
Vol.:(0123456789)1 3

Production Engineering (2018) 12:555–566
https://doi.org/10.1007/s11740-018-0836-x

ASSEMBLY

A novel competitive hybrid approach based on grouping evolution
strategy algorithm for solving U-shaped assembly line balancing
problems

Mazyar Ghadiri Nejad1  · Ali Husseinzadeh Kashan2 · Seyed Mahdi Shavarani1

Received: 22 February 2018 / Accepted: 29 May 2018 / Published online: 7 June 2018
© German Academic Society for Production Engineering (WGP) 2018

Abstract
Assembly line balancing problems (ALBPs) are among the well-known problems in manufacturing systems that belong
to NP-hard class of problems. In the literature, there are various metaheuristic methods proposed to solve different models
of such a problem under various assumptions. This research considers the U-shaped ALBP and proposes a hybrid solution
method based on grouping evolution strategy algorithm. To develop a competitive approach, two most popular construc-
tive methods of solving ALBP including the ranked positional weight method, and COMSOAL algorithm are modified and
improved. We investigate the effectiveness of the proposed improvements and evaluate the performance of the proposed
approach via solving a number of existing problems in the literature and compare the results with some current methods in
the literature. Computational results indicate that the proposed approach for solving U-shaped ALBP test problems performs
efficiently and is able to obtain the global optimal solution of the most of high dimensional problems.

Keywords  U-shaped assembly line balancing · Grouping problems · Heuristics · Metaheuristics · Grouping evolution
strategy

1  Introduction

An assembly line is defined as a number of arranged work-
stations where the components of a particular product are
attached to each other to make finished goods. Assembly line
balancing (ALB) is described as changing the arrangement
of activities or tasks in the workstations upon some specific
criteria to gain the optimum performance/throughput [22].
The fundamental ALB problem can be described mathemati-
cally as follows:

Objective (1) minimizes the number of workstations.
The first constraint set assigns each task to exactly one sta-
tion. Constraints set (3) forces the precedence relationship
between tasks. Constraints set (4) considers an upper bound
on the cycle time of each workstation.

The straight assembly lines are a serial arrangement of
workstations in a line. The straight and U-shaped layouts
are two most popular layouts in production and assembly

(1)minz =

M
∑

i=1

maxj=1,…,N{xij}

(2)
M
∑

i=1

xij = 1 ∀j = 1,… ,N

(3)

M
∑

i=1

ixik ⩽

M
∑

i=1

ixij ∀j = 1,… ,N, k ∈ Precedence(j)

(4)
N
∑

j=1

tjxij ⩽ CT ∀i = 1,… ,M

(5)xij = 0, 1 ∀ i = 1,… ,M, j = 1,… ,N

 *	 Mazyar Ghadiri Nejad
	 mazyar.ghadirinejad@gau.edu.tr

1	 Department of Industrial Engineering,
Eastern Mediterranean University,
Famagusta, TRNC, Via Mersin 10, Turkey

2	 Department of Industrial and Systems Engineering, Tarbiat
Modares University, Tehran, Iran

http://orcid.org/0000-0002-8207-2387
http://crossmark.crossref.org/dialog/?doi=10.1007/s11740-018-0836-x&domain=pdf

556	 Production Engineering (2018) 12:555–566

1 3

lines. A number of inefficiencies have been addressed in
the literature on the line flexibility, job monotony and large
inventories for the straight ALB [3]. After introducing the
Just-in-Time production system, U-shaped assembly lines
became more popular. Figure 1a, b, show the examples of
straight and U-shaped assembly line layouts for eight tasks
and three workstations, respectively. In U-shaped arrange-
ments, the entrance and discharging points are set to the end
of U (see the left end of the line in Fig. 1b). This type of
layout lets the operating personnel work on both fronts in a
given cycle. The workstations included in both sides of the
line are called crossover workstations (see the station at the
left end of Fig. 1b where the personnel is working on both
task 1 and 8, simultaneously). If the number of crossover
workstations increases, the flexibility of task-workstation
combinations increases and consequently, there will be more
efficient balance by a less number of workstations and oper-
ating personnel [11]. Productivity improvement, reduction
in work-in-process inventory, space requirement, and lead-
time are the other benefits of U-shaped assembly lines [28].

In the last decades, various studies have been carried out
to handle large-size U-shaped assembly line balancing prob-
lems (UALBP), mainly when the objective is to reduce the
number of workstations for a given cycle time [21]. ULINO
(U-line optimizer), proposed by Scholl and Klein [29] is
a branch-and-bound procedure that performs a depth-first
search using bounds and some dominance rules to solve dif-
ferent versions of UALBP. Hwang et al. [18] proposed a
genetic algorithm solution method to solve a multi-objective
UALBPs. They considered principles of just-in-time produc-
tion since the UALB systems have more benefits in com-
parison with the straight ALB systems. They tried to mini-
mize the number of workstations and variation of workloads
simultaneously. Jonnalagedda and Dabade [19] suggested a
genetic algorithm for solving UALBPs for minimizing cycle
time and maximizing the line efficiency index under a given
number of workstations. Combined advantages of parallel
assembly line system and UALB have been demonstrated by
Kucukkoc and Zhang [20], where their aim was maximiz-
ing resource utilization. Ogan and Azizoglu [25] proposed

a mixed integer linear formulation and a branch and bound
algorithm to solve the UALBPs considering equipment cost
of assigning the tasks to the workstations. Mukund Nilakan-
tan and Ponnambalam [24] developed an algorithm based
on particle swarm optimization approach to solve a robotic
UALBP and illustrated that the efficiency of the UALB is
better than the straight ALB. Recently, Oksuz et al. [26]
developed linear and non-linear mathematical formulations
for UALBPs aiming to maximize the line efficiency index
and considering labors’ performances. Additionally, they
proposed two metaheuristic algorithms based on genetic and
artificial bee colony algorithm in their research.

