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Abstract
Nonstructural carbohydrates and antioxidants affect the yield of any plant. In this study, changes in nonstructural carbo-
hydrates and antioxidant metabolism in leaf and spike, as well as their effects on grain yield, were examined in relation to 
elevated  CO2 and nitrogen supply. For this, a wheat (Triticum aestivum) was grown at two levels of  CO2, i.e., ambient 400 ppm 
(T1) and elevated 800 ppm (T2), with two levels of nitrogen supply, i.e., 0 gN (N1) and 1 gN (N2). In the sink, elevated  CO2 
and nitrogen caused a several-fold increase in glucose content. Fructose showed an increase of 53% and 60% in  N2 treat-
ment under both carbon levels. At the same time, sucrose content decreased by 112% and 100% with an increase in nitrogen 
doses under 400 ppm and 800 ppm. Higher N decreased the superoxide dismutase activity at ambient  CO2, while higher N 
at elevated carbon levels increased the superoxide dismutase activity. Elevated  CO2 decreased the catalase activity, while 
the peroxidases activity increased. In the spike, catalase activity increased at a higher N level. Grain yield was significantly 
enhanced at elevated  CO2. The correlation analysis showed that catalase has a strong positive correlation with grain yield. 
The changes in nonstructural carbohydrates and antioxidant enzyme activities are associated with the altered leaf-spike 
relationship under N availability at high  CO2 levels, which could be a key factor contributing to variable yield. Differential 
response of nonstructural carbohydrates and antioxidant enzymes in leaf and spike is responsible for changes in grain yield.
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Abbreviations
CO2  Carbon dioxide
a[CO2]  Ambient carbon dioxide
e[CO2]  Elevated carbon dioxide
SOD  Superoxide dismutase
CAT   Catalase
APX  Ascorbate peroxidase
GR  Glutathione reductase

POX  Peroxidases
PVPP  Polyvinylpolypyrrolidone

Introduction

The increase in atmospheric carbon dioxide  (CO2) is cur-
rently at a very concerning and dangerous level. It has been 
assumed that  CO2 levels would exceed 800 ppm by 2100 
(Wang et al. 2013). Its concentration has increased signifi-
cantly and unpredictably, making it one of the most alarming 
causes of global warming (FAO et al. 2018), which could 
further cause water shortage, resulting drought stress on 
plants (Ulfat et al. 2021; VanDerSleen et al. 2015). Accord-
ing to numerous studies (Liu and Stützel 2004; Yan et al. 
2017), drought can inhibit plant development and physiol-
ogy, including non-structural carbohydrates, antioxidants, 
and other processes. Nonstructural carbohydrates (NSCs), 
are pivotal in plant metabolism, providing a consistent sup-
ply of glucose and starch, while also governing growth sta-
tus, ecophysiological functions, and reactions to external 
stresses (Liu and Huang 2018). To achieve high crop yields, 
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it is important to improve the output and reuse capability 
of NSCs.

Beyond the fact that elevated levels of atmospheric  CO2 
positively impacts the plant growth by stimulating several 
important factors such as increased photosynthesis rate, 
improved water use efficiency, and reduced stomatal con-
ductance (Wang and Wei 2013). However, the contents of 
plant nutrients were found to be negatively impacted by 
elevated  CO2  (e[CO2]) in various research (Li et al. 2019, 
2020a, b). According to Radin and Eidenbock (1986) and 
Schurr et al. (2000), the lower nutrient contents, particularly 
nitrate, may also act as a signal to cause changes in non-
structural carbohydrates and antioxidant activities. Nitrogen 
is one of the essential nutrients that affects plant growth 
and physiology. According to Takashima et al. (2004), and 
Zhang et al. (2020), nitrogen is a crucial component of 
amino acids, proteins, nucleic acids, and chlorophyll, which 
helps to control the metabolism and assimilation of carbon 
(Boussadia et al. 2010). This decrease in nitrogen concentra-
tion can be attributed to various factors. First, it results from 
the dilution effect (Reich et al. 2006; Myers et al. 2014). 
The diluted nitrogen content caused by  e[CO2] levels can 
be counteracted by enhancing or optimising nitrogen levels 
through applied nitrogen fertilizer (Lam et al. 2012; Walker 
et al. 2017). Second, the reduced flow of nutrients from 
the soil to the plant can be attributed to decreased stomatal 
conductance and transpiration (McGrath and Lobell 2013). 
Along with changes in the rhizosphere environment, other 
factors that contribute to the fall in nitrogen concentration 
include lower levels of the Rubisco enzyme and hindered 
nitrate assimilation (Long et al. 2004; Reich et al. 2006; 
Bloom et al. 2012; Myers et al. 2014).

