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Abstract
Wear on the tool electrode is one of the most critical issues in electro discharge machining (EDM) process, as it affects the 
dimensional accuracy of the final feature as well as increase in total production cost due to the requirement of post process-
ing. In present study, an attempt has been made to develop a compensation model for end wear of the tool electrode during 
planetary EDM of Ti–6Al–4V using adaptive neuro fuzzy inference system (ANFIS). Prior to model development, detailed 
analysis has been carried out to understand the effect of various electrical as well as tool actuation parameters on end wear of 
the tool electrode. Further, an algorithm is coded in MATLAB interface using the ANFIS model developed for end wear as 
the prediction element. The proposed model is capable of providing the compensated machining depth for a specified cavity 
dimension when a set of electrical and tool actuation parameters are provided. Validation of the model has been carried out 
by comparing the predicted and actual results for machining depth under different experimental conditions. The values of 
compensated depth obtained using the proposed model are found to be in reasonable agreement with actual results.
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1  Introduction

Electrical discharge machining (EDM) is a non traditional 
machining technique with which any electrically conduc-
tive material can be machined irrespective of its mechani-
cal properties. Being a process having immense application 
in the manufacturing industries, different techniques like 
tool rotation [1], tool/workpiece vibration [2], planetary or 
orbital actuation of the tool electrode [3] etc., have been 
attempted by researchers, to improve the process. Among 
these techniques, planetary actuation of the tool electrode 
is one such technique, which provides multi facetted ben-
efits. In this method, unlike die sinking method, a smaller 
tool electrode is employed for the generation of a bigger 
cavity, thereby reducing the tooling cost. Further, due to 
the enhancement of flushing at the inter electrode gap, the 
process can be carried out with improved stability, thereby 
reducing chances of tool electrode as well as feature distor-
tions [4–6].

Even after employing all these strategies during EDM 
process, one aspect that still affects the process efficiency is 
the wear that occurs on the tool electrode. Being a process in 
which the negative image of the tool electrode is generated 
on to the workpiece, any distortion on the same will reflect 
on the final feature accuracy. However, as this is inherent in 
the process, it can be either only be reduced or compensated 
during machining.

Wear on the tool electrode can be assessed in different 
ways like loss of material in terms of length or rounding-
off of the electrodes at the corners and edges of the elec-
trodes. The distortion of the tool electrodes at its edges and 
corners are highly dependent on tool geometry as well as 
discharge parameters and are very difficult to be compen-
sated. However, in the case of end wear, the machining 
depth can be revised or compensated more easily, so that 
the target feature depth can be achieved. The concepts for 
end wear compensation that has been reported by research-
ers can be broadly categorized in to three viz. applica-
tion of in-situ wear assessment, incorporation of proper 
tool actuation algorithm and modifying process param-
eter conditions on identification of any process instability. 
In in situ wear assessment based methods, systems like 
electric touch sensing system [7], machine vision system 
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[8], laser scan micrometer [9] etc., have been employed 
to assess the intensity of wear so that the machining con-
ditions can be changed accordingly. In algorithm based 
techniques, the tool movements are strategized on the basis 
of different logics so that the wear is compensated during 
the process. Algorithms like Uniform wear method [10], 
Linear compensation method [11], Scanned area method 
[12], Layer depth constrained algorithm, S-curve accel-
erating algorithm [13], CLU [14] etc., comes under this. 
Process condition based compensation methods utilize 
models involving discharge parameters or characteristics 
like discharge voltage [15], discharge counts or number 
of normal discharges [16] etc. Even though compensation 
models based on these techniques have good capability, 
their accuracy depends on the EDM process conditions 
and more importantly, on process stability.

Application of prediction models or systems that are 
developed based on experimental data comes in such con-
text. The advantage of using such systems is that the noise 
pertaining to the experimental set up as well as experimental 
conditions will be already included in the results, so that 
those effects are included to some extent in the predicted 
results as well. Further, the need of any extensive in situ 
wear assessment or compensation setups can be avoided. 
Techniques like artificial neural networks, fuzzy logic, etc., 
which are artificial intelligence based methods are widely 
used for developing such models.

