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Abstract
To develop a more accurate prognostic model that incorporates indicators of multi-organ involvement for immunoglobulin 
light-chain (AL) Amyloidosis patients. Biopsy-proven AL amyloidosis patients between January 1, 2012, and February 
28, 2023, were enrolled and randomly divided into a training set and a test set at a ratio of 7:3. Prognostic indicators that 
comprehensively cover cardiac, renal, and hepatic involvement were identified in the training set by random survival forest 
(RSF). Then, RSF and Cox models were established. The Concordance index (C-index) and integrated brier scores (IBS) 
were applied to evaluate the models’ performance in the test set. Besides, the net reclassification index (NRI) and integrated 
discrimination improvement (IDI) were calculated. A total of 173 eligible patients were included. After a median follow-
up of 25.9 (9.2, 50.3) months, 48 (27.7%) patients died. Creatine kinase-MB, estimated glomerular filtration rate ≤ 50 mL/
min/1.73  m2, interventricular septum ≥ 15 mm, ejection fraction, alanine aminotransferase and Live involved were selected 
to develop prediction models. The RSF model based on the above indicators achieved C-index and IBS values of 0.834 (95% 
CI 0.725–0.915) and 0.151 (95% CI 0.1402–0.181), respectively. At last, the NRI and IDI of the RSF model were 0.301 
(95% CI 0.048–0.546, P = 0.012) and 0.157 (95% CI 0.041–0.269, P < 0.001) at 5-year by comparing the RSF model with 
the Cox model which is based on the Mayo 2012 staging system. The RSF model that incorporates indicators of multi-organ 
involvement had a great performance, which may be helpful for physicians’ decision-making and more accurate overall 
survival prediction.
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Introduction

Immunoglobulin light-chain (AL) amyloidosis is a progres-
sive disease characterized by the deposition of amyloid 
fibrillar in tissues, which is derived from the monoclonal 
immunoglobulin light chain produced by clonal plasma 
cells [1]. It is estimated that around 74,000 AL amyloidosis 
patients were diagnosed globally in the past 20 years prior 
to 2018, and the estimated incidence rate was 10 cases per 

million population with an increase in disease prevalence 
of 12% per year [2, 3]. According to previous research, 
the outcome of AL amyloidosis patients is improved with 
the median overall survival (OS) from 1.4 to 4.6 years [4]. 
However, the largest real-world study of AL amyloidosis 
patients in Europe indicated that the early mortality (within 
3 months after therapy) was 13.4% and did not improve pre- 
and post-2010 despite the therapeutic advances [5]. More 
than one-third of patients died after diagnosis of AL amyloi-
dosis within one year [6]. Accurately predicting the patient’s 
outcome and providing appropriate treatment are crucial.

The current OS prediction for AL amyloidosis is based 
on the indicators of cardiac involvement [7]. The Mayo 2004 
staging system, which only relies on cardiac biomarkers, is 
utilized for assessing the severity of AL amyloidosis patients 
with advanced cardiac involvement and continues to be 
employed in clinical investigations and practice guidelines 
up to now [8–10]. The Mayo 2012 staging system, which 

Yan Xing, Xiayin Li, and Jin Zhao have contributed equally to this 
work and share the first authorship.

 * Shiren Sun 
 sunshiren@medmail.com.cn

1 Department of Nephrology, Xijing Hospital, The Fourth 
Military Medical University, No.127 Chang Le West Road, 
Xi’an 710032, Shaanxi, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11739-024-03621-8&domain=pdf


1336 Internal and Emergency Medicine (2024) 19:1335–1344

incorporates serum free light chain measurements (FLC) 
into Mayo 2004 staging system, has been hypothesized to 
have a more precise prediction of the long-term prognosis 
for patients with AL amyloidosis [11]. However, as a multi-
system disease, the prognosis of AL amyloidosis patients is 
not only affected by a single organ, which is supported by 
the increasing number of proven risk factors for AL amyloi-
dosis [12]. It is considered significant to develop compre-
hensive, multi-disciplinary approaches to clinical diagnosis, 
treatment and prognosis for AL amyloidosis patients. Ran-
dom survival forest (RSF), a machine learning algorithm 
that combines random forest with survival analysis and 
can integrate high-dimensional data, has shown promising 
performance in patients with other diseases [13, 14]. To 
accurately predict OS for AL amyloidosis patients, the goal 
of this study was to identify key indicators of multi-organ 
involvement and then to develop a prognostic model based 
on the RSF and validate its performance.