In response to e(CO2), plants undergo photosynthetic pro-
cesses to convert  CO2 into carbohydrates and other organic 
compounds (Whitehead et al. 1995).  CO2 fertilization offers 
a promising way to enhance crop yield and ultimately con-
tribute to sustainable food production in the forthcoming 
decades. Further, applying nitrogen (N) can enhance the 
photosynthetic rate, leading to improved plant NSCs (Zhang 
et al. 2013). Ensuring an adequate nitrogen supply is essen-
tial as it influences the establishment and activity of the leaf 
and spike tissue processes (Ning et al. 2018).

Under e(CO2) conditions, plant growth experiences a sig-
nificant boost, resulting in higher yields (Long et al. 2004). 
The grain yield of plants can be seen as a balance between 
the source activity, which relates to the supply of carbohy-
drates, and the sink strength, which refers to the capacity 
of grains to store the available carbohydrates (Zhang et al. 
2013). The significant increase in nitrogen uptake seen in 
crop and other plant species under  e[CO2] (Ainsworth and 
Long 2005; Bloom et al. 2012; Weigel and Manderscheid 
2012; Mcgrath and Lobell 2013; Vicente et al. 2016; Dier 
et al. 2018). The increase in carbon availability induced by 

 e[CO2] has a direct impact on starch synthesis and carbo-
hydrate metabolism in both leaf and spike (MacNeill et al. 
2017). Under  e[CO2] conditions, starch accumulation is 
enhanced due to increased Rubisco carboxylation activity, 
in contrast to  a[CO2] conditions (Ainsworth and Rogers 
2007). Moreover,  e[CO2] affects various enzymes involved 
in carbohydrate metabolism in distinct ways. It has been 
proposed that enzymes within the same metabolic pathway 
might respond differently to  e[CO2] (Jammer et al. 2015). 
However, the overall trends in the alterations of major car-
bohydrate metabolism enzyme activities in leaf and spike 
organs, in response to both  e[CO2] and nitrogen fertilization, 
are not yet well understood.

Moreover, meeting the future food demand has emerged 
as a significant challenge in the twenty-first century. Accord-
ing to some predictions, the present food output would need 
to be doubled by 2050 to meet the task of feeding a global 
population of 9.7 billion people (FAO et al. 2018). Globally, 
wheat (Triticum aestivum L.) holds a prominent position as 
one of the primary food sources. Its outstanding qualities 
and compatibility for processing into different food products 
may help meet the need for food in the future and referred 
to as a bread cereal in many countries (Biel et al. 2020). 
Over the past decade, breeders have consistently focused 
on enhancing wheat grain yield while maintaining its qual-
ity (Igrejas et al. 2020). Among all crops, wheat has been 
extensively studied in terms of its response to  e[CO2]. The 
stimulation of plant growth under high  CO2 concentrations 
has been found to significantly enhance wheat yield (Long 
et al. 2004).

Hence, the extent of the plant productivity response 
greatly relies on the plant's capacity to uptake nitrogen under 
 e[CO2] conditions. Therefore, the objective of the ongoing 
study was to investigate the effects of  e[CO2] coupled with 
additional nitrogen supplementation, on non-structural car-
bohydrates and antioxidant enzymes.