From literatures, it has been observed that neural network 
and fuzzy logic based models perform relatively better in 
modelling of manufacturing process rather than statistical 
models and mathematical equations. But, artificial neural 
networks have limitations in terms of dependency on large 
data set and ineffectiveness in predicting responses involved 
in complex process. Similarly, in the case of fuzzy logic, dif-
ficulties pertaining to construction of appropriate member-
ship functions and fuzzy rules for a given problem is diffi-
cult [17]. However, Adaptive Neuro Fuzzy Inference System 
(ANFIS), which is a hybridized AI modelling technique that 
combines the aspects of ANN and Fuzzy logic, is a tool that 
has been reported to be a good prediction tool.

Researchers have reported the successful application of 
ANFIS for prediction of various responses in Electro Dis-
charge Machining process like material removal rate, tool 
wear rate, overcut, surface roughness, white layer thickness, 
etc. [18]. The concept has also been used for reverse map-
ping in EDM process in which process parameters can be 
predicted for a specified response value [19]. It has also been 
reported that the models based on ANFIS perform better 
than techniques like ANN, polynomial based functions, etc. 
[20, 21]. The technique has also been reported to be effec-
tive for predicting responses in hybrid EDM processes like 
ultrasonic assisted EDM [22], gaseous dielectric based EDM 
[23] etc.

From literature survey, it has been understood that ANFIS 
based models have reasonably good capability for predicting 
responses in EDM process compared to other commonly 
used techniques like ANN. However, it has also been noted 
that no attempt has been reported on application of such 
techniques for tool wear compensation in EDM process. As 
wear on the tool electrode is an aberration which is primarily 
dependent on process parameter combination and process 
stability, it is anticipated that models which can predict the 
end wear for different machining conditions can be of very 
good use; especially in cases where the wear intensity is 
too high. Hence it has been attempted to develop an ANFIS 
model to predict end wear of the tool electrode during plan-
etary EDM and use the same to develop a compensation 
model for machining features with improved depth accuracy.

2 � Plan of action

The present work has been planned in three stages. Figure 1 
shows the details of these stages. The experimentations have 
been carried out using a standard design and the data for 
end wear is collected and analyzed. The same is then used 
to develop an ANFIS model which is capable of predicting 
end wear under different experimental conditions. This fuzzy 
inference system is used in an algorithm based on linear 
compensation method to predict the revised or compensated 
target depth to obtain desired cavity size. The coding for 
algorithm has been done in MATLAB platform.

2.1 � Experimentation and data collection strategy

For collection of data, the experimentations have been car-
ried out on Joemars AZ50R ZNC Electro Discharge Machine 
with capability for planetary tool actuation. In planetary tool 
actuation, the tool electrode is made to travel at a predefined 
speed, along a path parallel to the edges of the final desired 
cavity. The axis of the tool electrode is offset from the cen-
tral axis of the final desired cavity by a distance called tool 
path offset. The resulting cavity will have dimension equal 
to the sum of edge dimension of the tool electrode and twice 
the tool path offset employed [24].

The experimentations have been designed using Tagu-
chi’s L′16 standard orthogonal array. Five parameters, viz. 
pulse ON time, tool path offset, scanning speed of the tool 
electrode, pulse OFF time and gap voltage have been con-
sidered at four levels for creating the layout. Table 1 shows 
the details of process parameters and their levels considered 
for experimentation.

Ti–6Al–4V (titanium grade 5 alloy) has been selected as 
the workpiece material as it has wide range of applications 
in fields like automotive, aerospace, biomedical etc. Even 
though the material can be machined by EDM process, the 
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intensity of wear on the tool electrode is extremely high, 
which calls up the need for wear compensation models. Cop-
per has been selected as the tool electrode material as it pos-
sesses excellent thermal and electrical properties necessary 
for an electrode material. The final cavity size of the cavity 
has been fixed as 10 mm × 10 mm × 10 mm. Electrodes are 
fabricated in such a way that the cross sectional size of the 
tool electrode along with the suggested tool path offset as 
per experimental layout will result in generation of desired 
cavity size.

In present study, the end wear has been measured using 
a slip gauge as a standard reference. Procedure of measure-
ment is shown in Fig. 2a–f. After mounting the tool elec-
trode and workpiece with proper alignment on the machine 
tool as shown in Fig. 2a, the top surface of the workpiece is 
set as zero (Z = 0.000 mm) with the help of edge detection 
facility in the machine (Fig. 2b).

