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Abstract
Ultrasound-guided synovial tissue biopsy (USSB) may allow personalizing the treatment for patients with inflammatory 
arthritis. To this end, the quantification of tissue inflammation in synovial specimens can be crucial to adopt proper therapeu-
tic strategies. This study aimed at investigating whether computer vision may be of aid in discriminating the grade of synovitis 
in patients undergoing USSB. We used a database of 150 photomicrographs of synovium from patients who underwent USSB. 
For each hematoxylin and eosin (H&E)-stained slide, Krenn’s score was calculated. After proper data pre-processing and 
fine-tuning, transfer learning on a ResNet34 convolutional neural network (CNN) was employed to discriminate between low 
and high-grade synovitis (Krenn’s score < 5 or ≥ 5). We computed test phase metrics, accuracy, precision (true positive/actual 
results), and recall (true positive/predicted results). The Grad-Cam algorithm was used to highlight the regions in the image 
used by the model for prediction. We analyzed photomicrographs of specimens from 12 patients with arthritis. The training 
dataset included n.90 images (n.42 with high-grade synovitis). Validation and test datasets included n.30 (n.14 high-grade 
synovitis) and n.30 items (n.16 with high-grade synovitis). An accuracy of 100% (precision = 1, recall = 1) was scored in 
the test phase. Cellularity in the synovial lining and sublining layers was the salient determinant of CNN prediction. This 
study provides a proof of concept that computer vision with transfer learning is suitable for scoring synovitis. Integrating 
CNN-based approach into real-life patient management may improve the workflow between rheumatologists and pathologists. 
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Introduction

Ultrasound-guided synovial tissue biopsy (USSB) pro-
vides a better understanding of the pathophysiology of 
inflammatory arthritis, facilitating the discovery of new 
biomarkers for diagnostic and/or prognostic purposes and 
the identification of new therapeutic targets [1, 2]. As 
recently shown, USSB may allow treatment personaliza-
tion in the very next future [3] and perfectly suits everyday 
clinical practice as it is a reliable, safe, and relatively fast 
procedure, also in outpatient settings. A critical issue in 
the diagnostic work-up is the standardization of biopsy 
reading, therefore validated technological support may 
help pathologists in providing more informative and faster 
biopsy reports. In an increasing number of social and clini-
cal scenarios, artificial intelligence (AI) is proving to be 
a valuable tool for the generation and implementation of 
complex multi-parametric decision algorithms. In particu-
lar, there is a rising interest in the application of image 
analysis and machine learning techniques to histopathol-
ogy. Whatever the image acquisition method is, either 
traditional small fields capture on microscope or modern 
whole slide image digitalization, computer vision may 
yield accurate diagnostic interpretations [4]. In 2012, con-
volutional neural networks (CNNs) outperformed previous 
machine learning approaches by classifying 1.2 million 
high-resolution images in the ImageNet LSVRC2010 con-
test into 1000 different classes. At the same time, CNNs 
were found to be superior to other methods in segment-
ing nerves in electron microscopy images and detecting 
mitotic cells in histopathology images. Since then, meth-
ods based on CNNs have consistently outperformed other 
handcrafted methods in a variety of classification tasks in 
digital pathology [5]. The ability of CNNs to learn features 
directly from the raw data without the need for inputs from 
pathologists and the availability of marked histopathology 
datasets has also fuelled the explosion of interest in deep 
learning applied to histopathology [5]. Unlike previous 
deep learning architectures such as the multilayer percep-
tron, where each neuron in one layer connects to every 
neuron in the following layers, CNNs are supervised mul-
tidimensional algorithms consisting of a neural network 
with several hidden neuron layers, where connection and 
activation only take place between spatially close neurons, 
echoing the organization of the animal visual cortex in 
which neurons selectively respond to different stimuli. 
When presented with sufficient annotated training image 
data, CNNs can learn complex histological patterns from 
images through deconvolution of the image content into 
thousands of salient features, followed by selection and 
aggregation of the most meaningful ones [5]. These pat-
terns may be then identified in yet unseen images [6].

In rheumatology, AI may enable a further step towards 
precision medicine, leading to the improvement of patient 
profiling and treatment personalization. AI has proven 
to be effective in predicting treatment responses to TNF 
inhibitors by driving treatments based on the clinical and 
genetic features of analysed patients [7]. Computerized 
digital analysis based on RGB video signal acquisition 
through a microscope had been used in the last two dec-
ades to quantify cells infiltrating the synovium, although 
this procedure has never been adopted in real-life patient 
management as it was time-consuming and led to a non-
negligible level of disagreement between centres [8, 9] 
The potential benefit of using computer vision for histo-
pathologic analyses of synovitis is largely unexplored so 
far. The aim of our study was to investigate whether CNNs 
have the potential to accurately identify synovitis’ grade 
according to Krenn’s synovitis score [10].