Methods

Data collection

The patients diagnosed at Xijing hospital from January 1, 
2012 to February 28, 2023 were included in this study. The 
confirmation of AL amyloidosis is based on 2023 National 
Comprehensive Cancer Network guidelines [1]. Exclusion 
criteria were as follows: (1) patients’ pathology reports, such 
as renal or fat biopsy, were missing; (2) patients who were 
secondary to multiple myeloma according to the criteria by 
the International Myeloma Working Group [15]; (3) patients 
whose clinical data of the difference between involved and 
uninvolved free light chain (dFLC), N-Terminal pro-Brain 
Natriuretic Peptide (NT-proBNP), cardiac troponin T (cTnT) 
and cardiac troponin I (cTnI) were unavailable when the 
confirmation of AL amyloidosis; (4) patients with ejection 
fraction (EF) < 45% at the confirmation of AL amyloido-
sis; (5) patients whose follow-up time less than 3 months 
unless they died due to all causes. Involvement of organs 
was assessed according to the 10th International Symposium 
on Amyloid and Amyloidosis [16]. The eligible patients’ 
clinical data at the time of diagnosis by biopsy, including 
demographic characteristics, clinical indicators, pathological 
characteristics and treatment strategies, were gathered. The 
OS was defined as the time between the confirmation of AL 
amyloidosis and death or the last follow-up until May 31, 
2023. This study was authorized by Xijing Hospital’s ethics 
committees and review board, and informed consent was 
not required because of the nature of the retrospective study. 
Transparent Reporting of a Multivariable Prediction Model 

for Individual Prognosis or Diagnosis reporting guidelines 
was followed in this study (Supplemental Table 1) [17].

Statistical analysis

The continuous variables were presented by mean (standard 
deviation) or median (interquartile range), and the categori-
cal variables were expressed as number (frequencies). The t 
test or the Mann–Whitney U test was performed to compare 
continuous variables, and the χ2 test or the Fisher exact test 
was applied for categorical variables. All statistical analyses 
were finished by SPSS software package version 26.0 (IBM, 
Armonk, New York) and 2-sided P-values less than 0.05 
were considered statistically significant. The model develop-
ment and assessment were performed by R version 4.3.0 (R 
Project for Statistical Computing).

Model development

Variables’ missing value was imputed by “missForest 1.5” 
package, but the variable that missed exceed 10% should be 
deleted. To reduce confounding, continuous variables with 
Spearman’s correlation coefficients greater than 0.4 would 
also be deleted. After that, all data were randomly divided 
into a training set and a test set at a ratio of 7:3. The training 
set was used to assess the variable importance (VIMP), and 
95% confidence interval (CI) of VIMP was calculated by 
applying the bootstrapping resampling method with 1000 
repetitions. The variables with mean VIMP more than 0.03 
were selected for developing the final RSF model by “ran-
domForestSRC 3.2.1” package. The ideal hyperparameter 
was identified by the grid search method.

Model validation

The Concordance index (C-index) and the area under the 
receiver operating characteristic curve (AUC) were calcu-
lated to evaluate the model’s discrimination. Integrated brier 
score (IBS) and Calibration Curve were used to evaluate 
the model’s calibration. To ensure accuracy, the bootstrap 
method with 1000 repetitions was performed to calculate the 
95% CI of C-index and IBS of prediction models.

Cox models, which were based on the variables with 
mean VIMP more than 0.03, Mayo 2004 staging system and 
Mayo 2012 staging system, were developed to validate the 
Superiority–Inferiority of the RSF model. Decision Curve 
Analysis was also performed to confirm the clinical benefits 
of different models. Besides, Net reclassification improve-
ment (NRI) and integrated discrimination improvement 
(IDI) between models were calculated.
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Table 1  Clinical characteristics of patients

Characteristics All patients (N = 173) Training set (N = 121) Test set (N = 52) p