In division and grouping allocation problems like ALBP
[9], clustering problem [2], maximally diverse grouping
problem [5], and graph coloring problem [31], metaheuris-
tic algorithms which work based on group structure, i.e.,
grouping genetic algorithm, are more efficient (Falkenauer
and Delchambre [6]). Grouping problems are concerned
with partitioning a set of objects into a collection of dis-
joint subsets such that the union of the subsets constructs
the whole set of the objects [17]. Grouping problems usu-
ally contain a set of constraints that must be satisfied in the
task-assignments. It means, not all assignments are accept-
able. Grouping problems include an objective function upon
a different combination of the groups. Using evolutionary
algorithms, a group/subgroup must be held as a block in the
course of search. Based on this fact, researchers have used
evolutionary algorithms to improve the quality of solving
grouping problems [16, 17].

Grouping evolution strategy (GES) is a kind of evolu-
tionary algorithm that is proposed for grouping problems.
Before GES, the grouping genetic algorithm (GGA) was the
most predominant algorithm for grouping problems which
uses a particular type of representation (grouping representa-
tion) and operators for grouping problems. For details, the
interested reader may refer to Falkenauer and Delchambre
[6]. Introduced by Husseinzadeh Kashan et al. [15], GES
is compatible with evolution strategy (ES) of Rechenberg
[27] with this distinction that ES uses Gaussian mutation
during optimization process whereas GES benefits from a
novel comparable mutation operator working based on the
rationale of a two-phase dropping and adding strategy suit-
able for grouping problems (e.g., ALBP) under grouping
representation. It has been proven that GES has merit for
solving grouping problems since it owns some unique char-
acteristics that GGA cannot afford. Some successful applica-
tions of GES have been reported on bin packing problem,
batch processing problem, fuzzy data clustering, parallel
machine scheduling problem, helicopter routing problem etc
[1, 9, 14, 16, 17]. Following the successful applications of
GES on grouping problems and using the Hwang et al. study
[18], we propose a hybrid method to minimize the number of
workstations for a given cycle time in the U-shaped ALBP.Fig. 1   Assembly line layouts

557Production Engineering (2018) 12:555–566	

1 3

To start GES with a good initial seed solution, we inspire
from the ranked positional weight (RPW) method [7], for
generating a feasible assignment of tasks to workstations. In
this way, to increase the chance of starting GES with a good
seed and to obtain probably better results as initial solutions
from the objective function point of view, the modified ver-
sion of RPW method named Revised-RPW is developed and
utilized. To prove the superiority of Revised-RPW over the
traditional RPW method, we use from the assumption of
Fathi et al. [7] in addition to their precedence diagram. To
construct a complete and feasible offspring as the output
of the mutation phase of GES, a modified version of the
COMSOAL algorithm presented by Arcus [4] is developed.
To test the performance of the proposed method, some well-
known standard test problems are employed.

This paper is organized as follows: in the next section,
the overall architecture of the hybrid GES algorithm is pro-
posed. Section 3 includes experimental results carried out on
small and large size UALB test problem instances. Finally,
Sect. 4 contains discussions and concludes the paper.

2 � The proposed hybrid GES algorithm
for UALBP

In this section, a hybrid algorithm is proposed to mini-
mize the number of workstations for a given cycle time for
UALBPs. Our approach utilizes the structural information of
the problem along with randomness. The randomness pro-
vides a mechanism to scape local optima, but at the same
time, the final output may vary from one run to another even
though the algorithm parameters keep unchanged. In the
following, the details of the proposed solution method for
solving the mentioned UALBP are presented. The proposed
approach composes of the following four-states:

1.	 Using a constructive algorithm based on Revised-RPW
method to generate an initial solution

2.	 Using a heuristic method based on Revised-COMSOAL
method for assigning the missed activities during muta-
tion stage of GES.

3.	 Using the GES metaheuristic algorithm to generate new
solutions

4.	 Using a selection method to select fitter individuals in
the course of GES search process.

2.1 � Generating an initial solution: a modified
heuristic method

There are several methods for determining an initial solu-
tion for a UALBP including heuristic methods with their
strengths and weaknesses. To create an initial solution, at
first RPW method proposed by Helgeson and Birnie [13]

and its modified version for UALBP proposed by Fathi et al.
[7] is considered. Based on the modifications of Fathi et al.
method, a number of changes are made on the classical RPW
method to improve its output. We call it the Revised-RPW
method. In the following, the RPW method and the Revised-
RPW method are explained in details, and their quality of
balancing are compared with each other using performance
indicators.

Based on the RPW method for UALBP, the positional
weight of each task in a U-shaped layout should be deter-
mined in both forward and backward directions. In the for-
ward direction, the positional weight of each task is the total
time from that task to the last task in the precedence graph
in the longest path. The positional weight for the backward
direction is calculated similarly but in the opposite direc-
tion. The positional weight of each task is its larger weight
earned by the forward and backward calculations. Then the
tasks are sorted in descending order based on their positional
weights. There are two criteria for assigning tasks to work-
stations: First, succession and precedence priorities must be
held. It must be mentioned that in UALBPs, the tasks with
no predecessor from the beginning of the precedence dia-
gram, and the tasks with no successors from the end of the
precedence diagram, are the candidates to be assigned to the
first workstation (please see Fig. 1b). Second, the worksta-
tion must have idle time to handle the assigning task. In case
of multiple available tasks, the one with the highest weight
is selected and assigned. The assignment will be completed
when there is no task left on the list. To explain how the
RPW method solves a UALBP, let’s consider the precedence
diagram in Fig. 2.

