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1  Introduction

Increasing customer individualization in the global markets 
as well as rapid changes in demand, resource availability, 
quality, or user requirements lead to environmental turbu-
lences and uncertainty in the assembly process of industrial 
companies [1, 2]. Robotized automation is usually designed 
for a specific application purpose and the frequent rewriting 
and retesting of the corresponding robot control (RC) pro-
grams, required, for example, to adjust them to a new prod-
uct [1–3], involve much cost and effort. Such adjustments 
do not usually make any contributions to the value-adding 
process, so novel planning and control methods such as 
self-optimizing production systems [4, 5] are required to 
adjust autonomously to this turbulent environment.

However, despite self-optimization and novel technolo-
gies, many complex assembly tasks still require the human 
operator to perform manual interventions ranging from the 
assembly of flexible parts up to high-level problems such 
as the handling of erroneous situations and the solution 
of ill-posed problems [2, 6, 7]. Consequently, it is advan-
tageous to combine the operator’s extraordinary cognitive 
and sensorimotor skills with the technical capabilities of 
the robot [8]. Thereby, the occupational safety of the work-
ing person in terms of mental and physical work conditions 
has to be ensured anytime. While collaborative workplaces 
can be designed with respect to all technical safety require-
ments (e.g. [9–12]), hazards coming from the product or 
the assembly process (e.g. sharp edges, risk of entrapment) 
may not be totally excluded, especially against the back-
ground of dynamic assembly environments with few pre-
planning efforts. Cognitive systems try to simulate human 
cognition and can be used to partially establish an image 
of the human mental model and its skills within production 
control. Deficiencies in automation [13–15], human–robot 
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interaction [16], and planning [17] can thus be compen-
sated, enabling a further step towards “intelligent produc-
tion systems” to be made.

From the human point of view, the operator might still 
be exposed to physical and mental strain due to his1 assem-
bly tasks and the non-deterministic system behavior of self-
optimizing systems. This should be avoided by adequately 
designing the autonomous decision-making process during 
the collaboration with the robot [8, 18–21]. For this pur-
pose, a cognitive production control for controlling a robot-
assisted assembly cell [22, 23] was extended by a graph-
based assembly sequence planner (GASP).

2 � Production control in dynamic environments

Dynamic markets demand new requirements from produc-
ing companies. Self-adjusting production control as well as 
flexible assembly planning processes pioneers an efficient 
production and forms the basis for effective and ergonomic 
human–robot collaboration (HRC).

2.1 � Cognitive automation for self‑optimizing 
socio‑technical production systems

In order to be able to react dynamically to changed produc-
tion conditions, it is essential to avoid rigid structures and 
to design the production system flexibly. Such dynamic 
adaptations can be found in human cognition and its infor-
mation processing mechanisms [24]. Cognitive software 
systems such as Soar [25] try to simulate human cognition 
to propose and evaluate action alternatives and to decide 
for the most promising action with respect to the target 
state. Assuming an adequate knowledge base, the transfer 
of this behavior to production systems and therefore the 
use of cognitive software systems as control units result 
in a highly flexible decision-making process [1, 26]. By 
applying inference techniques, existing knowledge can be 
used and recombined in order to solve unknown problems 
that may be due to sensor failures (e.g. wrong detection of 
parts or semi-finished products) or new product variants to 
be assembled. These intelligent systems can be viewed as 
self-optimizing systems characterized by an endogenous 
adaptation of their objectives due to changing external 
objectives, operation points, or operating conditions [4, 
5, 27]. Parameters, the inner structure, and behavior are 
adjusted autonomously on the basis of internal decisions. 
In this process, the knowledge of both human and techni-
cal parts of the system is used, as these future systems are 

1  For ease of reading, the masculine form has been used in the text to 
refer to both genders.

mainly characterized by the communication and coopera-
tion between the intelligent system elements [27].