Materials and methods

Data acquisition

For training, validation and testing, we used a dataset of 
150 photomicrographs of different synovitis slides, origi-
nally taken at 1280 × 1080 pixels (SONY® Sensor IMX185) 
at diverse magnifications (4 × to 20x), obtained from rheu-
matic patients with arthritis of knees who underwent USSB 
for routine clinical practice in a single tertiary centre, from 
January 2019 to January 2020. This was necessary because 
of the heterogeneity of inflammatory changes in the synovial 
membrane requires sample analyses at different magnifica-
tions, as originally proposed by Krenn et al. [10].

For each patient, demographic and clinical characteris-
tics, including ultrasound features of synovitis were recorded 
for routine clinical practice, moreover informed consent was 
obtained from all patients and the local ethical committee 
approved this study as part of the Biopure registry (IRB 
approval n 5277/2017). According to OMERACT stand-
ardization of synovial tissue biopsy procedure, for each 
patient, at least 6 specimens were obtained from an involved 
knee joint using 16G Tru-Cut needles and then embedded 
in paraffin [11]. In total, 78 specimens (mean length ± SD 
0.83 ± 0.08 cm) were processed. For all slides, biopsy sur-
face area was greater than 2.5 mm2. Haematoxylin and eosin 
(H&E) staining was used for histopathological analysis and, 
for each of them, Krenn’s score was calculated by a pathol-
ogist with 20 year experience in synovial histopathology 
(AC). The latter score is obtained by semiquantitatively eval-
uating three features of chronic synovitis (enlargement of 
the lining cell layer, the cellular density of synovial stroma, 
leukocytic infiltrate) (from 0, absent to 3, strong), allowing 
discrimination between low grade (i.e. Krenn’s Score < 5) 
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and high-grade synovitis (i.e. Krenn’s Score ≥ 5) [10]. Lin-
ing layer was evaluable in all 150 images.

The whole dataset was split and photomicrographs were 
randomly allocated to either the training, validation and test 
datasets according to a 3:1:1 ratio [12].

Theory

CNNs require large labelled image datasets to attain a high 
level of classification accuracy [13]. In several fields though, 
the acquisition of such an image dataset is challenging and 
their annotation is expensive.

Transfer learning (TL) has emerged as a powerful tool 
to mitigate these issues; TL consists of a process where a 
model trained on one problem is exploited to predict labels 
related to a second, similar, problem [14]. The first few lay-
ers in CNNs extract very general information such as colors, 
dots, lines and edge information, while subsequent layers 
aggregate these features into complex patterns. The initial 
layers of a CNN trained on a large and varied dataset can 
be hence treated as general image feature extractors [13]. 
Because of this, it is possible to “freeze” the weights of a 
CNN’s initial layers and fine-tune or re-train the last lay-
ers only, which generally encode higher-level features. This 
allows the model to recognize features specific, in our case, 
to histopathologic images. On one hand pre-trained models 
substantially ease the development of new models, also lead-
ing to lower generalization error. On the other hand, there is 
robust evidence that, with suitable fine-tuning, pre-trained 

CNNs may outperform a CNN trained from scratch for bio-
medical applications [14–16].

We fine-tuned a specific CNN architecture called 
ResNet34 [17] (He et al. 2015). For reproducibility, we 
used a Python 3.6 environment with PyTorch 1.4.0 and fast.
ai [18] 1.06 libraries. ResNet34 is a particular architecture 
which was pre-trained with ImageNet database [19] contain-
ing approximately 1.2 million of images of about 22.000 cat-
egories. ResNet34 consists of 5 convolutional layer groups 
ending with a pooling layer group for prediction (for details 
see Supplementary Materials and Fig. 1 [17, 18]. Briefly, 
as the input flows through the ResNet34, less complex fea-
ture maps in the former layers apply filters for the above 
mentioned basic visual elements, whereas the latter layers 
provide more complex features. For this reason, the initial 
layers of ResNet34 can be considered as general image 
feature extractors. The architecture of ResNet34 has been 
briefly represented in Fig. 1, where we annotated the layers 
that we fine-tuned during transfer learning (see Supplemen-
tary Materials). To improve the robustness and ability of 
our model to generalize, and to further decrease the risk of 
overfitting [6], image augmentation (i.e. up to n.1680 differ-
ent versions of the same item) was performed following the 
default augmentation protocol in fast.ai 1.06 [18].

Parameters and metrics

In the training and validation phases, we relied on the 
train and validation losses to investigate the model’s 
goodness-of-fit.

