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Abstract
Assembly line balancing problems (ALBPs) are among the well-known problems in manufacturing systems that belong 
to NP-hard class of problems. In the literature, there are various metaheuristic methods proposed to solve different models 
of such a problem under various assumptions. This research considers the U-shaped ALBP and proposes a hybrid solution 
method based on grouping evolution strategy algorithm. To develop a competitive approach, two most popular construc-
tive methods of solving ALBP including the ranked positional weight method, and COMSOAL algorithm are modified and 
improved. We investigate the effectiveness of the proposed improvements and evaluate the performance of the proposed 
approach via solving a number of existing problems in the literature and compare the results with some current methods in 
the literature. Computational results indicate that the proposed approach for solving U-shaped ALBP test problems performs 
efficiently and is able to obtain the global optimal solution of the most of high dimensional problems.

Keywords  U-shaped assembly line balancing · Grouping problems · Heuristics · Metaheuristics · Grouping evolution 
strategy

1  Introduction

An assembly line is defined as a number of arranged work-
stations where the components of a particular product are 
attached to each other to make finished goods. Assembly line 
balancing (ALB) is described as changing the arrangement 
of activities or tasks in the workstations upon some specific 
criteria to gain the optimum performance/throughput [22]. 
The fundamental ALB problem can be described mathemati-
cally as follows:

Objective (1) minimizes the number of workstations. 
The first constraint set assigns each task to exactly one sta-
tion. Constraints set (3) forces the precedence relationship 
between tasks. Constraints set (4) considers an upper bound 
on the cycle time of each workstation.

The straight assembly lines are a serial arrangement of 
workstations in a line. The straight and U-shaped layouts 
are two most popular layouts in production and assembly 
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lines. A number of inefficiencies have been addressed in 
the literature on the line flexibility, job monotony and large 
inventories for the straight ALB [3]. After introducing the 
Just-in-Time production system, U-shaped assembly lines 
became more popular. Figure 1a, b, show the examples of 
straight and U-shaped assembly line layouts for eight tasks 
and three workstations, respectively. In U-shaped arrange-
ments, the entrance and discharging points are set to the end 
of U (see the left end of the line in Fig. 1b). This type of 
layout lets the operating personnel work on both fronts in a 
given cycle. The workstations included in both sides of the 
line are called crossover workstations (see the station at the 
left end of Fig. 1b where the personnel is working on both 
task 1 and 8, simultaneously). If the number of crossover 
workstations increases, the flexibility of task-workstation 
combinations increases and consequently, there will be more 
efficient balance by a less number of workstations and oper-
ating personnel [11]. Productivity improvement, reduction 
in work-in-process inventory, space requirement, and lead-
time are the other benefits of U-shaped assembly lines [28].

In the last decades, various studies have been carried out 
to handle large-size U-shaped assembly line balancing prob-
lems (UALBP), mainly when the objective is to reduce the 
number of workstations for a given cycle time [21]. ULINO 
(U-line optimizer), proposed by Scholl and Klein [29] is 
a branch-and-bound procedure that performs a depth-first 
search using bounds and some dominance rules to solve dif-
ferent versions of UALBP. Hwang et al. [18] proposed a 
genetic algorithm solution method to solve a multi-objective 
UALBPs. They considered principles of just-in-time produc-
tion since the UALB systems have more benefits in com-
parison with the straight ALB systems. They tried to mini-
mize the number of workstations and variation of workloads 
simultaneously. Jonnalagedda and Dabade [19] suggested a 
genetic algorithm for solving UALBPs for minimizing cycle 
time and maximizing the line efficiency index under a given 
number of workstations. Combined advantages of parallel 
assembly line system and UALB have been demonstrated by 
Kucukkoc and Zhang [20], where their aim was maximiz-
ing resource utilization. Ogan and Azizoglu [25] proposed 

a mixed integer linear formulation and a branch and bound 
algorithm to solve the UALBPs considering equipment cost 
of assigning the tasks to the workstations. Mukund Nilakan-
tan and Ponnambalam [24] developed an algorithm based 
on particle swarm optimization approach to solve a robotic 
UALBP and illustrated that the efficiency of the UALB is 
better than the straight ALB. Recently, Oksuz et al. [26] 
developed linear and non-linear mathematical formulations 
for UALBPs aiming to maximize the line efficiency index 
and considering labors’ performances. Additionally, they 
proposed two metaheuristic algorithms based on genetic and 
artificial bee colony algorithm in their research.