Age (years) 58.0 ± 9.4 58.6 ± 9.1 56.8 ± 9.8 0.203
Male 106 (61.3) 76 (62.8) 30 (57.7) 0.526
BMI (kg/m2)a 22.6 (21.1, 24.6) 23.0 (21.3, 24.7) 22.5 (20.7, 24.2) 0.304
SBP (mmHg) 111.0 (94.0, 124.0) 112.0 (96.0, 123.5) 106.5 (92.5, 124.8) 0.527
DBP (mmHg) 69.0 (60.0, 81.5) 70.0 (60.0, 80.5) 67.0 (60.3, 82.8) 0.657
Hb (g/L) 130.0 (117.0, 146.0) 132.0 (116.5, 146.0) 127.5 (117.3, 140.8) 0.346
WBC  (109/L) 7.4 (5.8, 9.9) 7.4 (5.8, 9.7) 7.3 (5.8, 10.0) 0.642
PLT  (109/L) 229.0 (173.5, 311.5) 227.0 (177.0, 296.5) 245.5 (172.3, 322.3) 0.639
ALT (IU/L) 20.0 (14.0, 29.0) 21.0 (15.0, 31.0) 18.5 (14.0, 28.0) 0.268
AST (IU/L) 22.0 (17.0, 32.0) 22.0 (17.5, 33.0) 23.5 (17.0, 30.5) 0.999
ALB (g/L) 25.8 (20.3, 32.9) 25.2 (20.6, 31.4) 27.2 (19.5, 34.7) 0.306
TBIL (µmol/L) 9.1 (6.9, 12.7) 9.1 (6.9, 11.9) 9.4 (6.1, 13.9) 0.732
ALP (IU/L) 74.0 (61.0, 105.5) 74.0 (61.0, 102.5) 73.5 (60.3, 107.5) 0.836
CHO (mmol/L) 5.8 (4.4, 8.0) 5.7 (4.5, 8.0) 6.0 (4.1, 8.4) 0.719
CRE (µmol/L) 77.0 (63.5, 99.0) 81.0 (65.0, 100.5) 73.5 (62.3, 90.8) 0.177
eGFR (mL/min/1.73  m2)b 86.0 (64.5, 100.9) 84.4 (63.3, 98.7) 95.9 (68.9, 102.3) 0.092
UA (µmol/L) 326.0 (268.3, 402.0) 328.0 (265.0, 401.0) 323.0 (281.0, 418.8) 0.773
UTP (mg/24 h) 3276.0 (1490.0, 5322.5) 3528.0 (1637.0, 5600.0) 2174.0 (1278.0, 4478.5) 0.111
K (mmol/L) 4.1 (3.7, 4.4) 4.1 (3.8, 4.4) 4.0 (3.7, 4.3) 0.483
Na (mmol/L) 141.7 (138.9, 143.7) 141.6 (138.8, 143.8) 142.1 (139.0, 143.4) 0.887
Ca (mmol/L) 2.1 (1.9, 2.2) 2.1 (1.9, 2.2) 2.1 (2.0, 2.2) 0.306
CO2 (mmol/L) 25.6 (23.8, 27.5) 25.6 (23.8, 27.6) 25.9 (23.8, 27.5) 0.888
Fib (g/L) 4.2 (3.1, 5.2) 4.2 (3.1, 5.2) 4.0 (3.0, 5.2) 0.650
TT (s) 18.4 (17.2, 19.9) 18.5 (17.3, 20.0) 18.3 (16.8, 19.7) 0.352
DDi (mg/L) 0.9 (0.5, 2.3) 0.9 (0.5, 2.2) 0.8 (0.5, 2.4) 0.867
κ FLC (mg/L) 19.2 (12.4, 34.2) 20.6 (13.9, 34.5) 14.9 (11.1, 30.4) 0.116
λ FLC (mg/L) 115.0 (46.9, 171.2) 113.4 (43.2, 188.7) 115.8 (48.3, 150.4) 0.515
λ Subtype 144 (83.2) 101 (83.5) 43 (82.7) 0.900
rFLC 0.2 (0.1, 0.4) 0.2 (0.1, 0.4) 0.2 (0.1, 0.5) 0.775
dFLC (mg/L) 99.8 (45.5, 164.4) 99.4 (45.9, 173.7) 101.1 (44.3, 151.2) 0.901
CK-MB (ng/mL) 2.3 (1.2, 4.4) 2.3 (1.2, 4.1) 2.5 (1.1, 4.6) 0.867
NT-proBNP (pg/mL) 890.2 (204.4, 3450.0) 853.3 (217.7, 3274.0) 1446.5 (169.1, 4153.3) 0.775
cTnT (ng/mL) 0.03 (0.01, 0.07) 0.03 (0.01, 0.07) 0.03 (0.01, 0.09) 0.756
cTnI (ng/mL) 0.05 (0.01, 0.13) 0.04 (0.01, 0.13) 0.05 (0.01, 0.13) 0.937
EF 58 (55, 60) 58 (55, 60) 58 (55, 60) 0.687
IVS (mm) 11.0 (10.0, 13.5) 11.0 (10.0, 13.5) 11.5 (10.0, 13.4) 0.536
Therapy
 None 11 (6.4) 8 (6.7) 3 (5.8) 1.000
 CTD or MD or RD 72 (41.6) 48 (39.7) 24 (46.2) 0.428
 BD or Dara or Dara + BD 90 (52.0) 65 (53.6) 25 (48.0) 0.496