Fig. 1   We depict an outline of ResNet34’s architecture, and show 
what parts were fine-tuned in this work. The model consists on one 
convolution and pooling step (in yellow) followed by n.4 convolution 
groups of similar structure. Its last layers are a global average pooling 
layer and a 1000-way fully-connected layer with softmax for predic-
tion. Layers in distinct convolution groups follow the same pattern 
performing 3 × 3 convolution with a fixed feature map of ascending 

dimension (64, 128, 256, 512), with Rectified Linear Unit (ReLu) 
activation, bypassing the input every 2 layers. The initial layers of a 
CNN, trained on a large and varied dataset, can be treated as general 
image feature extractors. Because of this, it is possible to “freeze” the 
weights of a CNN’s initial layers and fine-tune or re-train the last lay-
ers only, to enable the model to recognize features specific to histo-
pathologic images
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The loss represents a quantitative measure of how much 
the model’s predictions differ from ground truth (i.e. the 
pathologist’s Krenn’s score). In general, losses are defined 
to be inversely proportional to the number of correct pre-
dictions of the model, so that the training procedure can be 
defined as a loss minimization problem. In other words, loss 
can be defined as an average of the errors made by the mod-
els on the images contained in a subset of the data. The loss 
is calculated on the training and validation sets, therefore it 
can be interpreted as a number describing how accurately 
the model is predicting these two sets.

To rule out overfitting and underfitting during training, 
both losses should typically show a trend towards decrease, 
with the training loss normally being the smallest.

An “epoch” indicates one forward pass and one backward 
pass of all the training images. The number of epochs after 
which to stop training is a metaparameter usually chosen to 
minimize the loss while avoiding overfit [14].

The test phase performance of our CNN was assessed 
with the following metrics:

Calculation

Images were scaled at 500 × 281 pixels and underwent pixel 
z-score normalization. Our training dataset included n.90 
images (n.42/90 high-grade synovitis); the classification 
capability of CNNs is highly reliant on the size of the data 
used for the training; if the dataset is small, the CNN model 
starts overfitting already after a few epochs [20]. Given that, 
ResNet34 was trained for 4 epochs using fast.ai 1cycle pol-
icy on the aforementioned dataset, opting for a fine-tuning 
involving only the last convolutional layer, an approach that 
has been discussed and found to work well in cases similar 
to ours [21, 22] (see Supplementary Materials for details). 
Figure 1 graphically shows what parts of the network were 
fine-tuned.

Validation and test datasets included n.30 (n.14/30 high-
grade synovitis) and n.30 items (n.16/30 high-grade syno-
vitis), respectively.Following the training phase, validation 
and test were carried out on the remaining datasets (See 
Supplementary Materials for details).

Accuracy =
truepositives + truenegatives

truepositives + truenegatives + falsepositives + falsenegatives

Recall =
truepositives

truepositives + falsenegatives

Precision =
truepositives

truepositives + falsepositives

Grad‑CAM algorithm

Similarly to other deep learning models, CNNs are considered 
“black box” methods, for which researchers cannot precisely 
explain what parts of the input image the network is “attend-
ing” to, or how the model arrived at its final output [23]. It is 
crucial to resolve these issues, with particular regards to bio-
medical contexts. To provide explainability we employed the 
Grad-CAM algorithm, which has been discussed and applied 
in recent literature for visually debugging CNNs and properly 
understanding which features or parts of the image are the 
most important for classification purposes [14, 23].

In brief, Grad-CAM uses the loss functions with respect 
to one specific test image to produce a heatmap highlighting 
the regions that are more relevant to the model for predicting 
the given label.

With Grad-CAM we checked where in each test image the 
CNN was looking when a histopathological slice is evaluated. 
This allowed us to further validate that the model works cor-
rectly, by verifying that it is indeed “attending” intuitively cor-

rect patterns in the image and activating around those patterns. 
Examples are discussed in the Results section.

Ablation study

In deep learning research, an ablation study typically refers to 
removing some features of the model or algorithm and seeing 
how that affects performance for the sake of explainability.

To properly observe the effect of the fine-tuning on the 
CNN, we also compared the performance of the model 
with the fine-tuning and the performance of it without the 
fine-tuning.

Inter‑rater reliability study

Krenn’s synovitis score was independently assessed on the 
aforementioned test dataset by a second pathologist (GC), 
who was not aware of its colleague’s classification. Using 
Cohen’s K method we measured inter-rater reliability, com-
paring ResNet34 outcomes with the latter pathologist’s report.

Results

Twelve patients (6/12 female, 50%) with a mean (± SD) age 
48.7 ± 12 years underwent USSB of knee synovium during 
routine clinical practice in the time frame of the study. In 
particular 6/12 patients (50%) had Psoriatic Arthritis, 5/12 
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(41.7%) had Rheumatoid Arthritis, 1/12 (8.3%) had Periph-
eral Spondyloarthritis. All patients met the current classifi-
cation criteria for each disease [24–26]. Detailed patients’ 
characteristics are illustrated in Table 1.