In division and grouping allocation problems like ALBP 
[9], clustering problem [2], maximally diverse grouping 
problem [5], and graph coloring problem [31], metaheuris-
tic algorithms which work based on group structure, i.e., 
grouping genetic algorithm, are more efficient (Falkenauer 
and Delchambre [6]). Grouping problems are concerned 
with partitioning a set of objects into a collection of dis-
joint subsets such that the union of the subsets constructs 
the whole set of the objects [17]. Grouping problems usu-
ally contain a set of constraints that must be satisfied in the 
task-assignments. It means, not all assignments are accept-
able. Grouping problems include an objective function upon 
a different combination of the groups. Using evolutionary 
algorithms, a group/subgroup must be held as a block in the 
course of search. Based on this fact, researchers have used 
evolutionary algorithms to improve the quality of solving 
grouping problems [16, 17].

Grouping evolution strategy (GES) is a kind of evolu-
tionary algorithm that is proposed for grouping problems. 
Before GES, the grouping genetic algorithm (GGA) was the 
most predominant algorithm for grouping problems which 
uses a particular type of representation (grouping representa-
tion) and operators for grouping problems. For details, the 
interested reader may refer to Falkenauer and Delchambre 
[6]. Introduced by Husseinzadeh Kashan et al. [15], GES 
is compatible with evolution strategy (ES) of Rechenberg 
[27] with this distinction that ES uses Gaussian mutation 
during optimization process whereas GES benefits from a 
novel comparable mutation operator working based on the 
rationale of a two-phase dropping and adding strategy suit-
able for grouping problems (e.g., ALBP) under grouping 
representation. It has been proven that GES has merit for 
solving grouping problems since it owns some unique char-
acteristics that GGA cannot afford. Some successful applica-
tions of GES have been reported on bin packing problem, 
batch processing problem, fuzzy data clustering, parallel 
machine scheduling problem, helicopter routing problem etc 
[1, 9, 14, 16, 17]. Following the successful applications of 
GES on grouping problems and using the Hwang et al. study 
[18], we propose a hybrid method to minimize the number of 
workstations for a given cycle time in the U-shaped ALBP.Fig. 1   Assembly line layouts
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To start GES with a good initial seed solution, we inspire 
from the ranked positional weight (RPW) method [7], for 
generating a feasible assignment of tasks to workstations. In 
this way, to increase the chance of starting GES with a good 
seed and to obtain probably better results as initial solutions 
from the objective function point of view, the modified ver-
sion of RPW method named Revised-RPW is developed and 
utilized. To prove the superiority of Revised-RPW over the 
traditional RPW method, we use from the assumption of 
Fathi et al. [7] in addition to their precedence diagram. To 
construct a complete and feasible offspring as the output 
of the mutation phase of GES, a modified version of the 
COMSOAL algorithm presented by Arcus [4] is developed. 
To test the performance of the proposed method, some well-
known standard test problems are employed.

This paper is organized as follows: in the next section, 
the overall architecture of the hybrid GES algorithm is pro-
posed. Section 3 includes experimental results carried out on 
small and large size UALB test problem instances. Finally, 
Sect. 4 contains discussions and concludes the paper.

2 � The proposed hybrid GES algorithm 
for UALBP

In this section, a hybrid algorithm is proposed to mini-
mize the number of workstations for a given cycle time for 
UALBPs. Our approach utilizes the structural information of 
the problem along with randomness. The randomness pro-
vides a mechanism to scape local optima, but at the same 
time, the final output may vary from one run to another even 
though the algorithm parameters keep unchanged. In the 
following, the details of the proposed solution method for 
solving the mentioned UALBP are presented. The proposed 
approach composes of the following four-states:

1.	 Using a constructive algorithm based on Revised-RPW 
method to generate an initial solution

2.	 Using a heuristic method based on Revised-COMSOAL 
method for assigning the missed activities during muta-
tion stage of GES.

3.	 Using the GES metaheuristic algorithm to generate new 
solutions

4.	 Using a selection method to select fitter individuals in 
the course of GES search process.

2.1 � Generating an initial solution: a modified 
heuristic method

There are several methods for determining an initial solu-
tion for a UALBP including heuristic methods with their 
strengths and weaknesses. To create an initial solution, at 
first RPW method proposed by Helgeson and Birnie [13] 

and its modified version for UALBP proposed by Fathi et al. 
[7] is considered. Based on the modifications of Fathi et al. 
method, a number of changes are made on the classical RPW 
method to improve its output. We call it the Revised-RPW 
method. In the following, the RPW method and the Revised-
RPW method are explained in details, and their quality of 
balancing are compared with each other using performance 
indicators.