Time before diagnosis (months)c 5.0 (2.0, 12.0) 5.0 (2.0, 12.0) 6.0 (2.3, 16.5) 0.221
Number of organs involved 2.0 (1.0, 2.0) 2.0 (1.0, 2.0) 2.0 (1.0, 2.0) 0.952
Organs involved

     Kidney involvement 166 (95.9) 116 (95.9) 50 (96.2) 1.000
     Heart involvement 103 (59.5) 72 (59.5) 31 (59.6) 0.989
     Live involvement 17 (9.8) 12 (9.9) 5 (9.6) 0.951
     Other organs  involvementd 4 (2.3) 3 (2.5) 1 (1.9) 1.000

Mayo 2004
     I stage 43 (24.9) 28 (23.1) 15 (28.8) 0.426

     II stage 24 (13.9) 19 (15.7) 5 (9.6) 0.288
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3. Results

Characteristics of patients

A total of 173 patients were included (Fig. 1). The mean age 
was 58 ± 9.4 years old. 106 (61.3%) patients were male. 144 
(83.2%) patients had lambda amyloidogenic light chains. 
According to Mayo 2004 staging system, 43 (24.9%), 24 

(13.9%) and 106 (61.2%) patients were in the I, II and III 
stage. 79 (45.7%), 32 (18.5%), 47 (27.2%) and 15 (8.6%) 
patients were in the I, II, III and IV stage based on Mayo 
2012 staging system. Patients with renal and cardiac involve-
ment were 166 (95.9%) and 103 (59.5%), respectively. 104 
(60.1%) patients had more than two organs involved. After 
a median follow-up of 25.9 (9.2, 50.3) months, 48 (27.7%) 
AL amyloidosis patients died (Table 1).

BMI body mass index, SBP systolic blood pressure, DBP diastolic blood pressure, Hb hemoglobin, WBC white blood cell, PLT blood platelet, 
ALT alanine aminotransferase, AST aspartate aminotransferase, ALB albumin, TBIL total bilirubin, ALP alkaline phosphatase, CHO cholesterol, 
CRE creatinine, eGFR estimated glomerular filtration rate, UA uric acid, UTP urinary total protein, Fib fibrinogen, TT thrombin time, DDi 
d-dimer, FLC free light chain, iFLC involved free light chain, rFLC ratio of κ FLC/λ FLC, dFLC difference between involved FLC and unin-
volved FLC, CK-MB creatine kinase-MB, NT-proBNP n-terminal pro-brain natriuretic peptide, cTnT cardiac troponin t, cTnI cardiac troponin I, 
EF ejection fraction, IVS interventricular septum, CTD cyclophosphamide + thalidomide + dexamethasone, MD melphalan + dexamethasone, RD 
lenalidomide + dexamethasone, BD bortezomib + dexamethasone, Dara daratumumab
a BMI was calculated as weight/height2
b eGFR was calculated by the chronic kidney disease epidemiology collaboration (CKD-EPI) equation
c Time before diagnosis was the time between the onset of symptoms and the confirmation of amyloid light-chain amyloidosis
d Other organs including the gastrointestinal tract or peripheral nervous system

Table 1  (continued)

Characteristics All patients (N = 173) Training set (N = 121) Test set (N = 52) p