Validation phase

The learning curves in the validation phase showed that the 
CNN learned steadily with a rapid decrease in train loss and 
the concomitant increase of accuracy (Fig. 2). Fine-tuned 
(ft-) ResNet34 showed a good fit: train loss and validation 
loss, both plotted over epochs, displayed a trend towards 
a decrease with the former being the smallest (Valida-
tion accuracy 96.67%). That was not the case of the plain 
ResNet34, trained without fine-tuning for ablation purposes 
that indicated underfitting, with the training loss continuing 
to decrease until the end of the training, displaying higher 
values than validation loss throughout the whole process 
(Validation accuracy 86.67%, Fig. 2).

Test phase

Conversely deploying the ft-ResNet34 on the test dataset 
yielded an accuracy of 100% was shown (precision = 1, 

recall = 1, Fig. 3). As expected plain ResNet34 showed 
worse performance, scoring accuracy = 90%, preci-
sion = 0.90 and recall = 0.90 (Fig. 3).

Grad‑CAM analysis

Grad-Cam (Fig. 4) shows that the activation map of our ft-
CNN focused on the cellularity in the synovial lining and 
the sublining layers—two of Krenn’s score fundamental 
items [8]. This is further confirmation that the model is 
working correctly. We conclude that it consistently focuses 
its activation map on areas of the image that are consid-
ered very informative for synovitis grading by human 
pathologists as well.

Reliability

Sixteen out of 30 high grade synovitis were identified by 
the second pathologist in the test dataset (ground truth 
n.16/30). Cohen’s K for inter-rater reliability taking into 
account ft-CNN output and the latter pathologist’s diag-
nosis was 1, indicating very good agreement.

Table 1   Clinical demographic and histopathological characteristics of our cohort

bDMARDs biological disease-modifying anti-rheumatic drugs, csDMARDs conventional synthetic disease-modifying anti-rheumatic drugs, 
DAPSA Disease Activity in Psoriatic Arthritis, DAS28-ESR Disease Activity Score on 28 joints with Erythrocyte Sedimentation Rate, MTX 
Methotrexate, PDN Prednisone, TNFi Tumour Necrosis Factor inhibitors; SSZ sulfasalazine

Av. Obs Rheumatoid arthritis
(n.5 patients)

Psoriatic arthritis
(n.6 patients)

Peripheral 
spondyloar-
thritis
(n.1 patient)

Female, n (%) 12 4 (30) 2 (16.7) 0
Age at biopsy, years, mean (SD) 12 42.6 (13.3) 53 (11.7) 51
Disease duration at biopsy, months, mean (SD) 12 155 (126) 114 (98.9) 3
csDMARDs at biopsy, n (%) 12 4 (30) 1(8.3) 0
MTX 3 (25) 0 0
SSZ 1(8.3) 0 0
bDMARDs at biopsy, n (%) 12 2 (16.7) 3 (25) 0
TNFi 2 (16.7) 2 (16.7) 0
Secukinumab 1(8.3) 0
tsDMARDs at biopsy, n (%) 12 1 (8.3) 0 0
Baricitinib 1 (8.3) 0 0
Steroids at biopsy n (%) 12 2 (16.7) 1(8.3) 0
 ≤ 7.5 mg PDN 2 (16.7) 1(8.3) 0
 > 7.5 mg PDN 0 0 0
DAS28-ESR, mean (SD) 12 3.76 (1.2)
DAPSA, mean (SD) 12 13.7 (2.1) 18.2
Power Doppler grade, median (IQR) 12 1 (1) 2 (0) 2
Krenn’s score, median (IQR) 12 4 (1) 6 (3) 6
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Fig. 2   Training and validation metrics. Train loss and validation loss 
have been plotted. In the fine-tuned ResNet34 model (left panel) 
a good fit was observed: both train loss and validation loss showed 
a trend towards a decrease with the former being the smallest. The 

plain ResNet34 model (right panel) indicated underfitting, with the 
training loss continuing to decrease until the end of training, display-
ing higher values than validation loss throughout the whole process

Fig. 3   Confusion matrix for test phase metrics (high VS low grade 
synovitis) for fine-tuned (right panel) and plain (left panel) ResNet34 
models. Upper-left square shows true positive predictions (high grade 
synovitis), lower-right square shows true negative ones (low grade 
synovitis). Right and Lower-left squares and Upper-right squares 

show false positive and false negative predictions, respectively. For 
fine-tuned model (left panel): accuracy = 100%, precision (true posi-
tive/actual results) = 1, recall (true positive/predicted results) = 1. For 
plain model (right panel): accuracy = 90%, precision (true positive/
actual results) = 0.90, recall (true positive/predicted results) = 0.90

Fig. 4   Two examples of Grad-CAM algorithm output on our fine-
tuned model. The algorithm provides a heatmap highlighting the 
regions that are more relevant to the model for predicting the given 
label. Here we show each test example on the left, and the same 
image with the heatmap superimposed on the right. Red-yellow zones 
(highlighted by black arrows) are the most informative areas for the 

model’s classification of both high grade synovitis (upper panels, 
20 × magnification) and low grade synovitis (lower panels, 20 × mag-
nification). It can be noticed that cellularity in lining and sublining 
layers is a salient image characteristic. Areas that are less informative 
for the model are darkened by the heatmap
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Discussion