Based on multiple approaches to model self-optimizing 
systems [4, 28–30] a hierarchical, self-similar architecture 
for cognitively automated, self-optimizing production sys-
tems was developed [5, 31]. Each level of the architecture 
has its own cognitive controller with its own decision cycle 
that is responsible for goal-oriented knowledge process-
ing and decision making. The human operator is consid-
ered as an integral part of the production system, so that 
he is involved on each level and interacts directly with the 
cognitive controller. For cognitively controlling a robotic 
assembly cell [32], a Cognitive Control Unit (CCU) based 
on Soar was developed to control pick and place processes 
for individual parts and components in line with the human 
mental model [22, 23]. Thereby, the human operator does 
not only perform supervisory tasks, but takes active part 
in the assembly process in a collaborative manner with the 
robot. To ensure effective and ergonomic collaboration, a 
model for assessing assembly processes was developed 
based on a graph-based representation of the product for 
assembly sequence planning.

2.2 � Approaches to assembly planning

General approaches to assembly planning can be found in 
the field of artificial intelligence, where finding solutions 
for structured problems is one of the central research areas. 
Forward planners, for instance, search a specified state-
space in order to find a deterministic plan to achieve a goal 
from a given starting state [33]. The fast-forward planner 
[34] is suitable to derive actions sequences for given prob-
lems in deterministic domains. Further approaches such as 
heuristic forward search [35] or SAT-based planning [36] 
are additionally able to cope with incomplete information 
and uncertainty. However, as these planners rely on sym-
bolic representations based on logic, the representation of 
geometric relations between objects become very complex 
even for small tasks, which impacts the performance of the 
planners dramatically.

Specialized planners designed especially for assem-
bly planning mainly work directly on geometric data and 
transform them into a graph-based representation to derive 
action sequences. By means of the “assembly by disas-
sembly” strategy compact structural representations of the 
product can be obtained (e.g. [37–39]). Most approaches 
proposed in the literature are not able to adapt online to 
environmental changes (e.g. [37, 38, 40, 41]), whereas 
the support system proposed by Zaeh and Wiesbeck [42] 
and the robot plan execution system by Shah [43] observe 
and identify the human’s actions and adopt their own plan-
ning correspondingly. Regarding the operation purpose 
of the planning system most approaches are designed for 
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autonomous assembly [37–39, 44]. Only few consider HRC 
[41, 43], manual assembly [42], or are generally applicable 
[40]. Consequently, none of them is able to allocate assem-
bly tasks to different assembly units such as the human and 
a robot, except the IkeaBot [44] that assigns the assem-
bly tasks to multiple cooperative robots. In addition, the 
ergonomic conditions of assembly steps are considered at 
best in terms of mental load of the human (e.g. [42, 43]). 
Physical ergonomics is addressed nowhere. Hence, there 
is a need to develop a method for planning and assessing 
assembly processes with regard to HRC and the conse-
quent ergonomic work conditions for the human. Against 
the background of dynamic production environments, 
this method has to cope with incomplete information and 
uncertainty.

3 � Model‑based assembly sequence planning 
for human–robot collaboration

In order to take ergonomics and safety aspects of the col-
laborative assembly process into account, the CCU was 
extended by a novel GASP that incorporates a model for 
assessing the risk of individual work steps for the human 
operator [23, 31] (see Fig.  1). The GASP works using a 
reusable assembly graph that contains all feasible assem-
bly sequences of the product and is searched for the optimal 
assembly sequence within each planning cycle. For this 
purpose, it obtains the current system state by the cognitive 
processor and returns a list of priority-ordered possibilities 
to the cognitive processor to continue the planning process.

3.1 � Generation of the model for assessing assembly 
steps

Following the approach of Ewert et  al. [45], the plan-
ning process is divided into an offline and an online 
phase. In preparation of the production process, a 
directed state graph is initially generated according to the 

assembly-by-disassembly strategy [38]. For this purpose, 
the CAD data of the final product are searched for the geo-
metric data and the pose of the parts in order to derive the 
neighborhood relationships. By recursively decomposing 
the product, all feasible assembly sequences can be iden-
tified and transformed into the assembly graph. Conse-
quently, each node si of the graph represents a valid sub-
assembly of the product and all outgoing edges (si, si+1) 
possible assembly steps, with each step consisting of the 
assembly of exactly one single component. The assembly 
graph of an exemplary product consisting of four cubic 
components is depicted in Fig. 2.