     III stage 106 (61.2) 74 (61.2) 32 (61.6) 0.962
Mayo 2012

     I stage 79 (45.7) 55 (45.5) 24 (46.2) 0.933
     II stage 32 (18.5) 26 (21.5) 6 (11.5) 0.122
     III stage 47 (27.2) 27 (22.3) 20 (38.5) 0.029
     IV stage 15 (8.6) 13 (10.7) 2 (3.8) 0.237

Follow-up time (months) 25.9 (9.2, 50.3) 27.5 (13.2, 48.9) 14.6 (5.95, 55.8) 0.193
Death 48 (27.7) 31 (25.6) 17 (32.7) 0.341

Fig. 1  Flowchart of this study. 
AL amyloidosis, immunoglobu-
lin light-chain amyloidosis, EF 
ejection fraction
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Model development

49 continuous variables and 23 categorical variables were 
included in our study (Supplemental Table 2). Previously 
reported thresholds were used to dichotomize categorical 
variables. 13 variables had missing values but no one of 
them missed exceed 10% and no statistically significant were 
found before and after imputation (Supplemental Table 3). 
After deleting confounding variables, 23 continuous vari-
ables were left (Supplemental Fig. 1), and were evaluated 
by RSF together with 23 categorical variables. At last, 34 
variables could be used to develop the RSF model due to 
their mean VIMP > 0 (Fig. 2). Creatine kinase-MB (CK-
MB), estimated glomerular filtration rate (eGFR) ≤ 50 mL/
min/1.73  m2, interventricular septum (IVS) ≥ 15 mm, EF, 
alanine aminotransferase (ALT) and Live involved were the 
key indicators with a mean VIMP more than 0.03. The ntree 
for the final RSF model was set to 800. According to grid 
search, the optimize mtry and nodesize were 1 and 8, respec-
tively (Supplemental Fig. 2).

Model performance

Discrimination

The C-index of all prediction models were presented in 
Table 2. In the training set, the RSF model had the high-
est C-index with 0.843 (95% CI 0.761–0.898) and the Cox 
model which was based on the same variables was the lowest 
with 0.769 (95% CI 0.661–0.844). The C-index of of Cox 
models which were based on Mayo staging system were sat-
isfactory. In the test set, the RSF model’s C-index dropped 
slightly to 0.834 (95% CI 0.725–0.915), but the C-index of 
Cox model which was based on the same factors rose to 
0.856 (95% CI 0.727–0.913). Besides, it was notable that 
the C-index of Cox model which was based on NT-proBNP 
and cTnI was the lowest with 0.810 (95% CI 0.682–0.895).

The receiver operating characteristic curves of all mod-
els were also plotted (Fig. 3). In the training set (Fig. 3A), 
AUCs of the RSF model at 1-, 3- and 5-year were 0.875, 
0.882 and 0.852 and the AUCs of Cox model which was 
based on the same factors were 0.800 0.794 and 0.723. 
RSF model’s AUCs were the highest among all prediction 
models at 3- and 5-year. In the test set (Fig. 3B), the AUCs 
of RSF model at 1-, 3- and 5-year were 0.790, 0.870 and 
0.895, and the Cox model which was based on the same 
factors had the AUCs of 0.834, 0.890 and 0.905. The Cox 
model which was based on NT-proBNP and cTnI had the 
lowest AUC with 0.868 and 0.852 at 3- and 5-year.
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Calibration

All models with low IBS showed great calibration abil-
ity (Table  2). The RSF model’s IBS was 0.106 (95% 
CI 0.104–0.109) in the training set and 0.151 (95% CI 
0.140–0.181) in the test set. The IBS of Cox model 
which was based on the same factors were 0.136 (95% 
CI 0.135–0.137) and 0.132 (95% CI 0.119–0.164) in the 
training set and test set, respectively. However, it was notable 
that the Cox model which was based on NT-proBNP and 
cTnI had the highest IBS in both the training set and test set. 
The calibration curves of RSF model were displayed (Sup-
plemental Fig. 3), which confirmed the great performance 
of RSF model.

Decision Curve Analysis

In the training set, the RSF model was more beneficial 
than other Cox models at 1-, 3- and 5-year (Supplemental 
Fig. 4A). In the test set (Supplemental Fig. 4B), the benefits 
of Cox model which was based on NT-proBNP and cTnI 
were consistently the least compared with other prediction 
models.            