Materials and methods

Experimental layout

Seeds were grown under ambient  a[CO2] (400 mmol  L−1) 
and elevated  e[CO2] (800 mmol  L−1) concentration in two 
greenhouse sections at the University of Copenhagen, Den-
mark. The experiment was performed in a randomized block 
design with four replicates, and each replicate was consisted 
of four 4-L pots (17 cm diameter; 16.5 cm height). Each pot 
was filled with 4.8 kg of sandy loam (EC = 0.45 ms  cm−1, 
pH 5.6–6.4, 1.0 g  kg−1 of total N and 10.3 g  kg−1 of total C 
Sphagnum, 32% organic matter). In each greenhouse section, 
equal numbers of pots as control (N1; without  NH4NO3) 
and with the 1 g of N (N2, addition of 1 g  NH4NO3) were 
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cultivated. In both greenhouse cells, one set of pots were 
kept control as no N was added and the 2nd set of pots was 
amended with 1 g N (1 g/pot) in the form of  NH4NO3. Lev-
els of  CO2 in the greenhouses were maintained by releasing 
 CO2 from bottle tanks. Throughout the entire experimen-
tal period, the concentration of  CO2 in the greenhouse was 
continuously monitored using a  CO2 transmitter (GMT220, 
Vaisala, Helsinki, Finland) at six-second intervals. Inside the 
greenhouse, the photoperiod spanned 12 h, providing a con-
sistent duration of light exposure. The photosynthetic active 
radiation (PAR) level was maintained at 400 μmol  m−2  s−1, 
and the relative humidity was kept at a steady 70%.

Estimation of nonstructural carbohydrates (NSCs) 
activities

Nonstructural carbohydrates such as fructose, glucose, and 
sucrose were quantified from wheat leaf and spike sam-
ples following the method of Yemm and Willis (1954) 
with some modifications. Leaf and spike samples were 
wrapped in aluminum foil, snap-frozen in liquid nitrogen, 
and stored at − 80 °C. Extraction was made with 80% etha-
nol and 5 mM HEPES solution by Debruyne et al. (1994) 
method. Ion chromatography (anion) was used for analysis 
using 200 mM NaOH as an eluent and pulsed amperometric 
detector (PAD) with a gold electrode (Dionex, ICS 3000, 
Sunnywale, Canada).

Estimation of antioxidant (a) enzyme activities

For the determination of antioxidant enzymes activities, 
the plant samples were ground in 1 mL extraction buffer 
consisting of 40 mM TRIS–HCl pH 7.6, 3 mM  MgCl2, 
1 mM EDTA, 0.1 mM PMSF, 1 mM benzamidine, 14 mM 
β-mercaptoethanol, and 24 μM NADP, using a semi-high-
throughput analytical platform described by Jammer et al. 
(2015). After extraction, samples were centrifuged at 
8000 rpm and then dialyzed. Dialyzed aliquots were pre-
pared and kept at − 800 °C for further analysis. Aliquots of 
the extracts, supplemented with respective reaction mixes for 
individual enzymes, were incubated in a 96-well plate reader 
(Ascent Multiskan; Thermo Fisher Scientific) at 30 °C for 
40 min in UV-transmissive flat-bottom 96-well plates (UV-
Star; Greiner Bio One, Kremsmünster, Austria) in a total 
reaction volume of 160 μL. The change in absorbance per 
second during the linear phase of substrate conversion was 
used as the basis for the calculation of specific enzyme 
activity in nkat gFW–1. Estimation of antioxidant enzymes 
activities including ascorbate peroxidase (APX) at 290 nm, 
catalase (CAT) at 240 nm, peroxidases (POX) at 450 nm, 
glutathione reductase (GR) at 340 nm, and superoxide dis-
mutase (SOD) at 550 nm were determined photometrically 

with the semi-high throughput analytical platform described 
by Fimognari et al. (2020).

Grain yield

The grain yield was calculated after crop harvesting at physi-
ological maturity, using the algorithm proposed by Zadoks 
et al. (1974).

Statistical analysis

Analysis of variance for two factors (two-way ANOVA) was 
done using R Studio 1.0.153.exe, R software package “Agri-
oclae” and their significance was tested at 0.05%. Similarly, 
R software package “corrplot” was used to compute cor-
relation matrix in MetaR-v6.0_BASE_setup.exe software.