Based on the RPW method for UALBP, the positional 
weight of each task in a U-shaped layout should be deter-
mined in both forward and backward directions. In the for-
ward direction, the positional weight of each task is the total 
time from that task to the last task in the precedence graph 
in the longest path. The positional weight for the backward 
direction is calculated similarly but in the opposite direc-
tion. The positional weight of each task is its larger weight 
earned by the forward and backward calculations. Then the 
tasks are sorted in descending order based on their positional 
weights. There are two criteria for assigning tasks to work-
stations: First, succession and precedence priorities must be 
held. It must be mentioned that in UALBPs, the tasks with 
no predecessor from the beginning of the precedence dia-
gram, and the tasks with no successors from the end of the 
precedence diagram, are the candidates to be assigned to the 
first workstation (please see Fig. 1b). Second, the worksta-
tion must have idle time to handle the assigning task. In case 
of multiple available tasks, the one with the highest weight 
is selected and assigned. The assignment will be completed 
when there is no task left on the list. To explain how the 
RPW method solves a UALBP, let’s consider the precedence 
diagram in Fig. 2.

Figure 2, illustrates 12 nodes resembling the tasks with 
their processing times demonstrated on the top of the node, 
and the cycle time which is considered to be 11 time units 
as an example. Table 1 shows the forward, backward and the 
ranked positional weight of the given precedence diagram.

Utilizing RPW method, in the first iteration, tasks 1 and 
12 are the candidates for assignment to the first workstation 
since their positional weight is maximum. Let us choose 
task 1 randomly and assign it to workstation 1. In next itera-
tion, between available tasks in the candidate list, task 12 
is selected. Since its task time is more than the idle time of 
the last workstation (workstation 1), it is assigned to a new 

Fig. 2   A precedence diagram
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workstation. Following the steps of RPW method, all tasks 
are assigned to 6 workstations (see Table 2).

To possibly reduce the number of workstations, the RPW 
method is modified in a way that each task is assigned to the 
last workstation that contains any of its predecessor activi-
ties, or to one of the next workstations. Similarly, each activ-
ity is assigned to the last workstation that contains any of 
its successor activities, or to one of the next workstations. 
Table 3 shows the results of using the modified method.

The first two steps of Revised-RPW are quite similar to the 
RPW solution. In the third step where task 4 is the candidate 
task, considering its processing time, it can be assigned to 
workstation 1 based on the new rule, because its precedence 
which is task 1, has been assigned to workstation 1. Therefore, 
task 4 is assigned to the first workstation. By continuing the 
same procedure, the results in Table 3 are earned. To compare 
Revised-RPW versus RPW, four performance indicators are 
considered as follows [12]:

1.	 Number of workstations
2.	 Line ef ficiency (LE) index which is equal to 

�∑m

i=1
T(Si)

m×CT

�

× 100.

3.	 Smoothness index which is the standard deviation of 
work distribution between the workstations, and is equal 

to 

�

∑m

i=1 (T(Smax)−T(Si))
2

m
.

4.	 Variation which determines the standard deviation  
of workstation utilization, and is calculated as 

V =

�

∑m

i=1 (Ui− aver)
2

m
.

where Si addresses workstation i, T(Si) is the total processing 
times of the tasks assigned to workstation Si , m is the number 
of workstations, CT is the cycle time, TSmax is the maximum 
value among the workstations total time, Ui is the utilization 
ratio of workstation i, which is equal to Ui = T(Si)∕T

(

Smax
)

 , 
and aver =

∑m

i=1
Ui∕m [18]. Based on the ideal ALB objec-

tives, the number of workstations, smoothness and variation 
indexes should be minimized, and the line efficiency index 
should be maximized.

The results in Table 4 show that the number of worksta-
tions, the smoothness index, and the variation index found by 
the Revised-RPW method is less, and the line efficiency index 
found by this method is higher than the classical RPW method. 
Therefore, the Revised-RPW method is superior to traditional 
RPW method.

Table 1   Computing the RPW 
for the tasks given in Fig. 2

Task number 1 2 3 4 5 6 7 8 9 10 11 12

Forward positional weight 5 8 12 8 14 19 21 27 20 23 27 34
Backward positional weight 34 27 24 29 26 20 15 13 8 15 11 7
Ranked positional weight 34 27 24 29 26 20 21 27 20 23 27 34

Table 2   The solution of UALBP using RPW method

Step Candidate list Assigned task Station no. Station’s 
idle time

1 1, 12 1 1 6
2 2, 4, 12 12 2 4
3 2, 4, 8, 9, 11 4 2 1
4 2, 5, 8, 9, 11 2 3 8
5 3, 5, 8, 9, 11 8 3 2
6 3, 5, 7, 9, 11 11 4 7
7 3, 5, 7, 9, 10 5 4 1
8 3, 7, 9, 10 3 5 7
9 6, 7, 9, 10 10 5 3
10 6, 7, 9 7 5 1
11 9, 6 6 6 6
12 9 9 6 5