Figure 2, illustrates 12 nodes resembling the tasks with
their processing times demonstrated on the top of the node,
and the cycle time which is considered to be 11 time units
as an example. Table 1 shows the forward, backward and the
ranked positional weight of the given precedence diagram.

Utilizing RPW method, in the first iteration, tasks 1 and
12 are the candidates for assignment to the first workstation
since their positional weight is maximum. Let us choose
task 1 randomly and assign it to workstation 1. In next itera-
tion, between available tasks in the candidate list, task 12
is selected. Since its task time is more than the idle time of
the last workstation (workstation 1), it is assigned to a new

Fig. 2   A precedence diagram

558	 Production Engineering (2018) 12:555–566

1 3

workstation. Following the steps of RPW method, all tasks
are assigned to 6 workstations (see Table 2).

To possibly reduce the number of workstations, the RPW
method is modified in a way that each task is assigned to the
last workstation that contains any of its predecessor activi-
ties, or to one of the next workstations. Similarly, each activ-
ity is assigned to the last workstation that contains any of
its successor activities, or to one of the next workstations.
Table 3 shows the results of using the modified method.

The first two steps of Revised-RPW are quite similar to the
RPW solution. In the third step where task 4 is the candidate
task, considering its processing time, it can be assigned to
workstation 1 based on the new rule, because its precedence
which is task 1, has been assigned to workstation 1. Therefore,
task 4 is assigned to the first workstation. By continuing the
same procedure, the results in Table 3 are earned. To compare
Revised-RPW versus RPW, four performance indicators are
considered as follows [12]:

1.	 Number of workstations
2.	 Line ef ficiency (LE) index which is equal to

�∑m

i=1
T(Si)

m×CT

�

× 100.

3.	 Smoothness index which is the standard deviation of
work distribution between the workstations, and is equal

to

�

∑m

i=1 (T(Smax)−T(Si))
2

m
.

4.	 Variation which determines the standard deviation
of workstation utilization, and is calculated as

V =

�

∑m

i=1 (Ui− aver)
2

m
.

where Si addresses workstation i, T(Si) is the total processing
times of the tasks assigned to workstation Si , m is the number
of workstations, CT is the cycle time, TSmax is the maximum
value among the workstations total time, Ui is the utilization
ratio of workstation i, which is equal to Ui = T(Si)∕T

(

Smax
)

 ,
and aver =

∑m

i=1
Ui∕m [18]. Based on the ideal ALB objec-

tives, the number of workstations, smoothness and variation
indexes should be minimized, and the line efficiency index
should be maximized.

The results in Table 4 show that the number of worksta-
tions, the smoothness index, and the variation index found by
the Revised-RPW method is less, and the line efficiency index
found by this method is higher than the classical RPW method.
Therefore, the Revised-RPW method is superior to traditional
RPW method.

Table 1   Computing the RPW
for the tasks given in Fig. 2

Task number 1 2 3 4 5 6 7 8 9 10 11 12

Forward positional weight 5 8 12 8 14 19 21 27 20 23 27 34
Backward positional weight 34 27 24 29 26 20 15 13 8 15 11 7
Ranked positional weight 34 27 24 29 26 20 21 27 20 23 27 34

Table 2   The solution of UALBP using RPW method

Step Candidate list Assigned task Station no. Station’s
idle time

1 1, 12 1 1 6
2 2, 4, 12 12 2 4
3 2, 4, 8, 9, 11 4 2 1
4 2, 5, 8, 9, 11 2 3 8
5 3, 5, 8, 9, 11 8 3 2
6 3, 5, 7, 9, 11 11 4 7
7 3, 5, 7, 9, 10 5 4 1
8 3, 7, 9, 10 3 5 7
9 6, 7, 9, 10 10 5 3
10 6, 7, 9 7 5 1
11 9, 6 6 6 6
12 9 9 6 5

Table 3   The solution of UALBP using Revised-RPW method

Step Candidate list Assigned task Station no. Station’s
idle time

1 1, 12 1 1 6
2 2, 4, 12 12 2 4
3 2, 4, 8, 9, 11 4 1 3
4 2, 5, 8, 9, 11 2 1 0
5 3, 5, 8, 9, 11 8 3 5
6 3, 5, 7, 9, 11 11 2 0
7 3, 5, 7, 9, 10 5 3 0
8 3, 7, 9, 10 3 4 7
9 6, 7, 9, 10 10 4 3
10 6, 7, 9 7 4 1
11 9, 6 6 5 6
12 9 9 4 0

Table 4   Comparing RPW and Revised-RPW Method

Solution method Work-
station
number

Line
efficiency
(%)

Smoothness Variation

RPW 6 83.33 6.4807 0.2055
Revised-RPW 5 90.91 4.1231 0.1408

559Production Engineering (2018) 12:555–566	

1 3

2.2 � The grouping evolution strategy (GES)
algorithm for UALBP

Since ALBP belongs to non-deterministic polynomial-time
(NP-hard) class of problems [3], exact algorithms may only
give the optimal solutions for small-sized problem instances.
To solve large-sized problems, metaheuristic algorithms
can be utilized. In this regard, based on evolution strategies
algorithm, a grouping evolution strategy (GES) algorithm is
developed for UALBP in this study.

Rechenberg [27] proposed ES algorithm which is a math-
ematical formulation of Darwinian biological evolution and
utilized it as a general optimization technique. In each gen-
eration of ES, a set of solutions (offspring) are produced
from the existing solutions (parents) via recombination and
mutation operators. For recombination, a number of parents
are taken randomly, and their centroid point is calculated.
A symmetric point perturbation is added to the recombina-
tion output to generate minor deviations. For mutation, the
perturbation is chosen from an isotropic normal distribution.
Selection in ES can be either among the last parents and
the new offspring or only among new offspring. The group-
ing evolution strategy is a new variant of evolution strategy
developed for grouping problems which are discrete.

