverage probability very close 
to the nominal value 0.95 compared to other intervals.

Figure 1b shows that AWs for various confidence inter-
vals and distributions for small sample size n = 10. From 
Fig. 1b, we noted the following performances:

	 (i)	 The Qn interval has the lowest average width com-
pared to other intervals, followed by the Sn interval, 

the classical interval and so on when random samples 
were generated from the N(50, 1) distribution.

	 (ii)	 The Sn interval has the lowest average width com-
pared to other intervals, followed by the Qn interval, 
the classical interval and so on when random samples 
were generated from the t(5) distribution.

	 (iii)	 The GMD interval has the lowest average width com-
pared to other intervals, followed by the Qn interval, 
the classical interval and so on when random samples 
were generated from the �2

(1)
 distribution.

	 (iv)	 The GMD interval has the lowest average width com-
pared to other intervals, followed by the classical 
interval, the AADM interval and so on when random 
samples were generated from the exponential distri-

Table 3   Estimated average 
widths of 95% CI for Cp = 1.00

Distribution n AW for Cp

Existing and proposed methods

CI CISps CIAADM CIMAD CIGMD CISn CIQn

N(50,1) 10 0.9875 1.0914 1.0455 1.1701 0.8524 0.9887 0.7951
25 0.5797 0.5963 0.5945 0.6155 0.5085 0.5747 0.7660
50 0.4010 0.4075 0.4061 0.4125 0.3537 0.3983 0.5725

100 0.2804 0.2829 0.2822 0.2844 0.2479 0.2792 0.2659
t(5) 10 0.9785 1.0831 1.0385 1.0385 1.1565 0.8448 0.9819

25 0.5698 0.5940 0.5866 0.6142 0.5009 0.5717 0.5115
50 0.3920 0.4051 0.3989 0.4094 0.3466 0.3931 0.3871

100 0.2747 0.2801 0.2777 0.2819 0.2434 0.2761 0.2583
�2

(1)
10 1.0264 1.1436 1.0951 1.2505 0.8926 1.0688 0.9371
25 0.5881 0.6198 0.6126 0.6497 0.5234 0.6132 0.6534
50 0.4037 0.4230 0.4172 0.4355 0.3626 0.4236 0.4263

100 0.2816 0.2922 0.2897 0.2993 0.2540 0.2968 0.2910
Exp(2) 10 0.2860 0.3491 0.3266 0.4016 0.2818 0.4032 0.4235

25 0.6242 0.7534 0.7036 0.8916 0.5942 0.8600 0.8481
50 0.6203 0.7448 0.6984 0.8837 0.5898 0.8544 0.7469

100 1.1563 1.3997 1.2836 1.7196 1.0421 1.5187 0.8966
Gamma(1,6) 10 0.2598 0.2892 0.2775 0.3186 0.2262 0.2727 0.2412

25 0.1476 0.1572 0.1547 0.1665 0.1321 0.1572 0.1430
50 0.1012 0.1071 0.1053 0.1110 0.0915 0.1080 0.0976

100 0.0702 0.0738 0.0729 0.0761 0.0638 0.0756 0.0773
LN(0,1) 10 0.7462 1.0777 0.8688 1.3612 0.6915 1.1903 0.8865

25 0.3667 0.5719 0.4568 0.7088 0.3733 0.6783 0.4326
50 0.2262 0.3845 0.2985 0.4695 0.2450 0.4614 0.6291

100 0.1481 0.2630 0.2041 0.3205 0.1679 0.3195 0.3755
Beta(3,3) 10 0.9687 1.0006 1.0073 1.0800 0.8310 0.9259 1.9185

25 0.5734 0.5410 0.5709 0.5588 0.4974 0.5360 0.5332
50 0.3980 0.3697 0.3903 0.3747 0.3464 0.3726 0.4034

100 0.2795 0.2565 0.2720 0.2580 0.2437 0.2623 0.2862
Beta(1,10) 10 1.0517 1.1891 1.1423 1.4274 0.9349 1.2567 1.0153

25 0.5963 0.6387 0.6377 0.7319 0.5471 0.7056 0.9441
50 0.4061 0.4301 0.4310 0.4794 0.3767 0.4766 0.6018

100 0.2823 0.2979 0.2990 0.3296 0.2635 0.3306 0.4265
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bution. It is very interesting to note that compared to 
N(50, 1), t(5) and �2

(1)
 distributions, for all intervals 

have small AWs when random samples were taken 
from this non-normal distribution.

	 (v)	 The GMD interval has the lowest average width com-
pared to other intervals, followed by the Qn interval, 
the classical interval and so on when random samples 
were generated from the gamma distribution.

	 (vi)	 The GMD interval has the lowest average width 
compared to other intervals, followed by the clas-
sical interval, the AADM interval and so on when 
random samples were generated from the lognormal 
distribution.