Once the reference established on the workpiece surface, 
a slip gauge of size 5 mm is placed on the top surface of the 
workpiece (Fig. 2c) and the tool electrode is made to touch 
the slip gauge surface (Fig. 2d). On touching the slip gauge, 
the digital read out of the machine will show the reading 

equal to the dimension of the gauge as the tool electrode 
is fresh.

Once the machining is done, there will be loss of material 
from the tool as shown in Fig. 2e in lateral as well as longi-
tudinal directions. Prior to wear measurements, the oil stain 
and debris from the tip of the electrode are removed using 
a high absorbency tissue; without unmounting it from the 
setup. After cleaning, the slip gauge, which is used earlier 
is placed again on the workpiece surface and the worn out 
electrode is again made to touch on the it as shown in Fig. 2f. 
Since the electrode is not fresh, it will need to move more 
in the Z direction to touch the slip gauge surface. This will 
result in a change in Z axis coordinate of the top side of the 
slip gauge. Hence, the reading on the digital readout will be 
accordingly smaller than that of the size of the slip gauge. 
The difference between this reading and the one obtained 
prior to experimentation will give the loss of electrode mate-
rial in terms of length. This procedure is repeated at every 
depth increment of 2 mm, till the target depth of 10 mm is 
reached.

2.2 � Development of ANFIS model for end wear 
prediction

Adaptive neuro-fuzzy inference system (ANFIS) is a tech-
nique that is designed to allow a set of IF-THEN rules and 
membership functions (fuzzy logic) to be constructed based 
on a set of data. The adaptive nature (neural networks) of 
the system helps in the automatic tuning of the membership 
functions, thereby allowing such models to predict the input/
output relationship efficiently [25, 26]. Figure 3 shows the 
basic architecture of an ANFIS model.

Fig. 1   Plan of action followed for developing end wear compensation model

Table 1   Parameters and levels considered for experimentation

Parameter Unit Levels

Pulse ON time µs 93 165 240 315
Tool path offset mm 0.5 1.0 1.5 2.0
Scanning speed mm/s 0.05 0.07 0.09 0.11
Pulse OFF time µs 335 410 475 550
Gap voltage V 40 55 70 85
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The network shown includes ‘m’ inputs (X1…Xm), in 
which each one consists of ‘n’ membership functions (MFs). 
Moreover, a layer with ‘R’ fuzzy rules and an output layer 
contributes to the construction of this model. Number of 
nodes in first layer can be calculated by the product of ‘m’ 
as number of inputs and ‘n’ as number MFs (N = m × n). The 
number of nodes in other layers (layer 2–4) relates to the 
number of fuzzy rules (R).

In present study, six input parameters viz., pulse ON time, 
tool path offset, scanning speed of the tool electrode, pulse 
OFF time, gap voltage and target cavity depth have been 
used to develop ANFIS model for end wear. Layout of the 
model is shown in Fig. 4. Fuzzy logic tool box available in 
MATLAB package is used for model development. Gaussian 
membership function has been used for model development, 
as such membership functions have excellent performance 
capability [17]. Subtractive clustering method has been pre-
ferred over grid partitioning method for fuzzy inference sys-
tem generation as the former one is more suitable for models 
that contain higher number of parameters [27].

A total of 80 data sets have been used for model develop-
ment, as end wear pertaining to five different cavity depths 
have been collected from each of the 16 experiments. 85% 
of the data has been used for training the model and the rest 
is used to test the prediction accuracy. Data for training as 
well as testing of the model have been selected randomly 
from the data set pool so as to avoid any bias. In order to 
ensure the accuracy of the developed model, adequacy of 
the model has been checked by evaluation parameters like 
mean error, standard deviation and average percentage as 
discussed by [28].

2.3 � Concept of end wear compensation using ANFIS 
model

End wear in EDM process is almost inevitable and it may not 
be possible to reduce the feature inaccuracy by just a single 
level of compensation. There are chances that the intensity 
of end wear may vary with machining depth. ANFIS model 
developed in present study may be used in such cases as 
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Fig. 2   a–f End wear measurement procedure
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it is capable of predicting end wear for different values of 
machining depths and process parameter combinations. 
However, a properly designed algorithm is necessary for 
accurate prediction of the compensated depth. Figure 5 
shows the flowchart for the proposed model for end wear 
compensation in planetary EDM process using ANFIS.