NRI and IDI

All data was integrated to calculate NRI and IDI between 
the RSF model and other Cox models (Supplemental 
Table 4 and Supplemental Table 5). The Cox model which 

Fig. 2  Variable importance of indicators favourable for develop-
ing model. VIMP  variable importance,  CK-MB creatine kinase-
MB, eGFR estimated glomerular filtration rate, IVS interventricular 
septum, EF ejection fraction, ALT alanine aminotransferase, HDL 
high-density lipoprotein, UA uric acid, IBIL indirect bilirubin, Fib 
Fibrinogen, BMI body mass index, ALP alkaline phosphatase, Hb 
Hemoglobin, NOI number of organs involved, ERY erythrocyte, 
DDi D-Dimer, WBC white blood cell, TBD time before diagnosis, 
DBP diastolic blood pressure, iFLC involved free light chain, TT 

thrombin time, TD thyroid dysfunction. To reduce confounding, 26 
continuous variables were removed. Then, the VIMP of the last 23 
continuous variables and 23 categorical variables were evaluated 
by the RSF algorithm. 12 variables were also removed due to their 
VIMP ≤ 0, which means they were unfavorable for developing model. 
Eventually, 34 variables were selected. As we can see, the CK-MB, 
eGFR ≤ 50  mL/min/1.73   m2, IVS ≥ 15  mm, EF, ALT and Live 
involvement were identified as the top six factors
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was based on NT-proBNP, cTnT and dFLC was used as the 
reference model. At 1-year, the RSF model’s NRI and IDI 
were 0.229 (95% CI –0.013–0.474, P = 0.064) and 0.064 
(95% CI –0.075–0.212, P = 0.406), which indicated the 
RSF model performed just as well as the Cox model which 
was based on NT-proBNP, cTnT and dFLC. However, the 
NRI and IDI of the Cox model which was based on NT-
proBNP and cTnI were –0.457 (95% CI –0.660––0.302, P < 
0.01) and –0.210 (95% CI –0.320––0.108, P <  0.01), which 
meant the relatively poor performance. At 3-year, the NRI 
and IDI of the RSF model was 0.272 (95% CI 0.059-0.506, 
P = 0.014) and 0.126 (95% CI 0.008–0.251, P = 0.032). At 
5-year, the NRI and IDI of the RSF model were 0.301 (95% 
CI 0.048–0.546, P = 0.024) and 0.157 (95% CI 0.041–0.269, 
P < 0.01). These results indicated the RSF model had supe-
rior performance than the Cox model which was based on 
NT-proBNP, cTnT and dFLC. Meanwhile, the poor perfor-
mance of Cox model which was based on NT-proBNP and 
cTnI was still evident at 3- and 5-year (P < 0.01).

The effect of treatment options on RSF model

In addition, we verified the effect of treatment options on 
RSF model. We grouped patients’ treatment options into 
five categories (Supplemental Table 6). The RSF model was 
developed by combining patients’ treatment options with the 
other six variables identified in our study (RSF-therapy). 
The C-index was 0.848 (95% CI 0.717–0.923) and the IBS of 

RSF-therapy was 0.138 (95% CI 0.126–0.172) in the test set 
(Supplemental Table 7). However, the AUCs of RSF-therapy 
were lower than those of our original RSF model at 5-year 
(Supplemental Fig. 5). To validate the Superiority–Inferi-
ority of the RSF therapy compared with our original RSF 
model, the NRI and IDI of RSF-therapy were calculated 
(Supplemental Table 8). As we can see, NRI and IDI at 1-, 
3- and 5-year (P < 0.05) indicated RSF-therapy had superior 
performance than our original RSF model.

Discussion

The main findings of our research are as follows. First, six 
routinely used indicators were identified with a significant 
impact on all-cause death for AL amyloidosis patients, which 
were CK-MB, eGFR ≤ 50 mL/min/1.73  m2, IVS ≥ 15 mm, 
EF, ALT, and Live involved. Second, the RSF model that 
incorporates above indicators of multi-organ involvement 
had great performance. Third, the Cox model which was 
based on NT-proBNP and cTnI was inferior to other models.