Each edge of the assembly graph is attached with 
weights induced by the corresponding assembly step. As 
the assessment of an assembly step needs to be determined 
dynamically during the assembly phase, rules representing 
planning criteria are specified in the knowledge base that 
can be combined according to the current optimization 
criteria. The resulting edge weights consider, on the one 
hand, the assignment of the assembly task to the human 
operator or the robot. On the other hand, edge weights are 
calculated with respect to the currently activated planning 
criteria in the knowledge base. In particular, these rules 
represent human-like assembly strategies and include plan-
ning aspects of both physical and cognitive ergonomics, 
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Fig. 1   Integration of the graph-based assembly sequence planner 
(GASP) into the cognitive control of the assembly cell

Fig. 2   Exemplary assembly graph for a product consisting of four 
cubic components and two assembly groups (wH: manual assembly, 
w
1
: human–robot switch, w

2
: robotic tool switch, w

3
: assembly group 

switch, w
4
: poor ergonomics due to high pressure needed)
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in order to make the assembly sequence as safe and trans-
parent as possible for the human operator. Using standard-
ized methods for assessing the ergonomic work conditions 
of single work steps such as DIN EN 1005-2 [46], Ovako 
Working Posture Analysing Systems (OWAS) [47, 48], or 
RULA [49] as well as direct measurement techniques (e.g. 
[50]) allow for assigning numeric values as weights to the 
edges. Thereby, occupational hazards justified by the char-
acteristics of the assembly step (e.g. high forces) or the 
course of the previous assembly steps (e.g. risk of entrap-
ment) can be avoided at an early stage in planning.

Regarding cognitive ergonomics, such assembly strat-
egies could be identified and validated successfully in 
two independent experimental trials [21, 51] and include 
among others: (1) buildup with respect to the vicinity of 
neighboring parts, (2) buildup in layers. As many products 
can be decomposed into several assembly groups, a further 
rule concerning the buildup in logical groups of parts is 
added. This also reflects the natural assembly strategy of 
the human. Due to the increased transparency and predict-
ability of the assembly sequences, wrong perceptions and 
therefore misunderstandings in the interaction between the 
human and the robot are avoided. Besides these ergonomic 
rules, the assembly planning also copes with technical cri-
teria, as the robotic tools generally have limitations with 
respect to, for instance, the required space at the joint posi-
tion or the kind of object that can be handled. In the exem-
plary assembly graph of Fig.  2, part 4 denotes a second 
assembly group that has to be handled with another tool. 
In addition, the robot might not be able to position part 2 
autonomously if the parts 1 and 3 have already been assem-
bled (see state s

5
). Hence, the last rule requires two freely 

accessible parallel sides, in order to be able to use a parallel 
gripper. In case this condition is not satisfied, the assembly 
step has to be delayed or taken over by the human.

The aforementioned rules can be applied to each edge 
(i.e. to each assembly step) of the assembly graph. Their 
preconditions are checked at each intermediate state 
of the assembly, yielding a numerical assessment. As 
a result, each edge of the assembly graph has a vec-
tor w =

(

wH ,w1
,… ,wm

)T attached to it, containing all 
weights, with wH indicating the weighting for manual 
assembly steps and wi the weighting for rule i. The result-
ing graph is a generic description of the assembly process 
that can be reused for different optimizations depending on 
the current system objectives. Rules can be activated and 
deactivated, but only the weights of the activated rules are 
considered in the following planning procedure.

3.2 � Assessment of the assembly process

During the assembly process, the GASP has to decide about 
the next options for continuing the assembly sequence. 

To do so, the current node of the assembly graph is iden-
tified by means of the current system state. Starting from 
this node the weights of all outgoing assembly sequences 
have to be determined in order to be able to compare 
them. Let  = (s

0
,… , si,… , si+j, si+j+1,… , sn) describe 

an arbitrary assembly sequence, where s
0
 denotes the ini-

tial (i.e. empty) state, in which no part has been assembled 
yet, si the current state, and sn the final state, in which the 
product has been assembled completely. Next, the total 
weight of one possible continuing assembly sequence 


� = (si+1,… , si+j, si+j+1,… , sn) is determined by sum-
ming up the weights along the path, which consist of the 
basic weight wb for each assembly step and the additional 
weight wa = w ⋅ rT. Here, r ∈ {0, 1}

m+1 denotes the activa-
tion vector for the planning rules, while ri = 0 deactivates 
and ri = 1 activates rule i. Having the particular rules for 
assessing assembly steps in mind the aforementioned pro-
cedure results in a description of the technical and ergo-
nomic conditions of the remaining assembly sequence  ′.  
Against the background of HRC these sequences can be 
compared and balanced, for instance, with respect to the 
contained (poor) ergonomic conditions, which result in 
higher assessments.