Table 3   The solution of UALBP using Revised-RPW method

Step Candidate list Assigned task Station no. Station’s 
idle time

1 1, 12 1 1 6
2 2, 4, 12 12 2 4
3 2, 4, 8, 9, 11 4 1 3
4 2, 5, 8, 9, 11 2 1 0
5 3, 5, 8, 9, 11 8 3 5
6 3, 5, 7, 9, 11 11 2 0
7 3, 5, 7, 9, 10 5 3 0
8 3, 7, 9, 10 3 4 7
9 6, 7, 9, 10 10 4 3
10 6, 7, 9 7 4 1
11 9, 6 6 5 6
12 9 9 4 0

Table 4   Comparing RPW and Revised-RPW Method

Solution method Work-
station 
number

Line 
efficiency 
(%)

Smoothness Variation

RPW 6 83.33 6.4807 0.2055
Revised-RPW 5 90.91 4.1231 0.1408
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2.2 � The grouping evolution strategy (GES) 
algorithm for UALBP

Since ALBP belongs to non-deterministic polynomial-time 
(NP-hard) class of problems [3], exact algorithms may only 
give the optimal solutions for small-sized problem instances. 
To solve large-sized problems, metaheuristic algorithms 
can be utilized. In this regard, based on evolution strategies 
algorithm, a grouping evolution strategy (GES) algorithm is 
developed for UALBP in this study.

Rechenberg [27] proposed ES algorithm which is a math-
ematical formulation of Darwinian biological evolution and 
utilized it as a general optimization technique. In each gen-
eration of ES, a set of solutions (offspring) are produced 
from the existing solutions (parents) via recombination and 
mutation operators. For recombination, a number of parents 
are taken randomly, and their centroid point is calculated. 
A symmetric point perturbation is added to the recombina-
tion output to generate minor deviations. For mutation, the 
perturbation is chosen from an isotropic normal distribution. 
Selection in ES can be either among the last parents and 
the new offspring or only among new offspring. The group-
ing evolution strategy is a new variant of evolution strategy 
developed for grouping problems which are discrete.

One of the issues to design a metaheuristic algorithm is 
the solution representation [8, 10, 23, 30]. To represent a 
solution of UALBP by GES, a structure whose length is 
equal to the number of workstations is considered, wherein 
each element of structure which is associated to a work-
station includes a set of tasks. Figure 3, demonstrates the 
structure associated with the solution of the Revised-RPW 
method for the given diagram in Fig. 2. In this balancing 
scheme, there are five workstations where tasks 1, 3 and 
4 are assigned to workstation 1, tasks 2 and 6 are assigned 
to workstation 2 and so forth. Since the workstations make 
role as groups, adopting such a structure is called group-
ing encoding, and GES works with the sets of {T1, T3, T4}, 
{T2, T6}, {T5, T7}, {T8, T9, T10, T12}, {T11} as a chromo-
somal structure with five genes, including one gene for each 
workstation.

2.3 � Mutation operator and a constructive heuristic 
based on COMSOAL algorithm to generate new 
solutions in GES

To prevent having static solutions, the other solutions except 
the initial solution, are generated based on GES mutation 
operator. The logic of GES mutation operator is removing a 
number of the assigned tasks from workstations of a given 
parent solution, to obtain an incomplete solution. Thereafter, 
a constructive heuristic method is utilized to assign the missed 
tasks to the current or newly opened workstations. For more 
details about the mutation operator in GES, the reader is sug-
gested to refer to Husseinzadeh Kashan et al. [15].

The Revised-RPW cannot be used for reassigning the 
removed tasks to workstations. Otherwise, the same solution 
would be obtained. Instead due to its simplicity and flexibility, 
COMSOAL method [4] is considered for reassignment. One of 
the strengths of this approach is its ability to produce different 
solutions resulted by the random selection process during the 
allocation of the tasks to workstations in each step. The pro-
cedure of the COMSOAL method to solve the UALBP for the 
given precedence graph in Fig. 2, includes the following steps:

Step 1 Find the minimum between the number of predeces-
sors and successors of each task (see Table 5). In this step, at 
first the number of predecessors of each task is counted. For 
example, the predecessor number of task 1 is zero, since this 
task does not have any predecessor, or the predecessor number 
of task 2 is one, because this task can be performed directly 
after task one (please see the second row of Table 5). Then, the 
number of successors of each task must be counted (please see 
the third row of Table 5). At the end, the minimum number of 
the predecessors and successors must be found for each task 
(please see the last row of Table 5).

Step 2 Randomly select one of the tasks with zero minimum 
number and assign it to the last existing or newly opened work-
station based on the task processing time and workstation’s 
idle time (for instance select task 1 between task 1 and 12 and 
assign it to the first workstation).