The outcome of AL amyloidosis patients mainly depends 
on whether cardiac is involved. However, traditional indi-
cators such as NT-proBNP, cTnT, and cTnI were removed 
due to the high correlations among cardiac markers. At 
last, the CK-MB, EF, and IVS ≥ 15 mm were identified as 
crucial cardiac indicators. Previous studies have confirmed 

Fig. 3  The receiver operating characteristic curve of all prediction 
models. (A) are the receiver operating characteristic curves (ROC) in 
the training set. (B) are the ROC in the test set. Creatine kinase-MB, 
estimated glomerular filtration rate ≤50 mL/min/1.73  m2, interven-
tricular septum ≥15 mm, ejection fraction, alanine aminotransferase 
and Live involved are adopted to develop random survival forest 

(RSF) model and Cox model A. Cox model B was based on N-Termi-
nal pro-Brain Natriuretic Peptide (NT-proBNP) and cardiac troponin 
T (cTnT). Cox model C was based on NT-proBNP and cardiac tro-
ponin I. Cox model D was based on NT-proBNP, cTnT and the differ-
ence between involved and uninvolved free light chains
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that an increased mortality rate was related to the elevation 
of CK-MB after percutaneous coronary intervention [18], 
and elevated CK-MB may predict the adverse outcome 
of patients with coronavirus disease 19 [19]. However, 
the prognostic value of CK-MB in AL amyloidosis is not 
clear yet. According to previous studies, FLCs can induce 
increased reactive oxygen species production in cardiomyo-
cytes, followed by apoptosis and then lead to impaired heart 
function [20], which may cause the release of CK-MB from 
cardiomyocytes in AL amyloidosis patients.

AL amyloidosis patients often had heart failure with pre-
served EF, and experienced decreased EF in the advanced 
stage of disease. Meanwhile, IVS gradually thickens due 
to the deposition of amyloid and then leads to a poor out-
come once the IVS exceeds the normal range significantly. 
Besides, the thickness of IVS was found to be significantly 
associated with high NT-proBNP levels [21], which is the 
main marker in the Mayo staging system. To early and 
accurately recognize pathological changes that may lead 
to decreased EF with thickened LVS in AL amyloidosis, 
Gallium-68-labeled fibroblast activation protein inhibi-
tor 04 (68 Ga-FAPI-04) had demonstrated its significant 
correlations with EF and IVS [22]. Furthermore, cardiac 
68 Ga-FAPI-04 PET/CT also proved its great potential in 
the diagnosis and prognosis of AL amyloidosis patients [22]. 
Identifying the changes in EF and IVS early may prevent 
long-term death in AL amyloidosis.

Hepatic involvement is found in approximately 20% of 
AL amyloidosis patients. The 5- and 10-year survival rates 
of those patients are less than 16.9 and 6.6% in the past [23, 
24]. Even with the advent of the new therapy, the prognosis 
of patients with hepatic involvement is still poor. For patients 
with hepatic involvement, hepatocytes may be compressed 
by excessive amyloid deposits, which will cause them to 
atrophy and then to hepatic dysfunction [25]. Chronic heart 
failure due to cardiac amyloidosis also influenced hepatic 
dysfunction [26]. Therefore, alkaline phosphatase (ALP) and 
total bilirubin were found to be independent prognostic fac-
tors for those patients. In our study, total bilirubin was also 
removed, and indirect bilirubin with ALP was identified as 
prognostic factors but were not selected to develop models 
due to their relatively lower VIMP. Eventually, ALT that be 
found as a predictor of mortality in a previous study [27], 
was selected to develop the prediction model.

In patients with renal involvement, the decreased eGFR 
appeared in the stage of irreversible damage of FLCs to the 
kidney. The decreased eGFR seems to be related to prere-
nal kidney injury brought on by cardiac involvement [28]. 
According to previous studies, 50 mL/min/1.73  m2 of eGFR 
and 5 g of urinary total protein (UTP) could be considered 
the key threshold for adverse outcomes [29]. In our study, 
only eGFR ≤ 50 mL/min/1.73  m2 at the time of biopsy was 
identified as a key indicator (VIMP more than 0.03), which 

confirmed the significance of eGFR to all-cause death. That 
was also supported by other studies that impaired renal func-
tion negatively affects overall survival, but proteinuria does 
not [28]. Besides, amyloid deposition in the kidney not only 
can lead to renal dysfunction but also accelerate the pre-
existent renal insufficiency. However, the exact time when 
renal dysfunction began to develop was not known because 
a decline in eGFR was hard to perceive by patients. In this 
study, we included the time interval between the onset of 
disease-related symptoms and a definitive diagnosis of AL 
amyloidosis (TBD), and the TBD was also identified as a 
key variable that was beneficial for RSF model develop-
ment (VIMP more than 0) (Fig. 2). This suggested that 
early diagnosis is crucial for patients, which also implied 
the importance of early intervention, such as maintaining 
normal renal function by reducing the damage of amyloid 
or other treatments.