In the exemplary assembly graph of Fig. 2, it is assumed 
that s

1
 is the current system state. Furthermore, component 

2 needs to be assembled manually with high pressure [see 
assembly step (s

5
, s

8
)], if component 1 and 3 are already 

assembled, and component 4 belongs to a second kind of 
components that needs to be assembled with a different tool 
[steps (s

4
, s

7
) and (s

8
, s

9
)]. Then, all assembly steps can be 

assessed using the following rules: wH for manual assem-
bly, w

1
 for human–robot switches, w

2
 for tool switches, w

3
 

for assembly group switches, and w
4
 for poor ergonom-

ics due to high pressure needed. The decision whether the 
workflow switches from the human to the robot [w

1
 in step 

(s
8
, s

9
)] depends on the history of the assembly sequence. 

Furthermore, the high pressure needed for component 2 
is negligible if the robot assembles the component [step 
(s

1
, s

4
)], but it does matter in case of manual assembly [w

4
 

in step (s
5
, s

8
)]. Depending on the numerical evaluation 

of the planning criteria, one possible continuation of the 
assembly sequence might therefore be (s

4
, s

7
, s

9
). Hereby, 

the additional tool switch is preferred to the intervention of 
the human, which might expose him to high physical stress.

Assuming that the component supply does not provide 
all necessary parts at once but only j parts, the total weight 
can be calculated reliably only for the next j assembly steps, 
i.e. up to state si+j. For the remaining assembly sequence it 
is uncertain which parts will be available assuming a ran-
dom component supply. Hence, these weights have to be 
estimated by assuming that in each state of the considered 
sequence the necessary part is available, in order to not 
underestimate the total weight of the assembly sequence. 
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The estimated weights therefore base on the assembly of 
the component (wb), which is assumed to be available, and 
the relevant additional weights of the planning criteria (wi). 
Otherwise, these assembly steps would have to be marked 
as infeasible preventing a complete planning process for the 
assembly sequence.

With the aforementioned assessment of individual 
assembly sequences in mind, the alternative assembly 
steps of the current state are compared by means of the 
total weights of the corresponding sequences. The remain-
ing assembly sequences are found by applying a modified 
version of the algorithm A*Prune [23, 52]. As result, the 
best k continuing assembly sequences having the lowest 
total weight are returned. Paths with equal beginnings of 
the assembly sequence are reduced to one single path by 
choosing the one with the lowest weight in order to maxi-
mize the diversity of the possible next assembly steps.

The final set of possible next assembly steps is presented 
to the cognitive processor of the CCU by assigning pref-
erences that correspond to the total weights. In particu-
lar, assembly steps with high weights are rated with a low 
probability within Soar and vice versa. During the deci-
sion phase the CCU can apply an additional threshold in 
order to neglect solutions that deviate too much from the 
optimal solution. Actions that are proposed by the CCU but 
not by the GASP are also neglected, because the GASP has 
more information available for the planning process than 
the CCU. Using the external preferences, the cognitive pro-
cessor can proceed with its decision-making process and 
selects the action considered to be the best based on the 
internal and external knowledge. The CCU thus retains its 
cognitive features and is able to consider complex planning 
criteria and changes in its environment dynamically.

4 � Validation

The decision-making process of the developed CCU as well 
as the assembly sequence planning by the GASP were vali-
dated by means of a simulation study. This study focused 
both on the correctness of the planning procedure and the 
support of the collaborative assembly procedure between 
the human and the robot. The following hypotheses were 
made:

•	 Reduction of human–robot switches and switches 
between robotic tools: Switches in the workflow 
between the human and the robot may induce physi-
cal or mental stress and strain [18–20]. The number 
of switches should thus be reduced to a minimum. At 
the same time, the temporal variance of manual work 
tasks is decreased enabling a continuous workflow. 
The reduction of the number of switches between the 

robotic tools makes the assembly process more effi-
cient and releases the operator from supervisory tasks.