Step 3 Update Table 5 after removing the assigned task 
and go to Step 2 if there is any unassigned task (see Table 6).

To utilize the COMSOAL method for reassignment of the 
removed tasks during the mutation operator, and to improve 
the solutions, two modification strategies are considered. The 
COMSOAL method always starts from the first task (node) 
and continues forward by selecting only one task among unas-
signed tasks, in each step. Then it assigns the chosen task to Fig. 3   A solution representation

Table 5   Number of 
predecessors and successors

Task number 1 2 3 4 5 6 7 8 9 10 11 12

Number of predecessors 0 1 1 1 1 2 1 1 1 1 1 3
Number of successors 2 1 1 1 1 3 1 1 1 1 1 0
The minimum number 0 1 1 1 1 2 1 1 1 1 1 0
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the last or newly opened workstation considering the idle 
time of the last workstation. In other words, the COMSOAL 
method always deals with the tasks from both ends of the prec-
edence graph. Whereas in the current study, after applying the 
mutation operator, some tasks in the middle of the precedence 
diagram may be required to be reassigned. Therefore, at first, 
those tasks with no predecessor or successors are distinguished 
and then, based on their assigned predecessors/successors the 
reassignments are applied. Additionally, to enhance the quality 
of the solutions, the Critical Path (CP) of the precedence graph 
is found, and the tasks belonging to the CP are first reassigned 
to the workstations. Such a modified version of COMSOAL 
method, named as “CP-COMSOAL” method, is presented as 
follows:

Step 1 Determine the CP of the given precedence 
diagram.

Step 2 Among the unassigned tasks find the ones with 
no predecessor or successor. If there is more than one task, 
select the task belonging to the CP. If there is more than one 
task belonging to CP, select randomly. If none of the tasks 
belong to the CP, choose one task randomly.

Step 3 Assign the selected task to a workstation, con-
sidering its predecessors and successors, based on the idle 
times of existing workstations. The selected task, because 
of having no predecessor in the partial solution, cannot be 
assigned to a workstation which lies before the ones that 
contain its predecessors. Similarly, the selected task because 

of having no successor cannot be assigned to a worksta-
tion after the ones that contain its successors. If there is 
no feasible workstation to assign the selected task, a new 
workstation is opened.

Step 4 Repeat Step 2, if there is any task which has not 
been assigned yet.

2.4 � Selecting the best solution in each iteration 
of GES

In each iteration of GES, the best solution should be chosen 
to enter into the next iteration. In this regard, all the three 
mentioned indicators, i.e., line efficiency (LE), smoothness 
index (SI) and variation index (VI), are recalled. To find 
the best solution, at first their number of the workstations 
are compared, and the least one is selected. If there is more 
than one solution with the least number of the workstations, 
the one with the highest LE is selected. In case of having at 
least two solutions with the same number of workstation and 
LE value, the one with the least VI value is selected. Finally, 
the least SI value is considered when all the three mentioned 
indicators are equal.

In what follows, we provide the algorithmic pseudo code 
of the proposed GES algorithm. For definition of the input 
parameters of the algorithm the reader may refer to Hus-
seinzadeh Kashan et al. [14].

Table 6   Updated table for the 
number of the predecessors and 
successors

Task number 2 3 4 5 6 7 8 9 10 11 12

Number of predecessors 0 1 0 1 2 1 1 1 1 1 3
Number of successors 1 1 1 1 3 1 1 1 1 1 0
The minimum number 0 1 0 1 2 1 1 1 1 1 0
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3 � Results and discussions

In this section, we consider six different well-known prob-
lems such as Mitchell, Heskia, Sawyer, Tonge, Arcus1, and 
Arcus2, with various cycle times. The results obtained by 
the mentioned methods in this study are compared together, 
and compared with the best solutions achieved by the pro-
posed method of Hwang et al. [18]. These problem instances 
include the precedence diagrams, cycle times and the opti-
mal solutions that are available at http://www.assem​bly-line-
balan​cing.de. All methods were implemented in MATLAB 
2017a software and executed on an Intel(R) Core(TM) 
i5-3320 CPU @ 2.60 GHz with 4.0 GB of RAM.

3.1 � Comparisons between using the RPW 
and Revised‑RPW in the proposed GES 
algorithm

In this part, we prepare some comparisons and discussions 
about the impact of using the classical RPW method or 
Revised-RPW method, as the initial solution generators in 
our proposed GES method.