	(viii)	 The GMD interval has the lowest average width com-
pared to other intervals, followed by the Sn interval, 
the classical interval and so on when random samples 

were generated from the Beta (3, 3) distribution. For 
Beta (1, 10) distribution, the GMD interval has the 
lowest average width compared to other intervals, 
followed by the Qn interval, the classical interval and 
so on.

From above discussions, we may conclude that the clas-
sical interval, the AADM interval, the GMD interval, the 
Sn interval and the Qn interval have performed better with 
respect to coverage probability for all considered distribu-
tions. In terms of measure AW, the above-mentioned confi-
dence intervals observed smaller values compared to other 
considered intervals.

Figure 2a, b present CP and AW values for sample size 
n = 25 to see influences on all selected distributions. We 
observed the following:
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	 (i)	 Coverage probability of all intervals are closer to 
the nominal level. Among them again the classical 
interval, the AADM interval, the Sn interval and 
the Qn interval have the nominal level close to 0.95 
compared to other considered intervals when data 
are generated from N(50, 1).

	 (ii)	 Coverage probability of classical interval, the AADM 
interval and the MAD interval are closer to the nom-
inal level compared to other considered intervals 
when data are generated from the Chi square distri-
bution.

	 (iii)	 Coverage probability only for the GMD interval is 
closer to the nominal level 0.95 compared to other 
considered intervals when data are generated from 
the exponential distribution.

	 (iv)	 We observed that with increasing size of the random 
samples there is a tendency of increasing coverage 
probability for all selected confidence intervals. 
Among them, only for the GMD interval is very close 
to the nominal level when data are generated from 
the gamma distribution.

	 (v)	 Coverage probability for the classical interval, the 
AADM interval and the GMD interval are more close 
to the nominal level when data are generated from 
the lognormal distribution for skewness 8.1074. It is 
very interesting to note that again the GMD interval 
performed best compared to other intervals.

	 (vi)	 Coverage probability for the classical interval, the 
AADM interval, the GMD interval, the Sn interval 
and the Qn interval are more close to the nominal 
level compared to sample size n = 10, when data 
are generated from the Beta (3, 3) distribution and 
also the Beta (1, 10) distribution.

Figure 2b shows that average widths for various inter-
vals and for various considered distributions for small 
sample size n = 25. We noted that with increasing size of 
the samples, AWs decrease and observed almost same per-
formances, discussed as follows:

	 (i)	 The Qn interval has the lowest average width com-
pared to other intervals, followed by the Sn interval, 
the classical interval and so on when random samples 
were generated from the N(50, 1) distribution.

	 (ii)	 The Sn interval has the lowest average width com-
pared to other intervals, followed by the Qn interval, 
the classical interval and so on when random samples 
were generated from the t(5) distribution.

	 (iii)	 The GMD interval has the lowest average width com-
pared to other intervals, followed by the Qn interval, 
the classical interval and so on when random samples 
were generated from the �2

(1)
 distribution.

	 (iv)	 The GMD interval has the lowest average width com-
pared to other intervals, followed by the classical 
interval, the AADM interval and so on when random 
samples were generated from the exponential distri-
bution. It is very interesting to note that compared to 
N(50, 1), t(5) and �2

(1)
 distributions, for all intervals 

have small AWs when random samples were taken 
from this non-normal distribution.

	 (v)	 The GMD interval has the lowest average width com-
pared to other intervals, followed by the Qn interval, 
the classical interval and so on when random sam-
ples were generated from the gamma distribution. It 
is also very interesting to note that compared to all 
considered distributions, for all intervals observed 
smallest AWs when random samples were taken from 
this non-normal distribution.

	 (vi)	 The GMD interval has the lowest average width 
compared to other intervals, followed by the clas-
sical interval, the AADM interval and so on when 
random samples were generated from the lognormal 
distribution.

	(vii)	 The GMD interval has the lowest average width com-
pared to other intervals, followed by the Sn interval, 
the classical interval and so on when random samples 
were generated from the Beta (3, 3) distribution. For 
Beta (1, 10) distribution, the GMD interval has the 
lowest AW compared to other intervals, followed by 
the Qn interval, the classical interval and so on.

From the above discussions, again we may conclude that 
the classical interval, the AADM interval, the GMD inter-
val, the Sn interval and the Qn interval have performed bet-
ter with respect to coverage probability for all considered 
distributions. In terms of measure AW, we noted again the 
above-mentioned confidence intervals observed smaller val-
ues compared to n = 10 and other confidence intervals.