Let dt be the target depth, da, the achieved depth and 
EW be the value for end wear predicted by the developed 

ANFIS model for a specified target depth. In present study, 
it has been assumed that da = dt − EW. Based on this, the 
target depth has been recalculated as dt + EW which has been 
defined as d′

t
. Now, the end wear that occurs when the target 

is set as d′
t
 is calculated and the achieved depth is recalcu-

lated. The value for achieved depth is then compared with 
the required target depth dt. If the value of da is equal to dt, 
the loop breaks and the compensated length will be d′

t
. If da 
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is not equal to dt, the whole process repeats till the condition 
is achieved.

An algorithm for this logic has been coded in MATLAB 
interface. Accuracy of the proposed compensation model 
has been assessed by comparing the results predicted by 

Fig. 5   Flow chart for proposed 
compensation model for end 
wear using ANFIS
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the model with experimental results obtained under similar 
conditions.

3 � Results and discussions

3.1 � Effect of process parameters on end wear

Figure 6a–e shows the effect of process parameters on 
cumulative end wear during planetary EDM. As signal to 
noise ratios calculated using lower the better condition are 
employed for data analysis, parameter condition that yields 
highest value will result in lowest end wear.

From Fig. 6a, it can be seen that the end wear decreases 
with increase in pulse ON time. However, rest of the 

electrical parameters, viz. pulse OFF time and gap voltage, 
are found to have relatively smaller effect on the response. In 
the case of tool actuation related parameters, it can be seen 
that tool path offset has a dominant effect on end wear of the 
tool electrode. The response has been observed to increase 
with increase in tool path offset. At the same time, in the 
case of scanning speed, it can be seen that the end wear is 
low when higher values of scanning speeds are employed. 
Similar observations can be inferred by comparing the p 
values obtained through the ANOVA results, which shown 
in Table 2.

The reduction in end wear with increase in pulse ON time 
may be due to the formation of thick carbon layer on the 
tool surface during machining. With increase in pulse ON 
time, the temperature at the machining zone as well as at the 
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Fig. 6   a–e Main effect plots for end wear of the tool electrode

Table 2   ANOVA results for 
end wear

Factor DOF SS MSE F ratio p value % cont.

tON 3 77.534 25.845 5.285 0.1 15.88
τo 3 344.074 114.691 23.451 0.01 70.48
So 3 25.367 8.456 1.729 0.34 5.20
tOFF 3 14.671 4.891 – – 3.00
V 3 26.533 8.844 1.808 0.32 5.44
Error 0 0 – – – –
Total 15 488.156 100.00
Pooled 3 14.672 4.891
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electrodes increases. This results in the dissociation of the 
dielectric fluid, leading to the formation of carbon, which 
gets strongly adhered to the tool surface. Further, the high 
temperature at high pulse ON time conditions result in the 
expansion of the plasma channel, leading to reduction in 
intensity of material loss from the tool electrode and hence 
lower end wear.

However, the total wear on the tool electrode also depends 
on the heat carrying capacity of the same. An increase in 
temperature on the electrode surface will make it more prone 
to wear. Hence, conditions that increase or decrease the heat 
content per unit volume of the electrode may accordingly 
increase or decrease the intensity of wear on the same. In 
present study, as the target dimension is kept constant, the 
dimension of the tool electrode has been varied accordingly 
with variation of tool path offset. This implies that a tool 
with smaller cross sectional area be used under high tool 
path offset. As the cross-sectional area reduces, the heat 
accumulated in the electrode material will increase and this 
will lead to intense loss of material in terms of length from 
the electrode. This could be the reason for the increase in 
end wear with increase in tool path offset. However, it is 
also worth noting from Fig. 6c, d that a higher values of 
scanning speed of the tool electrode and pulse OFF time is 
preferable for lower end wear of the tool electrode. As both 
these parameter conditions facilitate enhanced flushing in 
the machining zone, the heat accumulation in the electrodes 
and the possible material loss from the same can be reduced 
to a great extent.

From these discussions, it can be inferred that both elec-
trical and tool actuation parameters have a crucial role on 

end wear that occurs on the tool electrode. However, the 
combined effect of these parameters are more important than 
those effects induced by individual parameters. It can be 
seen from Fig. 7 that despite the use of a lower pulse ON 
time and high pulse ON time, the wear on the tool electrode 
is extremely high due to the use of electrode with smaller 
cross-sectional size. Hence, a model which can handle all 
these parameters together is essential for the effective predic-
tion of end wear.