Table 7, presents the objective function values obtained 
by the RPW, Revised-RPW, and proposed GES method by 
using each of the RPW or Revised-RPW methods as the ini-
tial solution generator, separately for different problems. The 
first two columns of this table show the name and the tasks 
number of the problems, and the third column illustrates the 
corresponding cycle times. For each problem, the optimum 
number of workstations obtained by Hwang et al. [18] has 
been reported in the fourth column (Optimum OBF). The 
obtained objective function (OBF) values using the RPW or 
Revised-RPW methods are mentioned in the fifth and sixth 
columns, respectively. The objective function values and 
CPU times of the proposed GES algorithm using RPW, and 
Revised-RPW methods as the initial solutions, are placed 
in the last columns of the table. To solve these problems by 
using the proposed GES algorithm, we let the algorithm to 
continue its process to find the optimal solution. Therefore, 
there was no limit to stop the computations processes except 
finding the optimal objective function. The reported results 
in the table are the average of 10 times execution of this 
algorithm for each test problem.

http://www.assembly-line-balancing.de
http://www.assembly-line-balancing.de
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Table 7   Results of the problems by RPW, Revised-RPW, and the proposed GES methods

Problem name Number of 
tasks

Cycle time Optimum 
OBF

RPW OBF Revised-
RPW OBF

Initial solution by RPW Initial solution by 
Revised-RPW

OBF CPU time OBF CPU time

Mitchell 21 14 8 9 8 8 0.515 8 0.608
15 8 9 8 8 0.078 8 0.031
21 5 6 6 5 1.327 5 1.310

Heskia 28 138 8 10 8 8 0.078 8 0.156
205 5 6 6 5 16.895 5 8.284
324 4 4 4 4 0.0156 4 0.031

Sawyer 30 27 13 15 13 13 0.436 13 0.249
33 10 13 11 10 6.835 10 8.784
54 6 7 6 6 14.268 6 0.445

Tonge 70 176 21 23 21 21 37.527 21 0.655
364 10 11 10 10 52.946 10 0.668
468 8 8 8 8 0.265 8 0.249

Arcus1 83 5853 13 15 14 13 41.583 13 23.868
6842 12 13 12 12 10.795 12 0.358
8412 10 10 10 10 0.171 10 0.156

10,816 8 8 8 8 0.130 8 0.141
Arcus2 111 5755 27 29 27 27 69.128 27 0.294

10,027 16 17 16 16 51.627 16 0.796
10,743 15 17 15 15 1.9968 15 0.667
17,067 9 10 9 9 43.284 9 0.443

Table 8   Results of the proposed 
GES by using RPW and 
Revised-RPW as the initial 
solution

Problem name Solution method Indicator Best Worst Average ± 1-sigma

Tonge RPW + GES Objective function 21 23 21.773 ± 0.422
Line efficiency (%) 94.967 86.709 91.285 ± 0.016
Smoothness index 47.592 203.934 108.422 ± 19.139
Variation index 0.037 0.2065 0.075 ± 0.015
CPU time 14.031 18.953 15.227 ± 0.597

Revised-RPW + GES Objective function 21 21 21 ± 0.000
Line efficiency (%) 94.967 94.967 94.967 ± 0.000
Smoothness index 46.765 84.486 60.631 ± 5.471
Variation index 0.037 0.091 0.055 ± 0.009
CPU time 13.751 24.062 16.551 ± 1.154

Arcus1 RPW + GES Objective function 12 13 12.991 ± 0.094
Line efficiency (%) 92.208 85.115 90.179 ± 0.006
Smoothness index 600.449 4152.118 2584.520 ± 473.852
Variation index 0.016 0.132 0.065 ± 0.016
CPU time 9.031 13.437 9.693 ± 0.506

Revised-RPW + GES Objective function 12 12 12 ± 0.000
Line efficiency (%) 92.208 92.208 92.208 ± 0.000
Smoothness index 525.106 2626.636 1857.027 ± 243.948
Variation index 0.011 0.083 0.036 ± 0.008
CPU time 9.453 13.937 10.340 ± 0.634
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According to the results of column entitled “RPW OBF” 
in Table 7, the classical RPW method could find the opti-
mal solutions of only four problems, in comparison with 
the results of the Revised-RPW method (column entitled 
“Revised-RPW OBF”) which could find the optimal solu-
tions of 16 problems out of the 20 mentioned problem 
instances. The results of these two columns show that the 
performance of the Revised-RPW method is much better 
than the performance of the classical RPW method.

The results of using RPW and Revised-RPW as the ini-
tial solution for the proposed GES algorithm, show that the 
proposed GES algorithm finds the optimal solutions of all 

the problem instances. It means from finding the optimum 
solutions; there is no difference between using each of the 
initial solution generators. Considering the computational 
times for using both methods in the proposed GES, it is clear 
that the CPU time of the GES by using the Revised-RPW 
method is less than the CPU times of the using the RPW 
method. Additionally, using each of RPW and Revised-RPW 
methods as a source for generating the initial solution, and 
giving more time to the proposed GES method to search for 
optimal solution, the chance of finding the optimal solu-
tion is increased but, to obtain a competitive methodology 
for solving the UALBPs, we are obligated to shorten the 
computation time, or limit the number of iterations to get 
the optimal (or near optimal) solutions. Hence, in the next 
section, we compare these methods in a competitive condi-
tion and discuss the distribution of the results.