In Figs. 3a, 4b, we presented coverage probabilities and 
AWs for n = 50 and n = 100 under our simulation flowchart. 
We observed that with increasing samples sizes, coverage 
probabilities are closer to the nominal level compared to 
small sample sizes. The average widths observed smaller 
for large sample sizes compared to small sample sizes for all 
selected confidence intervals and also under all considered 
distributions.

4 � Applications

In this section, two real-life data examples from the industry 
sector are presented to illustrate the implementation and per-
formance of the classical and modified confidence intervals 
for the classical process capability index, Cp.
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4.1 � Example I

The first data set was obtained from Rezaie et al. [28]. Their 
case study involved a manufacturer and supplier of audio-
speaker components. The data represents the weight (in 
grams) of the rubber edge, which is one of the key compo-
nents that reflect the sound quality of drive unit, has been 
studied (Table 4).

The company decided that the process has upper and 
lower specifications at USL = 8.94 g and LSL = 8.46 g. If 
the weight of the rubber edge falls outside the specification 
limits, it is unacceptable. A summary of the location and 
scale statistics values are calculated and given in Table 5. 

The normality has been examined by using the Kolmogo-
rov–Smirnov (K–S) goodness-of-fit test. The histogram, 
density plot, and normal probability plot from the data was 
obtained using Minitab® Release 14 (Minitab Inc., 2012) 
and shown below in Fig. 5. 

As it can be observed, the Kolmogorov–Smirnov (K–S) 
goodness-of-fit test for normality have a p value greater 
than α = 0.05. In addition, the histogram and the normal 
probability plot show a normal distribution. Thus, it may 
be concluded that the sample data can be regarded as taken 
from a normal process. The estimated capability indices, 
the resulting 95% confidence interval and the corresponding 
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Fig. 3   a CP for n = 50; b AW for n = 50
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confidence interval width for all confidence intervals of Cp 
are reported in Table 6.

From Table 6, we observe that the CIGMD interval has the 
smallest width followed by the classical confidence interval, 
CISps and CIAAMD. The CIQn interval has the highest width. 
Both CIMAD and CISn have the shorter widths compared to 
the corresponding interval CIQn. Thus the CIGMD interval 

performs the best in the sense of having smaller width than 
the classical confidence interval and the other modified con-
fidence intervals. In addition, according to the quality condi-
tions for Cp value given in Table 1, we observe from Table 6 
that when S, Sps, AAMD and GMD are used to estimate σ, 
then the process is satisfactory capable of meeting the given 
specifications, but when MAD, Sn and Qn are used to esti-
mate σ, then the process is excellent capable of meeting the 
given specifications. The Qn gives the best value followed 
by MAD and Sn. The results of this example supported the 
simulation study results to some extent. The results showed 
that the process is being capable and the normal distribution 
is adequate for modeling this data.

4.2 � Example II

The second data set was obtained from Chen and Ding [12], 
which represents the inner diameter (in mm) for roller bear-
ing and presented in Table 7.

According to the results, the upper specification limit is 
60.004 mm and lower specification limit is 59.981 mm. A 
summary of location and scale statistics values are given in 
Table 8.

Table 4   The weight (in 
gram) of the rubber edge data 8.63 8.65 8.57 8.57 8.54 8.69 8.63 8.64 8.59 8.61

8.60 8.66 8.65 8.50 8.61 8.61 8.63 8.67 8.54 8.62
8.65 8.58 8.65 8.67 8.67 8.65 8.69 8.66 8.62 8.63
8.59 8.65 8.64 8.64 8.52 8.69 8.66 8.66 8.61 8.55
8.57 8.64 8.63 8.57 8.61 8.59 8.56 8.71 8.53 8.51
8.72 8.58 8.64 8.69 8.64 8.75 8.59 8.61 8.58 8.65
8.73 8.70 8.65 8.56 8.66 8.65 8.66 8.68 8.62 8.54
8.67 8.62 8.54 8.62 8.66 8.56 8.60 8.62 8.61 8.66

Table 5   Summary statistics for the weight of the rubber edge data

Statistics Abbreviation Value

Sample mean X̄ 8.6234
Sample median MD 8.6300
Sample standard deviation S 0.0522
Inter-quartile range IQR 0.0700
Pseudo-standard deviation Sps 0.0519
Average absolute deviation from sample 

median
AAMD 0.0519

Median absolute deviation from sample 
median

MAD 0.0445

Gini’s mean difference GMD 0.0591
Rousseeuw and Croux Sn Sn 0.0477
Rousseeuw and Croux Qn Qn 0.0444
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The normality has been examined by using the Kol-
mogorov–Smirnov (K–S) goodness-of-fit test. The histo-
gram, density plot, and normal probability plot are shown 
in Fig. 6. The Kolmogorov–Smirnov (K–S) goodness-of-fit 
test has a p value less than α = 0.01, which indicates that 
the data do not follow normality assumption. The histo-
gram and the normal probability plot show a non-normal 
distribution. Thus, it may be concluded that the inner 
diameter of roller bearing data can be regarded as taken 
from a non-normal process.