Results

Non‑structural carbohydrates (NSCs)

In the leaf, the content of NSCs was significantly varied 
under both levels of  CO2 and nitrogen (N) as shown in 
Table 1. Glucose, fructose and sucrose contents were expo-
nentially higher at  e[CO2] compared to  a[CO2], accounting 
for several-fold increase. When N was added, the amount of 
glucose under  e[CO2] level significantly increased. Fructose 
contents were increased up to 53% and 60% in N1 treatments 
under  e[CO2], compared to N2. Simultaneously, sucrose 
content was significantly increased with N2 dosage under 
both levels of  CO2.

In spike, NSCs content showed a varied response in dif-
ferent treatments. Glucose and sucrose contents were higher 
under  e[CO2] in comparison to  a[CO2]. Further, glucose, 
fructose and sucrose content was exponentially increased by 
112%, 100% and 56% in N2 dose under  e[CO2]. However, 
starch content was greater with N2 dose under  a[CO2] level 
(Table 1).

Antioxidant enzyme activities

Antioxidant enzyme activities in leaf and spike have dis-
tinct patterns under different treatments (Table 2). In leaf, 
in comparison to  a[CO2], activities of SOD and CAT were 
significantly higher under  e[CO2]. However, APX and GR 
activities were greater under  a[CO2]. Furthermore, SOD, 
CAT and APX activities showed a marked increase with N2 
dose under both levels of  CO2 (Table 2). In spike, compared 
to  a[CO2], activities of CAT and POX were higher under 
 e[CO2]. However, APX and GR activities were greater under 
 a[CO2]. Activities of CAT, GR and POX showed increased 
pattern with N2 dose under different level of  CO2 (Table 2).
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Grain yield

Grain yield was significantly changed in response to differ-
ent level of  CO2. The plants grown at  e[CO2] had 10.8% and 
24% higher grain yield than those grown in  a[CO2] under N1 
and N2 treatment, respectively (Fig. 1). In addition, yield 
was greater with N2 dose under both levels of  CO2 (Table 1).

To see the association of all the parameters of spike and 
source with yield, a Pearson correlation was also computed, 
and results are shown in Fig. 2a, b. In both the organs, 
namely leaf and spike, sucrose contents showed a strong 
negative correlation with yield accounting for r = − 0.33 
and r = − 0.21, respectively. Regarding antioxidants, spike 
SOD showed a negative correlation with yield, while source 
CAT showed higher positive values of correlation with yield 
(Fig. 2a, b).

Discussion

Future projections indicate that the nutritional quality of 
wheat may decline under elevated  CO2 conditions. This 
potential decline could possibly be mitigated by enhancing 
or optimizing fertilizer usage, a strategy that could also lead 
to increased grain yield and reduce stress. On a global scale, 
wheat (Triticum aestivum L.) holds a prominent position as a 
C3 crop, and most of the research work was done on wheat 

with regard to elevated  CO2 concentrations. Among the vari-
ous atmospheric nutrients, nitrogen (N) is consider as the 
most critical and important element, as it plays a pivotal role 
in regulating wheat growth, yield, and quality. The interac-
tion between nitrogen and  CO2 has been shown to significant 
effects, and further research in this direction needs consid-
eration (Fangmeier et al. 1999; Hawkesford 2017). Under 
elevated  CO2 conditions, there is an increased demand for 
nitrogen, which could possibly impact overall plant growth 
(MacNeill et al. 2017). Considering these features, particu-
larly in the context of future climate scenarios, adopting eco-
friendly nitrogen management practices becomes imperative 
for ensuring the sustainable wheat production.

In recent study, grain yield was increased in  e[CO2] 
along with nitrogen treatment compared to  a[CO2] (Fig. 1). 
Nitrogen fertilizer application often improves wheat yield 
(Sudderth et al. 2005; Belete et al. 2018; Xu et al. 2020). It 
has been already recognized that low nutrient availability 
restricts the fertilization effect of  CO2 and yield would be 
enhance with the increasing dose of N under  e[CO2] (Long 
et al. 2006; Wang et al. 2013). Our findings agree with those 
of Kim et al. (2003) that rice (Oryza sativa) grain yield 
increased while moving from a low to a moderate N appli-
cation rate, but that a high N application rate had no further 
effect on the  CO2 response ratio. Similarly other researchers 
worked on rice against  e[CO2] in combination with three 
levels of N application in a FACE experiment and conclude 