To the best of our knowledge, this is the first report show-
ing that a CNN trained with a TL approach can accurately 
discriminate between high and low-grade synovitis in 
USSB specimens. H&E stained slides, the basic tool of 
precision-based diagnostics, also represent the basis of 
personalized care in rheumatology. USSB is now poised to 
revolutionize management of patients with rheumatic dis-
eases, by helping rheumatologists to extract large amounts 
of objective and multiparametric information about dis-
ease pathogenesis, prognosis and treatments outcome [3, 
27]-With the clear perspective of USSB-driven therapy, 
pathologists will play a key role in such revolution, being 
progressively involved in rheumatologists’ everyday clini-
cal practice.

In the past years, interactive measurement of synovial 
layers and computer-assisted image analysis based on RGB 
signal nuances recognition had been used to count cells in 
lining and synovial stroma [8]. Nevertheless, this process 
was time-consuming as it required pathologists to mark 
the margins of synovial lining, whereas the final score 
showed only an adequate correlation with ground truth 
(r = 0.725) [8].

Moreover, RGB signal recognition deployed to quan-
tify CD3 + lymphocytes and CD68 + macrophages sublin-
ing infiltration across different European centers showed 
unsatisfactory agreement (Intraclass correlation coeffi-
cients: 0.79 and 0.58 respectively) [9].

Conversely, the application of CNN-based computer 
vision may help to smooth and globally improve the 
workflow in the future. A benefit of CNNs is to provide a 
fast, reproducible and standardized tool to assist diagno-
sis. Indeed, the overall agreement between this model and 
pathologists is encouraging and suggests that CNNs have 
the potential to be employed in the clinical management of 
patients with rheumatic diseases when a USSB is needed.

Undoubtedly, this new technology needs to be inte-
grated with pathologist’s expertise to oversee and approve 
machine-based interpretations. Note that, at this stage, this 
algorithm does not answer all the questions rheumatolo-
gists may ask about synovial histological samples. Our 
model cannot yet identify “pathotypes” that are claimed to 
be informative for treatment personalization. Indeed, the 
implementation of this feature is conditional on the avail-
ability of larger datasets to train the algorithm. To accu-
rately train the multi-class classifier that would be needed 
for this task, a researcher would conceivably need plenty 
of slices for “lympho-myeloid”, “myeloid” and “pauci-
immune” pathotypes [28]. Such data cannot in any way 
be substituted by image augmentation, due to the peculiar 
features of individual pathotypes. This, once more, poses 

the necessity to improve data sharing for visual contents 
and the creation of public image databases for machine-
learning research, as it currently happens for melanoma 
detection. Given that CNNs seem to spontaneously attend 
to classical Krenn’s score items found in the image—cells 
in the synovial lining, synovial stroma and inflammatory 
infiltrate—it is conceivable that, with adequate training 
and fine-tuning, CNNs could discriminate pathotypes 
based on distinctive histopathological patterns.

The ablation study indicated that the fine-tuning was 
of utmost importance for maximizing testing metrics. We 
observed that the fine-tuned ResNet34 seemed to rely on lin-
ing and sublining cellularity for discrimination. To explain 
the usefulness of fine-tuning, we hypothesize that the higher 
level feature maps found in the fine-tuned layers, which were 
learned during pretraining on the ImageNet dataset, needed 
to be adjusted specifically to improve classification accuracy 
on our dataset.

Finally, we must acknowledge that this was a pilot study 
with a small image dataset obtained from a low number of 
patients. Although promising, our model still needs to be 
prospectively validated in real-life cohorts.

Conclusions

This study shows that CNNs have the potential to accurately 
discriminate between low grade and high-grade synovitis. 
The application of CNN-based computer vision may help to 
smooth and globally improve the workflow practice between 
rheumatologists and pathologists. Further research is neces-
sary to evaluate performance in a real-world clinical set-
ting, to test this technique across the sample distribution and 
spectrum of synovitis patterns detected in daily practice. But 
such potential developments are conditional on the creation 
of large and open-access datasets, which historically have 
driven the development of machine learning.

Author contributions  VV: Conceptualization; VV, GC, GL, AC: Data 
curation; VV, OA: Formal analysis; No Funding acquisition; VV, OA, 
EM, FI: Investigation; VV, OA: Methodology; VV: Project admin-
istration; VV: Resources; VV: Software; EM, FI; Supervision; VV, 
OA: Validation; VV, OA: Visualization; VV, OA, FI: Roles/Writ-
ing—original draft; VV, OA, FI: Writing—review and editing. VV 
and OA are joint first authors. This work is not related to OA’s Amazon 
employment.

Funding  Authors declare no financial supports for this work.

Availability of data and materials  Image and patient database not avail-
able due to local ethical committee privacy issues.