•	 Reduction of switches between assembly groups: The 
temporal course of the assembly process should con-
tain as few switches between assembly groups as pos-
sible. This increases the transparency of the assembly 
process and facilitates the potential intervention of the 
operator for manual assembly.

4.1 � Method

During the assembly process, a model of a Stromberg 
carburetor (see Fig.  3) was assembled collaboratively 
between the human and the robot. The carburetor con-
sists of three independent assembly groups and 26 parts 
in total. The parts marked with an arrow in Fig. 3, such 
as the sealing ring or the retaining spring, were classified 
for manual assembly by the human as they require exten-
sive sensorimotor skills during joining. The other parts 
are assumed to be assembled autonomously by the robot 
using a gripper and an electric screw driver.

The independent variables of the simulation study 
were the number of supplied parts, the usage of the 
GASP, and the weights for the graph edges with respect 
to assembly group switches. The number of parts sup-
plied simultaneously was varied systematically between 
1 and 24. The simulation was run for each condition with 
activated and deactivated GASP. In case the GASP was 
activated, the simulation was run with a deactivated plan-
ning rule and an activated planning rule for the buildup in 
assembly groups. In order to examine the dependency of 
the results on the chosen edge weights, the weights were 
varied exploratory between 10, 20, and 50. The number 
of workflow switches between the human and the robotic 
tools and the number of assembly group switches were 
chosen as dependent variables. In order to avoid unnec-
essary switches of the work piece between the human 
and the robot as well as between the robotic tools, the 

Fig. 3   Model of a Stromberg carburetor. The parts marked with an 
arrow have to be assembled manually by the human operator [53]
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additional weights for human–robot switches and switch-
ing the robotic tools were chosen at a rate of 1:2 with the 
weights 10 and 20, respectively.

As the data are not normally distributed, they were ana-
lyzed using the Wilcoxon rank sum test and Kruskal–Wal-
lis test, respectively, at a level of significance of � = 0.05. 
Regarding trend analyses, the Jonckheere–Terpstra test was 
applied, an extension of the Kruskal–Wallis test that takes 
an existing a priori ordering of the populations into account 
in order to achieve a higher statistical power [54, 55]. The 
statistical analyses were conducted with MATLAB R2016a 
and IBM SPSS Statistics 21.

4.2 � Results

The conducted simulation study shows a reduction of both 
human–robot switches and switches between the robotic 
tools during the collaborative assembly when using the 
GASP for planning the assembly sequence. As shown in 
Table 1, there is a significant reduction for nearly all combi-
nations according to the Wilcoxon rank sum test [53]. The 
increased number of switches between the human operator 
and the robot using a screwdriver may be due to the struc-
ture of the carburetor, whose assembly groups are mainly 
assembled sequentially. As one of the main design goals of 
the GASP is to support the human in situations of HRC and 
to minimize the ergonomic risks, the interaction between 
the human and the robot is of particular interest. The 
effect sizes r state a small to moderate effect for all cases 
in which the human operator is involved, and a moderate 
to large effect for the switches between the robotic tools. 
The total number of switches between the human and the 
robot could be reduced significantly by 5.09% (deactivated 
GASP: M = 6.06, SD = 1.77; activated GASP: M = 5.75, 
SD = 1.69; Z = 5.32, p < 0.001, r = 0.084).

The number of workflow switches is additionally influ-
enced by the number of parts that are supplied simulta-
neously, as these are the only parts the GASP can use to 
plan the assembly sequence reliably. For running the CCU 
with 1–24 parts, the mean number of workflow switches 
between the human and the robot is 6.06 (M ∈ [5.76;6.26],

SD ∈ [1.64;1.92]), whereas the mean number of switches 
between the robotic tools is 5.43 (M ∈ [5.25;5.64], 
SD ∈ [1.11;1.39]). According to the Jonckheere–Terpstra 
test, both measures show a significant trend with respect 
to the number of parts: as more parts were supplied, the 
number of switches increased (human–robot switches: 
J = 936746.0, z = 4.382, r = 0.098; tool switches: 
J = 906136.0, z = 2.173, r = 0.049). The numbers of 
observed workflow switches are the baselines for compar-
ing the results of the following simulation runs, in which 
the GASP was activated.