The estimated capability indices, the resulting 95% con-
fidence interval and the corresponding confidence interval 
width for all confidence intervals of Cp are presented in 
Table 9. From Table 9, we observe that the CISps has the 
smallest width followed by the CIQn, CIMAD, CISn, CIAAMD, 
CIGMD and classical confidence interval. The classical con-
fidence interval has the highest width. Also, widths for 
all modified CIs are very close to each other while the 
width for the classical confidence interval is very far from 
other widths and has a large value. Thus all the modi-
fied confidence intervals perform better than the classical 
confidence interval in the sense of having smaller width. 
Thus, according to the quality conditions for the Cp value 
given in Table 1, we observe from Table 9 that all values 
based on S and the other robust estimators are less than 
0.67. However, the Cp value based on S is the largest one 
of them, then the process is poor capable of meeting the 

given specifications. The results are not surprising because 
the data is skewed. The results of this example supported 
the simulation study results to some extent. The results of 
data set under non-normality showed that the process is 
not capable and the normal distribution is not adequate for 
modeling this data.

5 � Conclusions

Most of the standing confidence intervals for Cp (process 
capability index) are based on the confidence interval for the 
standard deviation, which is based on a normal distribution. 
However, the underlying distribution of the observed data 
may or may not be normally distributed. In the presented 
study, we proposed some interval estimators for the classical 
process capability index, Cp, based on some robust estima-
tors for scale parameter. A Monte-Carlo simulation study has 
been conducted to compare the performance of our proposed 
confidence intervals with the classical existing confidence 
interval based on coverage probability and average width. 
Random samples were generated from a variety of sym-
metric and non-symmetric distributions. Two real-life data 

Table 6   The 95% CIs for Cp for the weight rubber edge data

Method Ĉp
CI limits

Lower limit Upper limit Width

CI 1.533 1.294 1.771 0.477
CISps 1.541 1.301 1.781 0.480
CIAAMD 1.541 1.301 1.781 0.480
CIMAD 1.798 1.518 2.077 0.559
CIGMD 1.354 1.143 1.564 0.421
CISn 1.677 1.416 1.938 0.522
CIQn 1.802 1.521 2.082 0.561

Table 7   The inner diameter (in 
mm) for roller bearing data 59.984 59.981 59.981 60.003 59.982 60.005 60.004 59.983 59.981 59.980

60.000 59.998 59.982 59.983 59.981 59.982 59.999 60.001 59.982 59.988
59.995 59.998 59.982 59.983 59.981 59.994 60.002 59.988 59.980 59.982
59.982 59.983 59.981 59.986 59.987 60.001 59.982 60.003 60.001 59.984
59.985 59.979 59.987 59.990 59.998 59.984 59.989 59.999 59.985 60.003
60.004 60.001 60.000 59.982 59.981 59.984 59.998 59.983 59.999 59.987
59.991 59.992 59.992 59.983 59.981 59.996 59.997 60.000 60.000 59.991
60.002 60.001 59.990 59.987 59.982 60.006 59.981 59.982 59.984 59.985
60.003 60.004 59.992 59.991 59.986 59.992 59.991 59.981 59.998 59.985
60.001 59.980 59.993 59.984 59.981 59.984 59.988 59.999 60.000 60.001

Table 8   Summary statistics for inner diameter of roller bearing data

Statistics Abbreviation Value

Sample mean X̄ 59.990
Sample median MD 59.988
Sample standard deviation S 0.0084
Inter-quartile range IQR 0.0170
Pseudo-standard deviation Sps 0.0126
Average absolute deviation from sample 

median
AAMD 0.0093

Median absolute deviation from sample 
median

MAD 0.0096

Gini’s mean difference GMD 0.0092
Rousseeuw and Croux Sn Sn 0.0095
Rousseeuw and Croux Qn Qn 0.0097
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sets have been analyzed which supported the findings of our 
simulation study to some extent. From our study, it may be 
concluded that the classical confidence interval, the AADM 
confidence interval, the GMD confidence interval, the Sn 
confidence interval and the Qn confidence interval have per-
formed very well with respect to high coverage probability 
for all considered distributions. In terms of measure of aver-
age width, the above mentioned confidence intervals also 
performed very well compared to other confidence intervals. 
The findings of this paper are consistent with the results of 
Rousseeuw and Croux [29], Abu-Shawiesh and Kibria [2] 
and Piña-Monarrez et al. [27] among others.

Acknowledgements  Authors are grateful to two anonymous referees 
and editor in chief for their invaluable constructive comments and sug-
gestions, which certainly improved the quality and presentation of the 
paper greatly.
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