One of the issues to design a metaheuristic algorithm is
the solution representation [8, 10, 23, 30]. To represent a
solution of UALBP by GES, a structure whose length is
equal to the number of workstations is considered, wherein
each element of structure which is associated to a work-
station includes a set of tasks. Figure 3, demonstrates the
structure associated with the solution of the Revised-RPW
method for the given diagram in Fig. 2. In this balancing
scheme, there are five workstations where tasks 1, 3 and
4 are assigned to workstation 1, tasks 2 and 6 are assigned
to workstation 2 and so forth. Since the workstations make
role as groups, adopting such a structure is called group-
ing encoding, and GES works with the sets of {T1, T3, T4},
{T2, T6}, {T5, T7}, {T8, T9, T10, T12}, {T11} as a chromo-
somal structure with five genes, including one gene for each
workstation.

2.3 � Mutation operator and a constructive heuristic
based on COMSOAL algorithm to generate new
solutions in GES

To prevent having static solutions, the other solutions except
the initial solution, are generated based on GES mutation
operator. The logic of GES mutation operator is removing a
number of the assigned tasks from workstations of a given
parent solution, to obtain an incomplete solution. Thereafter,
a constructive heuristic method is utilized to assign the missed
tasks to the current or newly opened workstations. For more
details about the mutation operator in GES, the reader is sug-
gested to refer to Husseinzadeh Kashan et al. [15].

The Revised-RPW cannot be used for reassigning the
removed tasks to workstations. Otherwise, the same solution
would be obtained. Instead due to its simplicity and flexibility,
COMSOAL method [4] is considered for reassignment. One of
the strengths of this approach is its ability to produce different
solutions resulted by the random selection process during the
allocation of the tasks to workstations in each step. The pro-
cedure of the COMSOAL method to solve the UALBP for the
given precedence graph in Fig. 2, includes the following steps:

Step 1 Find the minimum between the number of predeces-
sors and successors of each task (see Table 5). In this step, at
first the number of predecessors of each task is counted. For
example, the predecessor number of task 1 is zero, since this
task does not have any predecessor, or the predecessor number
of task 2 is one, because this task can be performed directly
after task one (please see the second row of Table 5). Then, the
number of successors of each task must be counted (please see
the third row of Table 5). At the end, the minimum number of
the predecessors and successors must be found for each task
(please see the last row of Table 5).

Step 2 Randomly select one of the tasks with zero minimum
number and assign it to the last existing or newly opened work-
station based on the task processing time and workstation’s
idle time (for instance select task 1 between task 1 and 12 and
assign it to the first workstation).

Step 3 Update Table 5 after removing the assigned task
and go to Step 2 if there is any unassigned task (see Table 6).

To utilize the COMSOAL method for reassignment of the
removed tasks during the mutation operator, and to improve
the solutions, two modification strategies are considered. The
COMSOAL method always starts from the first task (node)
and continues forward by selecting only one task among unas-
signed tasks, in each step. Then it assigns the chosen task to Fig. 3   A solution representation

Table 5   Number of
predecessors and successors

Task number 1 2 3 4 5 6 7 8 9 10 11 12

Number of predecessors 0 1 1 1 1 2 1 1 1 1 1 3
Number of successors 2 1 1 1 1 3 1 1 1 1 1 0
The minimum number 0 1 1 1 1 2 1 1 1 1 1 0

560	 Production Engineering (2018) 12:555–566

1 3

the last or newly opened workstation considering the idle
time of the last workstation. In other words, the COMSOAL
method always deals with the tasks from both ends of the prec-
edence graph. Whereas in the current study, after applying the
mutation operator, some tasks in the middle of the precedence
diagram may be required to be reassigned. Therefore, at first,
those tasks with no predecessor or successors are distinguished
and then, based on their assigned predecessors/successors the
reassignments are applied. Additionally, to enhance the quality
of the solutions, the Critical Path (CP) of the precedence graph
is found, and the tasks belonging to the CP are first reassigned
to the workstations. Such a modified version of COMSOAL
method, named as “CP-COMSOAL” method, is presented as
follows:

Step 1 Determine the CP of the given precedence
diagram.

Step 2 Among the unassigned tasks find the ones with
no predecessor or successor. If there is more than one task,
select the task belonging to the CP. If there is more than one
task belonging to CP, select randomly. If none of the tasks
belong to the CP, choose one task randomly.

Step 3 Assign the selected task to a workstation, con-
sidering its predecessors and successors, based on the idle
times of existing workstations. The selected task, because
of having no predecessor in the partial solution, cannot be
assigned to a workstation which lies before the ones that
contain its predecessors. Similarly, the selected task because

of having no successor cannot be assigned to a worksta-
tion after the ones that contain its successors. If there is
no feasible workstation to assign the selected task, a new
workstation is opened.

Step 4 Repeat Step 2, if there is any task which has not
been assigned yet.

2.4 � Selecting the best solution in each iteration
of GES

In each iteration of GES, the best solution should be chosen
to enter into the next iteration. In this regard, all the three
mentioned indicators, i.e., line efficiency (LE), smoothness
index (SI) and variation index (VI), are recalled. To find
the best solution, at first their number of the workstations
are compared, and the least one is selected. If there is more
than one solution with the least number of the workstations,
the one with the highest LE is selected. In case of having at
least two solutions with the same number of workstation and
LE value, the one with the least VI value is selected. Finally,
the least SI value is considered when all the three mentioned
indicators are equal.

In what follows, we provide the algorithmic pseudo code
of the proposed GES algorithm. For definition of the input
parameters of the algorithm the reader may refer to Hus-
seinzadeh Kashan et al. [14].