3.2 � Distribution comparisons of the methods 
in 1000 runs

To show the performance quality of the proposed Revised-
RPW method and having a fair comparison with the RPW 
method, in this section, we are going to select two standard 
problems among large-sized standard problems, and report 
the statistics on all the mentioned indicators including line 
efficiency index, smoothness index, variation index, and 
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Fig. 4   Comparison between the values of the indicators

Table 9   LE, SI, and VI of the problem instances

Problem Number of 
tasks

Cycle time RPW method Revised-RPW method Proposed GES method

LE VI SI LE VI SI LE VI SI

Mitchell 21 14 83.33 0.066 9.644 93.75 0.097 4.583 93.75 0.023 2.823
15 83.33 0.158 9.644 87.50 0.161 8.660 87.50 0.023 3.095
21 83.33 0.171 1.288 83.33 0.311 18.139 100.0 0.000 0.000

Heskia 28 138 76.42 0.187 127.507 92.75 0.100 48.249 92.75 0.006 13.570
205 83.66 0.196 127.366 83.66 0.366 202.015 99.90 0.001 1.000
324 80.50 0.248 200.415 80.50 0.364 272.000 97.01 0.022 37.660

Sawyer 30 27 80.00 0.155 36.476 92.31 0.091 11.619 92.31 0.023 8.300
33 75.52 0.186 36.538 89.26 0.169 21.886 98.18 0.014 3.464
54 85.71 0.161 30.757 100.0 0.000 0.000 100.0 0.000 0.000

Tonge 70 176 76.70 0.165 267.806 94.97 0.093 85.018 94.97 0.037 46.765
364 89.63 0.067 147.587 96.43 0.045 84.876 96.43 0.006 22.567
468 93.80 0.042 72.512 93.80 0.134 196.000 93.80 0.004 37.581

Arcus1 83 5853 86.51 0.192 5296.6 92.40 0.106 2762.1 92.40 0.013 969.803
6842 86.35 0.142 4796.1 92.21 0.200 5074.1 92.21 0.011 525.106
8412 90.22 0.155 4624.7 90.22 0.241 6909.9 90.22 0.020 1557.869

10,816 87.55 0.201 7231.9 87.55 0.295 9782.2 87.55 0.015 1540.256
Arcus2 111 5755 79.36 0.173 8881.2 96.79 0.067 2232.0 96.79 0.019 1545.900

10,027 88.60 0.080 5718.6 93.76 0.211 8822.3 93.76 0.018 2230.803
10,743 82.71 0.202 7431.1 93.38 0.187 8247.7 93.38 0.017 2182.117
17,067 90.01 0.088 7042.3 97.93 0.052 2841.3 97.93 0.004 643.820

Average 84.16 0.152 2604.5 91.62 0.1645 2381.2 94.54 0.0138 568.625
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CPU time for the proposed GES algorithm. Therefore, 
at first two problem instances, namely the Tonge prob-
lem with a cycle time of 176 and a minimum number 
of workstations equal to 21, and Arcus1 problem with a 
cycle time of 6842 and optimal objective function of 12 
are considered. We use these two problems since they are 
well recognized problem instances of UALBP. Then, the 
proposed GES algorithm are relaxed to process 1000 itera-
tions to find the best possible solutions, and 1000 indi-
vidual runs are performed to compare the averages and 
the standard deviations of all indicators. Table 8 indicates 
the results such as the best, the averages, and standard 
deviations among 1000 runs on each problem. According 
to the nature of the performance indicators, the maximum 
value of LE, and the minimum values for SI, VI and CPU 
time are favorable.

According to the results shown in Table 8, the proposed 
GES algorithm using the Revised-RPW method for gener-
ating an initial solution finds the optimal objective func-
tion of both problem instances in all of the 1000 runs with 
line efficiency values of 94.976 and 92.208%, respectively. 
However, the GES algorithm initialized with RPW method 
is not able to always find the optimal solutions for both 
cases.

Figure 4 illustrates the comparison between the values 
of the indicators for both methods considering their aver-
age results in Table 8.

The bar charts related to each indicator for each prob-
lem illustrate the smaller values for objective function, 
variation index, and higher line efficiency index that may 
be found using the Revised-RPW method. The CPU times 
are very close for using each method.