Code availability  Model available upon request.



1464	 Internal and Emergency Medicine (2021) 16:1457–1465

1 3

Compliance with ethical standards 

Competing interests  The authors declare that they have no conflict 
of interest.

Statement of human and animal rights  This study was performed 
according to the Declaration of Helsinki and study reached the approval 
by the ethical committee at the University of Bari, Italy as part of the 
Biopure registry (IRB approval n 5277/2017). The procedures followed 
were in accordance with the ethical standards of the responsible com-
mittee on human experimentation as required by the applicable law.

Informed consent  Patients signed informed consent regarding publish-
ing their data andhistopathological imagess.

References

	 1.	 Najm A, Le Goff B, Orr C, Thurlings R, Canete JD, Humby F, 
Alivernini S, Manzo A, Just SA, Romao VC, Krenn V, Muller-
Ladner U, Addimanda O, Tas SW, Stoenoiu M, Meric de Bellefon 
L, Durez P, Strand V, Wechalekar MD, Fonseca JE, Lauwerys B, 
Fearon U, Veale DJ, Group ESS, Group OSTSI (2018) Stand-
ardisation of synovial biopsy analyses in rheumatic diseases: a 
consensus of the EULAR synovitis and OMERACT synovial 
tissue biopsy groups. Arthritis Res Ther 20(1):265. https​://doi.
org/10.1186/s1307​5-018-1762-1

	 2.	 Venerito V, Cazzato G, Lopalco G, Fornaro M, Righetti G, Urso L, 
Cimmino A, Iannone F (2019) Histopathologic features of fibrotic 
knee synovitis in a young adult with seronegative rheumatoid 
arthritis. J Clin Rheumatol. https​://doi.org/10.1097/RHU.00000​
00000​00124​7

	 3.	 Humby F, Buch M, Durez P, Lewis M, Bombardieri M, Rizvi 
H, Kelly S, Fosatti L, Hands R, Giorli G, Mahto A, Montecucco 
C, Lauwerys B, Romao V, Pratt A, Bugatti S, Ng N, Rivellese F, 
Ho P, Bellan M, Congia M, Verschueren P, Sainaghi P, Gendi N, 
Dasgupta B, Cauli A, Reynolds P, Cañete J, Moots R, Taylor P, 
Edwards C, Isaacs J, Sasieni P, Eurico Fonseca J, Choy E, Pitzalis 
C (2019) A Randomised, Open Labelled Clinical Trial to Investi-
gate Synovial Mechanisms Determining Response – Resistance to 
Rituximab versus Tocilizumab in Rheumatoid Arthritis Patients 
Failing TNF Inhibitor Therapy. Arthritis Rheumatol 71 (suppl 10). 
https​://acrab​strac​ts.org/abstr​act/a-rando​mised​-open-label​led-clini​
cal-trial​-to-inves​tigat​e-synov​ial-mecha​nisms​-deter​minin​g-respo​
nse-resis​tance​-to-ritux​imab-versu​s-tocil​izuma​b-in-rheum​atoid​
-arthr​itis-patie​nts-faili​ng-tnf-inhib​itor-t/. Accessed 4 Dec 2020

	 4.	 Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, 
Thrun S (2017) Dermatologist-level classification of skin cancer 
with deep neural networks. Nature 542(7639):115–118. https​://
doi.org/10.1038/natur​e2105​6

	 5.	 Srinidhi CL, Ciga O, Martel AL (2019) Deep neural network mod-
els for computational histopathology: A survey.

	 6.	 Gertych A, Swiderska-Chadaj Z, Ma Z, Ing N, Markiewicz T, 
Cierniak S, Salemi H, Guzman S, Walts AE, Knudsen BS (2019) 
Convolutional neural networks can accurately distinguish four his-
tologic growth patterns of lung adenocarcinoma in digital slides. 
Scientific Reports 9(1):1483. https​://doi.org/10.1038/s4159​8-018-
37638​-9

	 7.	 Pandit A, Radstake T (2020) Machine learning in rheumatology 
approaches the clinic. Nat Rev Rheumatol 16(2):69–70. https​://
doi.org/10.1038/s4158​4-019-0361-0

	 8.	 Morawietz L, Schaeper F, Schroeder JH, Gansukh T, Baasanjav N, 
Krukemeyer MG, Gehrke T, Krenn V (2008) Computer-assisted 

validation of the synovitis score. Virchows Arch 452(6):667–673. 
https​://doi.org/10.1007/s0042​8-008-0587-8

	 9.	 Rooney T, Bresnihan B, Andersson U, Gogarty M, Kraan M, 
Schumacher HR, Ulfgren AK, Veale DJ, Youssef PP, Tak PP 
(2007) Microscopic measurement of inflammation in synovial 
tissue: inter-observer agreement for manual quantitative, semi-
quantitative and computerised digital image analysis. Ann Rheum 
Dis 66(12):1656–1660. https​://doi.org/10.1136/ard.2006.06114​3