Table 6   Updated table for the
number of the predecessors and
successors

Task number 2 3 4 5 6 7 8 9 10 11 12

Number of predecessors 0 1 0 1 2 1 1 1 1 1 3
Number of successors 1 1 1 1 3 1 1 1 1 1 0
The minimum number 0 1 0 1 2 1 1 1 1 1 0

561Production Engineering (2018) 12:555–566	

1 3

3 � Results and discussions

In this section, we consider six different well-known prob-
lems such as Mitchell, Heskia, Sawyer, Tonge, Arcus1, and
Arcus2, with various cycle times. The results obtained by
the mentioned methods in this study are compared together,
and compared with the best solutions achieved by the pro-
posed method of Hwang et al. [18]. These problem instances
include the precedence diagrams, cycle times and the opti-
mal solutions that are available at http://www.assem​bly-line-
balan​cing.de. All methods were implemented in MATLAB
2017a software and executed on an Intel(R) Core(TM)
i5-3320 CPU @ 2.60 GHz with 4.0 GB of RAM.

3.1 � Comparisons between using the RPW
and Revised‑RPW in the proposed GES
algorithm

In this part, we prepare some comparisons and discussions
about the impact of using the classical RPW method or
Revised-RPW method, as the initial solution generators in
our proposed GES method.

Table 7, presents the objective function values obtained
by the RPW, Revised-RPW, and proposed GES method by
using each of the RPW or Revised-RPW methods as the ini-
tial solution generator, separately for different problems. The
first two columns of this table show the name and the tasks
number of the problems, and the third column illustrates the
corresponding cycle times. For each problem, the optimum
number of workstations obtained by Hwang et al. [18] has
been reported in the fourth column (Optimum OBF). The
obtained objective function (OBF) values using the RPW or
Revised-RPW methods are mentioned in the fifth and sixth
columns, respectively. The objective function values and
CPU times of the proposed GES algorithm using RPW, and
Revised-RPW methods as the initial solutions, are placed
in the last columns of the table. To solve these problems by
using the proposed GES algorithm, we let the algorithm to
continue its process to find the optimal solution. Therefore,
there was no limit to stop the computations processes except
finding the optimal objective function. The reported results
in the table are the average of 10 times execution of this
algorithm for each test problem.

http://www.assembly-line-balancing.de
http://www.assembly-line-balancing.de

562	 Production Engineering (2018) 12:555–566

1 3

Table 7   Results of the problems by RPW, Revised-RPW, and the proposed GES methods

Problem name Number of
tasks

Cycle time Optimum
OBF

RPW OBF Revised-
RPW OBF

Initial solution by RPW Initial solution by
Revised-RPW

OBF CPU time OBF CPU time

Mitchell 21 14 8 9 8 8 0.515 8 0.608
15 8 9 8 8 0.078 8 0.031
21 5 6 6 5 1.327 5 1.310

Heskia 28 138 8 10 8 8 0.078 8 0.156
205 5 6 6 5 16.895 5 8.284
324 4 4 4 4 0.0156 4 0.031

Sawyer 30 27 13 15 13 13 0.436 13 0.249
33 10 13 11 10 6.835 10 8.784
54 6 7 6 6 14.268 6 0.445

Tonge 70 176 21 23 21 21 37.527 21 0.655
364 10 11 10 10 52.946 10 0.668
468 8 8 8 8 0.265 8 0.249

Arcus1 83 5853 13 15 14 13 41.583 13 23.868
6842 12 13 12 12 10.795 12 0.358
8412 10 10 10 10 0.171 10 0.156

10,816 8 8 8 8 0.130 8 0.141
Arcus2 111 5755 27 29 27 27 69.128 27 0.294

10,027 16 17 16 16 51.627 16 0.796
10,743 15 17 15 15 1.9968 15 0.667
17,067 9 10 9 9 43.284 9 0.443

Table 8   Results of the proposed
GES by using RPW and
Revised-RPW as the initial
solution

Problem name Solution method Indicator Best Worst Average ± 1-sigma

Tonge RPW + GES Objective function 21 23 21.773 ± 0.422
Line efficiency (%) 94.967 86.709 91.285 ± 0.016
Smoothness index 47.592 203.934 108.422 ± 19.139
Variation index 0.037 0.2065 0.075 ± 0.015
CPU time 14.031 18.953 15.227 ± 0.597

Revised-RPW + GES Objective function 21 21 21 ± 0.000
Line efficiency (%) 94.967 94.967 94.967 ± 0.000
Smoothness index 46.765 84.486 60.631 ± 5.471
Variation index 0.037 0.091 0.055 ± 0.009
CPU time 13.751 24.062 16.551 ± 1.154

Arcus1 RPW + GES Objective function 12 13 12.991 ± 0.094
Line efficiency (%) 92.208 85.115 90.179 ± 0.006
Smoothness index 600.449 4152.118 2584.520 ± 473.852
Variation index 0.016 0.132 0.065 ± 0.016
CPU time 9.031 13.437 9.693 ± 0.506

Revised-RPW + GES Objective function 12 12 12 ± 0.000
Line efficiency (%) 92.208 92.208 92.208 ± 0.000
Smoothness index 525.106 2626.636 1857.027 ± 243.948
Variation index 0.011 0.083 0.036 ± 0.008
CPU time 9.453 13.937 10.340 ± 0.634

563Production Engineering (2018) 12:555–566	

1 3

According to the results of column entitled “RPW OBF”
in Table 7, the classical RPW method could find the opti-
mal solutions of only four problems, in comparison with
the results of the Revised-RPW method (column entitled
“Revised-RPW OBF”) which could find the optimal solu-
tions of 16 problems out of the 20 mentioned problem
instances. The results of these two columns show that the
performance of the Revised-RPW method is much better
than the performance of the classical RPW method.