The comprehensive and interdisciplinary approaches 
for AL amyloidosis are developing. Jimenez-Zepeda et al. 
presented a multifaceted, interdisciplinary algorithm aimed 
at diagnosing amyloidosis, with the potential to streamline 
diagnostic processes, enable prompt and accurate interven-
tions, and ultimately improve patient outcomes [30]. Yan 
et al. developed a novel clinical prognostic staging system 
for individuals with AL amyloidosis by integrating plasma 
cell-related characteristics with cardiac-renal-hepatic param-
eters, thereby enhancing risk stratification [31]. However, as 
mentioned in the literature above, there are regional varia-
tions in the availability of resources for prognostic testing. 
The existing staging systems do not provide precise survival 
estimates and variations in threshold values for the same 
indicator may also cause some interference in clinical prac-
tice. Furthermore, Cox proportional hazards analysis is defi-
cient in making full use of voluminous, messy and complex 
clinical data. Besides, the linear relationship between the 
hazard and variables, and proportional hazards assumption 
may not be applicable for some time-to-event data, which 
may limit the performance of Cox models. However, the 
RSF model can avoid the restrictions mentioned above [32].

Most importantly, the RSF model shows great perfor-
mance in discrimination, calibration and clinical utility. 
In the test set, the C-index of the RSF model was 0.834 
(95% CI 0.725–0.915). Meanwhile, the AUCs of the RSF 
model were also satisfactory. The IBS of the RSF model was 
also relatively lower. By comparing the RSF model to the 
Cox model which is based on the Mayo 2012 staging system, 
we found both the NRI and IDI of the RSF model were sta-
tistically significant improvements at 3- and 5-year, which 
implied a better performance. Besides, the DCA of the RSF 
model also presented its benefits. In contrast, the Cox model 
which was based on NT-proBNP and cTnI showed relatively 
poor performance with the lowest C-index, the highest 
IBS, and the most limited DCA, which was consistent with 



1343Internal and Emergency Medicine (2024) 19:1335–1344 

previous research that the survival status of AL amyloidosis 
patients could not be comparatively accurately divided by 
NT-proBNP combined with cTnI [33, 34].

By comparing RSF therapy with original RSF model, 
we speculated that incorporating treatment options in RSF 
model can effectively predict the prognosis of AL amyloi-
dosis patients. However, the cohort of patients participat-
ing in our study who opted for daratumumab-based therapy 
was limited in sample size. Considering the robust effect 
of daratumumab-based therapy in AL amyloidosis patients 
and its potential adoption by a large number of patients in 
the future [8, 9, 35, 36], the performance of RSF-therapy is 
likely to be further improved.

Our research also has several limitations. First, due to the 
rarity of AL amyloidosis, the number of patients included 
in our study was relatively modest and lack of external vali-
dation. To confirm our findings, a prospective study with a 
large cohort of AL amyloidosis patients from multi-center 
is warranted. Second, some potential key factors may be 
missed in the medical record or the process of developing 
the RSF model. Detailed clinical data from patients with 
AL amyloidosis are also needed. Third, advancements in 
treatment always result in a better prognosis for patients. In 
our study, only the treatment regimen adopted at the time of 
confirmation of AL amyloidosis was collected, which may 
ignore the potential influence of alternative therapies on the 
survival of patients. Although treatment options were not 
included in the Final RSF model, the performance of RSF-
therapy also indicated the improvement of RSF model with 
the entry of therapy, which also needs to be tested.

Conclusions

In summary, our research provides a timely and effective 
approach to accurately predict the survival time of AL amy-
loidosis patients based on multi-organ indicators by RSF. 
The performance of the developed RSF model is great and 
could be a valuable addition to Mayo staging system to help 
physicians’ decision making.
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