	10.	 Krenn V, Morawietz L, Burmester GR, Kinne RW, Mueller-
Ladner U, Muller B, Haupl T (2006) Synovitis score: dis-
crimination between chronic low-grade and high-grade syno-
vitis. Histopathology 49(4):358–364. https​://doi.org/10.111
1/j.1365-2559.2006.02508​.x

	11.	 Wechalekar MD, Najm A, Veale DJ, Strand V (2019) The 2018 
OMERACT synovial tissue biopsy special interest group report 
on standardization of synovial biopsy analysis. J Rheumatol. 
https​://doi.org/10.3899/jrheu​m.18106​2

	12.	 Shahin M, Maier H, Jaksa M (2004) Data division for 
developing neural networks applied to geotechnical engi-
neering. J Comput Civil Eng. https​://doi.org/10.1061/
(ASCE)0887-3801(2004)18:2(105)

	13.	 Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. 
MIT Press

	14.	 Brunese L, Mercaldo F, Reginelli A, Santone A (2020) 
Explainable deep learning for pulmonary disease and coro-
navirus COVID-19 detection from X-rays. Comput Methods 
Programs Biomed 196:105608. https​://doi.org/10.1016/j.
cmpb.2020.10560​8

	15.	 Kensert A, Harrison PJ, Spjuth O (2019) Transfer learning with 
deep convolutional neural networks for classifying cellular mor-
phological changes. SLAS Discov 24(4):466–475. https​://doi.
org/10.1177/24725​55218​81875​6

	16.	 Vu CC, Siddiqui ZA, Zamdborg L, Thompson AB, Quinn TJ, Cas-
tillo E, Guerrero TM (2020) Deep convolutional neural networks 
for automatic segmentation of thoracic organs-at-risk in radiation 
oncology—use of non-domain transfer learning. J Appl Clin Med 
Phys 21(6):108–113. https​://doi.org/10.1002/acm2.12871​

	17.	 He K, Zhang X, Ren S, Sun J (2015) Deep Residual Learning for 
Image Recognition.

	18.	 Howard J, Gugger S (2020) fastai: A Layered API for Deep 
Learning.

	19.	 Deng J, Dong W, Socher R, Li L-J, Li K, Li FF (2009) Ima-
geNet: a large-scale hierarchical image database. IEEE. https​://
doi.org/10.1109/CVPR.2009.52068​48

	20.	 Kaur T, Gandhi TK (2020) Deep convolutional neural networks 
with transfer learning for automated brain image classification. 
Mach Vis Appl 31(3):20. https​://doi.org/10.1007/s0013​8-020-
01069​-2

	21.	 Monshi M, Poon J, Chung V (2019) Convolutional neural net-
work to detect thorax diseases from multi-view chest X-rays. In: 
Gedeon T, Wong K, Lee M (eds) Neural Information Processing. 
ICONIP 2019. Communications in computer and information sci-
ence. Springer, Cham, pp 148–158. https​://doi.org/10.1007/978-
3-030-36808​-1_17

	22.	 Smith LN (2018) A disciplined approach to neural network hyper-
parameters: Part 1 -- learning rate, batch size, momentum, and 
weight decay.

	23.	 He T, Guo J, Chen N, Xu X, Wang Z, Fu K, Liu L, Yi Z (2020) 
MediMLP: using Grad-CAM to extract crucial variables for lung 
cancer postoperative complication prediction. IEEE J Biomed 
Health Inform 24(6):1762–1771. https​://doi.org/10.1109/
JBHI.2019.29496​01

	24.	 Iannone F, Nivuori M, Fornaro M, Venerito V, Cacciapaglia 
F, Lopalco G (2019) Comorbid fibromyalgia impairs the effec-
tiveness of biologic drugs in patients with psoriatic arthritis. 