The results of using RPW and Revised-RPW as the ini-
tial solution for the proposed GES algorithm, show that the
proposed GES algorithm finds the optimal solutions of all

the problem instances. It means from finding the optimum
solutions; there is no difference between using each of the
initial solution generators. Considering the computational
times for using both methods in the proposed GES, it is clear
that the CPU time of the GES by using the Revised-RPW
method is less than the CPU times of the using the RPW
method. Additionally, using each of RPW and Revised-RPW
methods as a source for generating the initial solution, and
giving more time to the proposed GES method to search for
optimal solution, the chance of finding the optimal solu-
tion is increased but, to obtain a competitive methodology
for solving the UALBPs, we are obligated to shorten the
computation time, or limit the number of iterations to get
the optimal (or near optimal) solutions. Hence, in the next
section, we compare these methods in a competitive condi-
tion and discuss the distribution of the results.

3.2 � Distribution comparisons of the methods
in 1000 runs

To show the performance quality of the proposed Revised-
RPW method and having a fair comparison with the RPW
method, in this section, we are going to select two standard
problems among large-sized standard problems, and report
the statistics on all the mentioned indicators including line
efficiency index, smoothness index, variation index, and

0
10
20
30
40
50
60
70
80
90

100

Tonge Arcus1 Tonge Arcus1 Tonge Arcus1 Tonge Arcus1

Objec�ve func�on Line efficiency (%) Varia�on index CPU �me

RPW + GES Revised-RPW + GES

Fig. 4   Comparison between the values of the indicators

Table 9   LE, SI, and VI of the problem instances

Problem Number of
tasks

Cycle time RPW method Revised-RPW method Proposed GES method

LE VI SI LE VI SI LE VI SI

Mitchell 21 14 83.33 0.066 9.644 93.75 0.097 4.583 93.75 0.023 2.823
15 83.33 0.158 9.644 87.50 0.161 8.660 87.50 0.023 3.095
21 83.33 0.171 1.288 83.33 0.311 18.139 100.0 0.000 0.000

Heskia 28 138 76.42 0.187 127.507 92.75 0.100 48.249 92.75 0.006 13.570
205 83.66 0.196 127.366 83.66 0.366 202.015 99.90 0.001 1.000
324 80.50 0.248 200.415 80.50 0.364 272.000 97.01 0.022 37.660

Sawyer 30 27 80.00 0.155 36.476 92.31 0.091 11.619 92.31 0.023 8.300
33 75.52 0.186 36.538 89.26 0.169 21.886 98.18 0.014 3.464
54 85.71 0.161 30.757 100.0 0.000 0.000 100.0 0.000 0.000

Tonge 70 176 76.70 0.165 267.806 94.97 0.093 85.018 94.97 0.037 46.765
364 89.63 0.067 147.587 96.43 0.045 84.876 96.43 0.006 22.567
468 93.80 0.042 72.512 93.80 0.134 196.000 93.80 0.004 37.581

Arcus1 83 5853 86.51 0.192 5296.6 92.40 0.106 2762.1 92.40 0.013 969.803
6842 86.35 0.142 4796.1 92.21 0.200 5074.1 92.21 0.011 525.106
8412 90.22 0.155 4624.7 90.22 0.241 6909.9 90.22 0.020 1557.869

10,816 87.55 0.201 7231.9 87.55 0.295 9782.2 87.55 0.015 1540.256
Arcus2 111 5755 79.36 0.173 8881.2 96.79 0.067 2232.0 96.79 0.019 1545.900

10,027 88.60 0.080 5718.6 93.76 0.211 8822.3 93.76 0.018 2230.803
10,743 82.71 0.202 7431.1 93.38 0.187 8247.7 93.38 0.017 2182.117
17,067 90.01 0.088 7042.3 97.93 0.052 2841.3 97.93 0.004 643.820

Average 84.16 0.152 2604.5 91.62 0.1645 2381.2 94.54 0.0138 568.625

564	 Production Engineering (2018) 12:555–566

1 3

CPU time for the proposed GES algorithm. Therefore,
at first two problem instances, namely the Tonge prob-
lem with a cycle time of 176 and a minimum number
of workstations equal to 21, and Arcus1 problem with a
cycle time of 6842 and optimal objective function of 12
are considered. We use these two problems since they are
well recognized problem instances of UALBP. Then, the
proposed GES algorithm are relaxed to process 1000 itera-
tions to find the best possible solutions, and 1000 indi-
vidual runs are performed to compare the averages and
the standard deviations of all indicators. Table 8 indicates
the results such as the best, the averages, and standard
deviations among 1000 runs on each problem. According
to the nature of the performance indicators, the maximum
value of LE, and the minimum values for SI, VI and CPU
time are favorable.

According to the results shown in Table 8, the proposed
GES algorithm using the Revised-RPW method for gener-
ating an initial solution finds the optimal objective func-
tion of both problem instances in all of the 1000 runs with
line efficiency values of 94.976 and 92.208%, respectively.
However, the GES algorithm initialized with RPW method
is not able to always find the optimal solutions for both
cases.

Figure 4 illustrates the comparison between the values
of the indicators for both methods considering their aver-
age results in Table 8.

The bar charts related to each indicator for each prob-
lem illustrate the smaller values for objective function,
variation index, and higher line efficiency index that may
be found using the Revised-RPW method. The CPU times
are very close for using each method.

3.3 � Comparisons of the methods based
on the indicators

Since the proposed GES algorithm with the Revised-RPW
method could dominate the GES algorithm with RPW
method, the results of this method have been considered
to be compared with the related results in the literature.
Therefore, the Revised-RPW method as a source for gen-
eration of the initial solution for GES algorithm is used.
In Table 9, line efficiency (LE which is in percent), vari-
ation (VI), and smoothness index (SI), as their formula-
tions presented in Sect. 2, are computed for each of the
problem instances using the considered solution methods.
The reported results in Table 9, are the average of 10 times
execution of this algorithm for each test problem.