Figure  4 depicts the mean relative deviation of the 
number of switches between the human and the robot as 
well as between the robotic tools with respect to the num-
ber of supplied parts. According to the Wilcoxon rank 
sum test, no significant effect is found for the number of 
human–robot switches for up to four parts. However, 
there is a significant decrease within the range of 8–24 
parts (each p < 0.05, each r ∈ [0.089;0.197]). This cor-
responds to an average decrease of 7.98% (deactivated 
GASP: M = 6.21, SD = 1.80; activated GASP: M = 5.72, 
SD = 1.72; Z = 7.03, p < 0.001, r = 0.141).

A very similar effect (albeit even stronger) can be 
observed with respect to the number of tool switches within 
the assembly sequence. They can be reduced on aver-
age by 25.97% (deactivated GASP: M = 5.43, SD = 1.27; 
activated GASP: M = 4.02, SD = 1.33). Independently 
of the number of supplied parts, statistical analysis shows 
a strong effect by using the GASP (each p < 0.001, each 
r ∈ [0.409;0.574]).

Regarding the second research hypothesis, the num-
ber of switches between the assembly groups within 
one assembly sequence is of particular interest. Run-
ning the CCU without GASP yields an average number 
of 9.52 switches (SD = 0.18). Regarding the number of 
supplied parts, there exists a significant positive trend 
(J = 1045519.5,z = 11.593,r = 0.259). Figure 5 depicts the 
relative deviation of the mean number of assembly group 
switches with respect to the simulation runs with deacti-
vated GASP. Here, not using the planning rule is equivalent 
with using the rule with a weight of 0. For edge weights up 
to 20 no positive effect is caused by the GASP. Rather, an 
increase can be observed that has a significant trend for the 
weights 0 (J = 788547.5, z = −5.847, r = −0.131) and 10 
(J = 917239.5, z = 2.857, r = 0.064) according to the Jon-
ckheere–Terpstra test.

Table 1    Reduction of the number of switches between the human 
operator, the robot using gripper, and the robot using screwdriver, 
when activating the GASP, and the results of the corresponding Wil-
coxon rank sum tests

*p < 0.05, **p < 0.01, ***p < 0.001

Gripper Human operator Screwdriver

Gripper – −19.36%*** −19.42%***
 Z-value 12.81 24.63
 Effect size r 0.203 0.390

Human operator −11.80%*** – −2.60%
 Z-value 4.53 1.53
 Effect size r 0.072 0.024

Screwdriver −33.10%*** +11.12%*** –
 Z-value 30.24 −5.03
 Effect size r 0.478 −0.080
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This increase is closely related to the Pareto principle 
(e.g. [56, 57]) of the GASP. As the planning rules are addi-
tive, the GASP has to balance different optimization crite-
ria against each other. The weight for switching the assem-
bly groups competes with the aforementioned weights for 
switching the workflow between the human and the robot, 
which are in this case higher than those for the assembly 
groups. However, increasing the edge weight for switching 
the assembly group to 50 yields a reduction (see Table 2). 
According to the Wilcoxon rank sum test this effect is sig-
nificant for more than 12 parts supplied simultaneously. 
Regarding the number of supplied parts the data again 

contains a significant trend (J = 788547.5, z = −5.847, 
r = −0.131).

5 � Conclusion and outlook

Self-optimizing production systems can be used to satisfy 
novel challenges of the global markets. As the human oper-
ator directly collaborates with this system, the interaction 
interface requires an adequate design. For this purpose, a 
CCU was developed that transparently controls a robot-
ized assembly cell in line with the operator’s expectations. 
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Furthermore, the CCU was extended by a GASP in order 
to further reduce the cognitive and physical risk of the col-
laborative assembly process. By assigning preferences to 
the individual assembly steps, an assembly sequence is 
chosen that best provides a complete and optimal assembly 
process.