https://doi.org/10.1186/s13075-018-1762-1
https://doi.org/10.1186/s13075-018-1762-1
https://doi.org/10.1097/RHU.0000000000001247
https://doi.org/10.1097/RHU.0000000000001247
https://acrabstracts.org/abstract/a-randomised-open-labelled-clinical-trial-to-investigate-synovial-mechanisms-determining-response-resistance-to-rituximab-versus-tocilizumab-in-rheumatoid-arthritis-patients-failing-tnf-inhibitor-t/
https://acrabstracts.org/abstract/a-randomised-open-labelled-clinical-trial-to-investigate-synovial-mechanisms-determining-response-resistance-to-rituximab-versus-tocilizumab-in-rheumatoid-arthritis-patients-failing-tnf-inhibitor-t/
https://acrabstracts.org/abstract/a-randomised-open-labelled-clinical-trial-to-investigate-synovial-mechanisms-determining-response-resistance-to-rituximab-versus-tocilizumab-in-rheumatoid-arthritis-patients-failing-tnf-inhibitor-t/
https://acrabstracts.org/abstract/a-randomised-open-labelled-clinical-trial-to-investigate-synovial-mechanisms-determining-response-resistance-to-rituximab-versus-tocilizumab-in-rheumatoid-arthritis-patients-failing-tnf-inhibitor-t/
https://doi.org/10.1038/nature21056
https://doi.org/10.1038/nature21056
https://doi.org/10.1038/s41598-018-37638-9
https://doi.org/10.1038/s41598-018-37638-9
https://doi.org/10.1038/s41584-019-0361-0
https://doi.org/10.1038/s41584-019-0361-0
https://doi.org/10.1007/s00428-008-0587-8
https://doi.org/10.1136/ard.2006.061143
https://doi.org/10.1111/j.1365-2559.2006.02508.x
https://doi.org/10.1111/j.1365-2559.2006.02508.x
https://doi.org/10.3899/jrheum.181062
https://doi.org/10.1061/(ASCE)0887-3801(2004)18:2(105)
https://doi.org/10.1061/(ASCE)0887-3801(2004)18:2(105)
https://doi.org/10.1016/j.cmpb.2020.105608
https://doi.org/10.1016/j.cmpb.2020.105608
https://doi.org/10.1177/2472555218818756
https://doi.org/10.1177/2472555218818756
https://doi.org/10.1002/acm2.12871
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1007/s00138-020-01069-2
https://doi.org/10.1007/s00138-020-01069-2
https://doi.org/10.1007/978-3-030-36808-1_17
https://doi.org/10.1007/978-3-030-36808-1_17
https://doi.org/10.1109/JBHI.2019.2949601
https://doi.org/10.1109/JBHI.2019.2949601


1465Internal and Emergency Medicine (2021) 16:1457–1465	

1 3

Rheumatology (Oxford). https​://doi.org/10.1093/rheum​atolo​gy/
kez50​5

	25.	 Lopalco G, Venerito V, Cantarini L, Emmi G, Salaffi F, Di Carlo 
M, Tafuri S, Gentileschi S, Di Scala G, Nivuori M, Cacciapaglia 
F, Galeazzi M, Lapadula G, Iannone F (2019) Different drug sur-
vival of first line tumour necrosis factor inhibitors in radiographic 
and non-radiographic axial spondyloarthritis: a multicentre retro-
spective survey. Clin Exp Rheumatol 37(5):762–767

	26.	 Venerito V, Lopalco G, Cacciapaglia F, Fornaro M, Iannone F 
(2019) A Bayesian mixed treatment comparison of efficacy of 
biologics and small molecules in early rheumatoid arthritis. Clin 
Rheumatol 38(5):1309–1317. https​://doi.org/10.1007/s1006​
7-018-04406​-z

	27.	 Orr C, Vieira-Sousa E, Boyle DL, Buch MH, Buckley CD, Canete 
JD, Catrina AI, Choy EHS, Emery P, Fearon U, Filer A, Gerlag D, 
Humby F, Isaacs JD, Just SA, Lauwerys BR, Le Goff B, Manzo 
A, McGarry T, McInnes IB, Najm A, Pitzalis C, Pratt A, Smith 
M, Tak PP, Thurlings R, Fonseca JE, Veale DJ (2017) Synovial 

tissue research: a state-of-the-art review. Nat Rev Rheumatol 
13(10):630. https​://doi.org/10.1038/nrrhe​um.2017.161

	28.	 Humby F, Lewis M, Ramamoorthi N, Hackney JA, Barnes MR, 
Bombardieri M, Setiadi AF, Kelly S, Bene F, DiCicco M, Riahi S, 
Rocher V, Ng N, Lazarou I, Hands R, van der Heijde D, Landewe 
RBM, van der Helm-van MA, Cauli A, McInnes I, Buckley CD, 
Choy EH, Taylor PC, Townsend MJ, Pitzalis C (2019) Synovial 
cellular and molecular signatures stratify clinical response to 
csDMARD therapy and predict radiographic progression in early 
rheumatoid arthritis patients. Ann Rheum Dis 78(6):761–772. 
https​://doi.org/10.1136/annrh​eumdi​s-2018-21453​9

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1093/rheumatology/kez505
https://doi.org/10.1093/rheumatology/kez505
https://doi.org/10.1007/s10067-018-04406-z
https://doi.org/10.1007/s10067-018-04406-z
https://doi.org/10.1038/nrrheum.2017.161
https://doi.org/10.1136/annrheumdis-2018-214539

	A convolutional neural network with transfer learning for automatic discrimination between low and high-grade synovitis: a pilot study
	Abstract
	Introduction
	Materials and methods
	Data acquisition
	Theory
	Parameters and metrics

	Calculation
	Grad-CAM algorithm
	Ablation study
	Inter-rater reliability study


	Results
	Validation phase
	Test phase
	Grad-CAM analysis
	Reliability

	Discussion
	Conclusions
	References