In Table 10, these results found by the proposed GES
method are compared with the methods proposed by
Hwang et al. [18]. Since Hwang et al. have not computed
the Smoothness index in their study, the other results such
as the number of workstations (OBF), line efficiency, and
variation are compared with each other in Table 10.

Table 10   Comparisons between
the results of the proposed GES
method and GA algorithm

Problem Number
of tasks

Cycle time Proposed GES
method

Multi-objective GA
Fitness function E

Multi-objective GA
Fitness function EV

OBF LE VI OBF LE VI OBF LE VI

Mitchell 21 14 8 93.75 0.023 8 93.75 0.055 8 93.75 0.023
15 8 87.50 0.023 8 87.50 0.139 8 87.50 0.023
21 5 100.0 0.000 5 100.0 0.000 5 100.0 0.000

Heskia 28 138 8 92.75 0.006 8 92.70 0.112 8 92.70 0.007
205 5 99.90 0.001 5 99.90 0.001 5 99.90 0.001
324 4 97.01 0.022 4 97.01 0.332 4 97.01 0.062

Sawyer 30 27 13 92.31 0.023 13 92.31 0.071 13 92.31 0.023
33 10 98.18 0.014 10 98.18 0.024 10 98.18 0.014
54 6 100.0 0.000 6 100.0 0.000 6 100.0 0.000

Tonge 70 176 21 94.97 0.037 21 95.00 0.043 21 95.00 0.029
364 10 96.43 0.006 10 96.40 0.023 10 96.40 0.009
468 8 93.80 0.004 8 93.80 0.063 8 93.80 0.004

Arcus1 83 5853 13 92.39 0.013 13 92.39 0.061 13 92.39 0.014
6842 12 92.21 0.011 12 92.20 0.097 12 92.20 0.019
8412 10 90.22 0.020 10 90.00 0.123 10 90.00 0.038

10,816 8 87.55 0.015 8 87.50 0.200 8 87.50 0.089
Arcus2 111 5755 27 96.79 0.019 27 96.79 0.036 27 96.79 0.019

10,027 16 93.76 0.018 16 93.70 0.074 16 93.70 0.029
10,743 15 93.38 0.017 15 93.30 0.063 15 93.30 0.031
17,067 9 97.93 0.004 9 97.90 0.019 9 97.90 0.004

565Production Engineering (2018) 12:555–566	

1 3

According to Table 10, all the three methods found the
same number of workstations for the mentioned problems.
The proposed GES method has reached the same or better
line efficiency results for 19 out of 20 cases, in comparison
with the other methods. Additionally, the variation results
of the proposed method in this study are the same or bet-
ter than the results of the first method proposed by Hwang
et al. [18] with fitness function E, and it is the same or
better than 19 results of the method with fitness function
of EV. Since there are no more results in the study of
Hwang et al. to be compared, and there is no case that
their method failed to find its optimal solution. Hence we
conclude that the proposed GES method performs as good
as the Hwang et al. method.

4 � Conclusion

In this research, the GES method was adapted for the
U-shaped assembly line balancing problem to obtain an
efficient and effective line balancing procedure. After
some modifications, an improved version of the classical
ranked positional weight method which we called Revised-
RPW was proposed to generate an initial solution for GES.
Besides, three selection mechanisms were introduced to
enhance the performance of GES to generate new solu-
tions. To boost the performance of the proposed algo-
rithm, the COMSOAL method was revisited and improved
using the critical path to allocate the activities. Outcomes
reveal that the proposed GES method is more efficient than
both methods presented by Hwang et al. [18] for solving
U-shaped assembly line balancing test instances, in the
sense that our method provides the same or better results
for all of the test problems except one.

For further studies, the solution approach could be
investigated in multi-objective U-shaped line balancing
problems like considering the minimization of cycle time
as the simultaneous objective functions. Furthermore,
all the activities can be done in more than one station,
which means that some parts of one activity can be done
on one workstation and the rest in another. Using goal
programming to optimize such a problem or using other
metaheuristics like particle swarm optimization, the neural
network can also be one of the future studies.

References

	 1.	 Abbasi-Pooya A, Husseinzadeh Kashan A (2017) New math-
ematical models and a hybrid grouping evolution strategy
algorithm for optimal helicopter routing and crew pickup and
delivery. Comput Ind Eng 112:35–56

	 2.	 Agustı L, Salcedo-Sanz S, Jiménez-Fernández S, Carro-Calvo
L, Del Ser J, Portilla-Figueras JA (2012) A new grouping
genetic algorithm for clustering problems. Expert Syst Appl
39(10):9695–9703

	 3.	 Alavidoost M, Zarandi MF, Tarimoradi M, Nemati Y (2017)
Modified genetic algorithm for simple straight and U-shaped
assembly line balancing with fuzzy processing times. J Intell
Manuf 28(2):313–336

	 4.	 Arcus AL (1965) A computer method of sequencing operations
for assembly lines. Int J Prod Res 4(4):259–277

	 5.	 Brimberg J, Mladenović N, Urošević D (2015) Solving the
maximally diverse grouping problem by skewed general vari-
able neighborhood search. Inf Sci 295:650–675

	 6.	 Falkenauer E, Delchambre A (1992) A genetic algorithm for
bin packing and line balancing. In: IEEE international confer-
ence on paper presented at the robotics and automation, 1992.
Proceedings, 1992

	 7.	 Fathi M, Alvarez M, Rodriguez V (2011) A new heuristic
approach to solving U-shape assembly line balancing problems
type. World Acad Sci Eng Technol 59:413–421