3.3 � Comparisons of the methods based 
on the indicators

Since the proposed GES algorithm with the Revised-RPW 
method could dominate the GES algorithm with RPW 
method, the results of this method have been considered 
to be compared with the related results in the literature. 
Therefore, the Revised-RPW method as a source for gen-
eration of the initial solution for GES algorithm is used. 
In Table 9, line efficiency (LE which is in percent), vari-
ation (VI), and smoothness index (SI), as their formula-
tions presented in Sect. 2, are computed for each of the 
problem instances using the considered solution methods. 
The reported results in Table 9, are the average of 10 times 
execution of this algorithm for each test problem.

In Table 10, these results found by the proposed GES 
method are compared with the methods proposed by 
Hwang et al. [18]. Since Hwang et al. have not computed 
the Smoothness index in their study, the other results such 
as the number of workstations (OBF), line efficiency, and 
variation are compared with each other in Table 10.

Table 10   Comparisons between 
the results of the proposed GES 
method and GA algorithm

Problem Number 
of tasks

Cycle time Proposed GES 
method

Multi-objective GA
Fitness function E

Multi-objective GA
Fitness function EV

OBF LE VI OBF LE VI OBF LE VI

Mitchell 21 14 8 93.75 0.023 8 93.75 0.055 8 93.75 0.023
15 8 87.50 0.023 8 87.50 0.139 8 87.50 0.023
21 5 100.0 0.000 5 100.0 0.000 5 100.0 0.000

Heskia 28 138 8 92.75 0.006 8 92.70 0.112 8 92.70 0.007
205 5 99.90 0.001 5 99.90 0.001 5 99.90 0.001
324 4 97.01 0.022 4 97.01 0.332 4 97.01 0.062

Sawyer 30 27 13 92.31 0.023 13 92.31 0.071 13 92.31 0.023
33 10 98.18 0.014 10 98.18 0.024 10 98.18 0.014
54 6 100.0 0.000 6 100.0 0.000 6 100.0 0.000

Tonge 70 176 21 94.97 0.037 21 95.00 0.043 21 95.00 0.029
364 10 96.43 0.006 10 96.40 0.023 10 96.40 0.009
468 8 93.80 0.004 8 93.80 0.063 8 93.80 0.004

Arcus1 83 5853 13 92.39 0.013 13 92.39 0.061 13 92.39 0.014
6842 12 92.21 0.011 12 92.20 0.097 12 92.20 0.019
8412 10 90.22 0.020 10 90.00 0.123 10 90.00 0.038

10,816 8 87.55 0.015 8 87.50 0.200 8 87.50 0.089
Arcus2 111 5755 27 96.79 0.019 27 96.79 0.036 27 96.79 0.019

10,027 16 93.76 0.018 16 93.70 0.074 16 93.70 0.029
10,743 15 93.38 0.017 15 93.30 0.063 15 93.30 0.031
17,067 9 97.93 0.004 9 97.90 0.019 9 97.90 0.004
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According to Table 10, all the three methods found the 
same number of workstations for the mentioned problems. 
The proposed GES method has reached the same or better 
line efficiency results for 19 out of 20 cases, in comparison 
with the other methods. Additionally, the variation results 
of the proposed method in this study are the same or bet-
ter than the results of the first method proposed by Hwang 
et al. [18] with fitness function E, and it is the same or 
better than 19 results of the method with fitness function 
of EV. Since there are no more results in the study of 
Hwang et al. to be compared, and there is no case that 
their method failed to find its optimal solution. Hence we 
conclude that the proposed GES method performs as good 
as the Hwang et al. method.

4 � Conclusion

In this research, the GES method was adapted for the 
U-shaped assembly line balancing problem to obtain an 
efficient and effective line balancing procedure. After 
some modifications, an improved version of the classical 
ranked positional weight method which we called Revised-
RPW was proposed to generate an initial solution for GES. 
Besides, three selection mechanisms were introduced to 
enhance the performance of GES to generate new solu-
tions. To boost the performance of the proposed algo-
rithm, the COMSOAL method was revisited and improved 
using the critical path to allocate the activities. Outcomes 
reveal that the proposed GES method is more efficient than 
both methods presented by Hwang et al. [18] for solving 
U-shaped assembly line balancing test instances, in the 
sense that our method provides the same or better results 
for all of the test problems except one.

For further studies, the solution approach could be 
investigated in multi-objective U-shaped line balancing 
problems like considering the minimization of cycle time 
as the simultaneous objective functions. Furthermore, 
all the activities can be done in more than one station, 
which means that some parts of one activity can be done 
on one workstation and the rest in another. Using goal 
programming to optimize such a problem or using other 
metaheuristics like particle swarm optimization, the neural 
network can also be one of the future studies.
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