The presented GASP was validated by means of a sim-
ulation study in which a model of a Stromberg carburetor 
was assembled collaboratively by the human and the robot. 
The study focused on creating an ergonomic work process 
that reduces the cognitive and physical workload for the 
operator. The results show a significant reduction of both 
the number of workflow switches between the human and 
the robotic tools and between the robotic tools themselves. 
This ensures not only a transparent and understandable 
workflow, but also avoids unnecessary instances of possibly 
erroneous and dangerous interaction between the human 
and the robot. Consequently, the working person is able to 
work more efficiently and therefore might be more satis-
fied. The reduction of potential hazards helps to improve 
the preventive health care. However, minimizing mental 
workload may also be related with an increasing number of 
monotonous work steps that have to be performed by the 
human. Hence, both excess and insufficient mental work-
loads have to be avoided by defining appropriate selection 
criteria for the assembly steps.

However, the study also reveals a significant increase 
of the switches between the screw driver and the human. 
This may be due to the product model and should be val-
idated by means of another product in order to exclude 
any systematic effect. In the same way, the effect of small 
numbers of supplied parts should be revalidated using a 
different product, which should also consist of different 
assembly groups but provide more flexibility in choosing 
the assembly sequence. A possible minimum number of 
parts that are needed by the GASP to optimize the assem-
bly process effectively may thus be confirmed or rejected. 
The increasing complexity of products (up to real produc-
tion environments) can be encountered by automating the 

generation of the edge weights. Some weights can already 
be derived autonomously (e.g. switches between assem-
bly groups or resources), while others have to be obtained 
manually (e.g. ergonomic risk). By processing additional 
product information such as the component information 
or the geometric data or by recording directly objective 
measures of the working person (e.g. [50, 58, 59]) these 
ergonomic assessments could be achieved.

Regarding the number of assembly group switches, a 
sensitivity analysis showed that the effect of this plan-
ning rule crucially depends on the value of the edge 
weight that is assigned to the corresponding assembly 
step. Using a weight of 50 yields partially a significant 
reduction, but the effect sizes state only small effects. 
Further studies should thus examine if higher values lead 
to stronger effects.

However, as mentioned above, the GASP performs a 
Pareto optimization. Consequently, the effect of one plan-
ning rule may be influenced by another. In particular, when 
adjusting the weights for the assembly group switches, the 
weights for human–robot switches and switches between 
the robotic tools also have to be considered, as both crite-
ria influence each other adversely. Against this background, 
it also seems reasonable to adjust the weights, which are 
assigned by the planning rules, and their mutual rela-
tionship to the real conditions of a company. This can be 
achieved, for instance, by conducting expert interviews in 
order to balance the different optimization criteria.

Finally, the presented approach of optimizing the assem-
bly sequence and the resulting ergonomic work conditions 
have to be validated in a real assembly scenario. A robot-
assisted workplace that ensures safe and efficient HRC has 
been designed for this purpose and is currently under con-
struction. Besides conventional ergonomics a light-weight 
robot arm will assist the human operator with the assem-
bly while multiple sensors monitor the assembly process 
and the safety of the human. The behavior of the robot will 
adjust dynamically not only to environmental conditions 
but also to the operator’s position and behavioral patterns. 

Table 2   Results of the 
Wilcoxon rank sum test for 
the number of assembly group 
switches, when running the 
GASP with the edge weight 50

*p < 0.05, **p < 0.01, ***p < 0.001

Supplied parts Mdn Reduction to 
CCU [%]

Ws Z p r

1 9 4.55 59,580 −1.9001 0.057 −0.042
2 9 4.18 59,871 −1.7150 0.086 −0.038
4 9 0.95 61,779 −0.5269 0.598 −0.012
8 9 −2.70 64,564 1.2068 0.228 0.027
12 10 −5.45 65,809 1.9838 0.047* 0.044
16 9 −8.57 68,031 3.3652 0.001** 0.075
20 9 −6.72 66,742 2.5622 0.010* 0.057
24 9 −12.33 69,978 4.5736 <0.001*** 0.102
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This workplace will be the basis of future experimental 
trials.
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