	 8.	 Ghadiri Nejad M, Banar M (2018) Emergency response time mini-
mization by incorporating ground and aerial transportation. Ann
Optim Theory Pract 1(1):43–57

	 9.	 Ghadiri Nejad M, Husseinzadeh Kashan A, Rismanchian F (2013)
A new competitive method for solving assembly line balancing
problem. In: 1st international conference on new directions in
business, management, finance and economics, Famagusta,
Cyprus

	10.	 Ghadiri Nejad M, Shavarani SM, Vizvári B, Vatankhah Barenji
R (2018) Trade-off between process scheduling and production
cost in cyclic flexible robotic cell. Int J Adv Manuf Technol
96(1–4):1081–1091

	11.	 Glonegger M, Reinhart G (2015) Planning of synchronized assem-
bly lines taking into consideration human performance fluctua-
tions. Prod Eng Res Dev 9(2):277–287

	12.	 Grzechca W (2014) Assembly line balancing problem with
reduced number of workstations. IFAC Proc Vol 47(3):6180–6185

	13.	 Helgeson W, Birnie D (1961) Assembly line balancing using the
ranked positional weight technique. J Ind Eng 12(6):394–398

	14.	 Husseinzadeh Kashan A, Akbari AA, Ostadi B (2015) Grouping
evolution strategies: an effective approach for grouping problems.
Appl Math Model 39(9):2703–2720

	15.	 Husseinzadeh Kashan A, Jenabi M, Husseinzadeh Kashan M
(2009) A new solution approach for grouping problems based on
evolution strategies. In: Paper presented at the 2009 international
conference of soft computing and pattern recognition

	16.	 Husseinzadeh Kashan A, Keshmiry M, Dahooie JH, Abbasi-Pooya
A (2016) A simple yet effective grouping evolutionary strategy
(GES) algorithm for scheduling parallel machines. Neural Comput
Appl. https​://doi.org/10.1007/s0052​1-016-2789-3

	17.	 Husseinzadeh Kashan A, Rezaee B, Karimiyan S (2013) An effi-
cient approach for unsupervised fuzzy clustering based on group-
ing evolution strategies. Pattern Recognit 46(5):1240–1254

	18.	 Hwang RK, Katayama H, Gen M (2008) U-shaped assembly
line balancing problem with genetic algorithm. Int J Prod Res
46(16):4637–4649

	19.	 Jonnalagedda V, Dabade B (2014) Application of simple genetic
algorithm to U-shaped assembly line balancing problem of type
II. IFAC Proc Vol 47(3):6168–6173

	20.	 Kucukkoc I, Zhang DZ (2015) Balancing of parallel U-shaped
assembly lines. Comput Oper Res 64(Supplement C):233–244

	21.	 Li Z, Kucukkoc I, Nilakantan JM (2017) Comprehensive review
and evaluation of heuristics and meta-heuristics for two-sided
assembly line balancing problem. Comput Oper Res 84:146–161

https://doi.org/10.1007/s00521-016-2789-3

566	 Production Engineering (2018) 12:555–566

1 3

	22.	 Li Z, Tang Q, Zhang L (2017) Two-sided assembly line balanc-
ing problem of type I: Improvements, a simple algorithm and a
comprehensive study. Comput Oper Res 79:78–93

	23.	 Mosallaeipour S, Ghadiri Nejad M, Shavarani SM, Nazerian R
(2018) Mobile robot scheduling for cycle time optimization in
flow-shop cells, a case study. Prod Eng Res Dev 12(1):83–93

	24.	 Mukund Nilakantan J, Ponnambalam S (2016) Robotic U-shaped
assembly line balancing using particle swarm optimization. Eng
Optim 48(2):231–252

	25.	 Ogan D, Azizoglu M (2015). A branch and bound method for the
line balancing problem in U-shaped assembly lines with equip-
ment requirements. J Manuf Syst 36(Supplement C), 46–54

	26.	 Oksuz MK, Buyukozkan K, Satoglu SI (2017) U-shaped assembly
line worker assignment and balancing problem: A mathematical
model and two meta-heuristics. Comput Ind Eng 112(Supplement
C):246–263

	27.	 Rechenberg I (1973) Evolution strategy: optimization of technical
systems by means of biological evolution, vol 104. Fromman-
Holzboog, Stuttgart

	28.	 Reinhart G, Werner J, Lange F (2009) Robot based system
for the automation of flow assembly lines. Prod Eng Res Dev
3(1):121–126

	29.	 Scholl A, Klein R (1999) ULINO: Optimally balancing U-shaped
JIT assembly lines. Int J Prod Res 37(4):721–736

	30.	 Shavarani SM, Ghadiri Nejad M, Rismanchian F, Izbirak G
(2018) Application of hierarchical facility location problem for
optimization of a drone delivery system: a case study of Amazon
prime air in the city of San Francisco. Int J Adv Manuf Technol
95(9–12):3141–3153

	31.	 Zhou Y, Hao J-K, Duval B (2016) Reinforcement learning based
local search for grouping problems: a case study on graph color-
ing. Expert Syst Appl 64:412–422

	A novel competitive hybrid approach based on grouping evolution strategy algorithm for solving U-shaped assembly line balancing problems
	Abstract
	1 Introduction
	2 The proposed hybrid GES algorithm for UALBP
	2.1 Generating an initial solution: a modified heuristic method
	2.2 The grouping evolution strategy (GES) algorithm for UALBP
	2.3 Mutation operator and a constructive heuristic based on COMSOAL algorithm to generate new solutions in GES
	2.4 Selecting the best solution in each iteration of GES

	3 Results and discussions
	3.1 Comparisons between using the RPW and Revised-RPW in the proposed GES algorithm
	3.2 Distribution comparisons of the methods in 1000 runs
	3.3 Comparisons of the methods based on the indicators

	4 Conclusion
	References