3.2 � Performance evaluation of proposed End wear 
compensation model

As the accuracy of the proposed model is dependent on 
the prediction element used in it, it is important to assess 
the accuracy of the same. Table 3 shows the results for the 
adequacy check that has been carried out using the testing 
data on the ANFIS model for end wear. It can be clearly 

Fig. 7   Effect of tool path offset 
and pulse ON time on end wear 
of the tool electrode

)sµ(emitNOesluP

Pu
ls

e 
O

FF
 ti

m
e 

(µ
s)

 

51339

33
5 

o = 0.5 mm  
(Tool edge length = 10mm) 

o = 1.0 mm 
(Tool edge length = 8mm) 

55
0 

o = 2.0 mm 
(Tool edge length = 6mm) 

o = 1.5 mm 
(Tool edge length = 7mm) 

Table 3   Adequacy check for ANFIS model for end wear

yi response value generated using the model, yexp corresponding 
response value obtained through experiment, µ average of response 
values obtained using model, N number of observations

Mean error
Emean =

1

N

n
∑
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�
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� − 0.018
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∑
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seen that the error values are lower. Further, from Fig. 8, 
which shows the comparison between experimental and 
predicted values for test data used for adequacy checking, 
it can be seen that predicted results are fairly close to the 
experimental observations in most cases. Thus, it can be 
understood that the developed model has reasonably good 
prediction accuracy.

Accuracy of the proposed compensation model has been 
assessed by comparing the actual and predicted depth set-
tings. The experiment results that have not been used to train 
the ANFIS model are used to test the prediction efficiency 
of the model. The cavity depth achieved under a particular 
machining condition for a specified depth has been meas-
ured. This depth achieved is given as target depth in the 
compensation model. The revised target depth provided by 
the model is then compared with actual depth that was set on 
the machine tool for checking the models prediction accu-
racy. Table 4 shows the comparison between these values for 
randomly selected experimental conditions.

It can be understood that the model has reasonable good 
prediction accuracy. However, the prediction accuracy has 
been observed to be slightly lower at lower pulse ON time 
and higher tool path offset conditions. This may be due to 

the intense wear that tends to occur on the tool electrode 
under such conditions.

4 � Conclusions

Application of Neuro-Fuzzy systems for electrode end wear 
compensation in planetary EDM process has been carried 
out. Prior to model development, the effect of process as 
well as tool actuation parameter on end wear of the tool 
electrode has been analysed statistically using analysis of 
variance method. After understanding the need and utility of 
the model based on analysis results, an ANFIS model which 
is capable of predicting end wear of the tool electrode during 
planetary EDM of Ti–6Al–4V has been developed to reduce 
depth inaccuracies. Accuracy of the proposed model has 
been checked with randomly selected experimental condi-
tions and the results are found to be encouraging. The accu-
racy of the proposed model has been observed to deteriorate 
at experimental conditions that result in intense tool wear. 
Further, it should be noted that the model developed in the 
present study is process parameter range as well as material 
specific; however, the concept can be applied very well for 

Fig. 8   Comparison between 
experimental and predicted 
values for end wear

Table 4   Performance of compensation model at randomly selected experimental conditions

tON pulse On time, τo tool path offset, So scanning speed, tOFF pulse OFF time, V gap voltage

Sr. No. tON (µs) τo (mm) So (mm/s) tOFF (µs) V (V) Target depth 
(mm)

Depth set on 
machine (mm)

Depth predicted by 
the model (mm)

% Error

1 93 1 0.07 410 55 3.558 4 3.779 − 5.848
2 93 2 0.11 550 85 4.956 6 5.637 − 6.439
3 165 1 0.05 550 70 5.678 6 5.976 − 0.402
4 165 1.5 0.11 335 55 7.236 8 8.098 1.210
5 240 0.5 0.09 550 55 9.691 10 9.986 − 0.140
6 240 2 0.07 335 70 3.428 4 3.921 − 2.015
7 315 1.5 0.07 550 40 5.559 6 6.009 0.150
8 315 2 0.05 475 55 5.412 6 6.051 0.843
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other process parameter range-tool-workpiece-hybrid EDM 
process combinations.
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