Table 1  Analysis of variance 
(ANOVA), mean squares 
and standard deviation of 
nonstructural carbohydrate 
enzymes in wheat leaf and 
spike grown under ambient and 
elevated  CO2 with and without 
influence of nitrogen

Ambient (400 ppm) and elevated (800 ppm)  CO2  level, N1 = without  NH4NO3, N2 = with  NH4NO3

*P < 0.05, **P < 0.01, ***P < 0.001

Samples Metabolite 400 ppm 800 ppm Statistics

N1 N2 N1 N2

Leaf Glucose 119.98 ± 12.57 87.20 ± 15.71 19.89 ± 4.60 131.34 ± 13.73 CO
N*
CO: N

Fructose 3.33 ± 0.32 1.44 ± 0.22 4.65 ± 1.47 0.74 ± 0.16 CO N**
CO: N

Sucrose 4.68 ± 1.42 9.77 ± 1.46 0.59 ± 0.28 10.00 ± 1.74 CO N***
CO: N

Spike Glucose 1.26 ± 0.20 0.82 ± 0.25 469.50 ± 69.59 1096.88 ± 230.98 CO***
N*
CO: N*

Fructose 2.27 ± 0.19 3.48 ± 0.58 2.37 ± 0.19 3.63 ± 0.31 CO: NS N**
CO: N

Sucrose 4.68 ± 1.07 2.21 ± 0.59 3.53 ± 2.02 4.75 ± 0.31 CO*
N*
CO: N

Starch 27.28 ± 1.33 31.50 ± 1.80 27.03 ± 0.63 28.20 ± 2.49 CO
N*
CO: N

Yield 66.55 ± 14.05 98.70 ± 11.37 87.95 ± 12.69 101.36 ± 15.31 CO*
N
CO: N
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that the medium level of N application led to the highest 
yield (Yang et al. 2009), which is also in line with the results 
of our study. Moreover,  e[CO2] significantly increased N 

uptake of wheat (Butterly et al. 2016). It seems that sufficient 
N supply may lead to optimization of photosynthetic pro-
cesses and enhanced productivity under  e[CO2] (Ainsworth 
and Long 2005).

Numerous studies recorded that  e[CO2] levels lead to an 
increased wheat grain yield, primarily by increasing grain 
weight and the number of grains per spike (Ainsworth and 
Long 2005). This increase in grain yield under  e[CO2] was 
due to maximum starch accumulation in grains compared 
to  a[CO2] conditions (Högy et al. 2009), a phenomenon 
strongly linked to alterations in starch biosynthesis enzyme 
activities within spikes. The additional nitrogen (N) supply 
boosts the growth of tillers in wheat grown under  e[CO2] 
due to increased N availability. Moreover, the increased N 
supply has a direct impact on enzymes involved in carbo-
hydrate metabolism which in turn, leads to modifications in 
carbohydrate metabolism within both leaf and spike when 
exposed to  e[CO2] conditions (Tausz-Posch et al. 2020). 
These modifications are primarily attributed to the increased 

Table 2  Analysis of variance 
(ANOVA), mean squares 
and standard deviation of 
antioxidant enzymes activities 
of wheat leaf and spike grown 
under ambient and elevated  CO2 
with and without influence of 
nitrogen

Ambient (400 ppm) and elevated (800 ppm)  CO2  level, N1 = without  NH4NO3, N2 = with  NH4NO3

SOD superoxide dismutase, CAT  catalase, APX ascorbate peroxidase, GR glutathione reductase, POX per-
oxide
*P < 0.05, **P < 0.01, ***P < 0.001

Samples Metabolite 400 ppm 800 ppm Statistics

N1 N2 N1 N2

Leaf SOD 0.91 ± 0.04 1.06 ± 0.04 1.24 ± 0.24 1.26 ± 0.06 CO
N CO: N

CAT 0.60 ± 0.20 1.31 ± 0.28 0.58 ± 0.14 1.41 ± 0.15 CO
N **
CO: N

APX 0.44 ± 0.15 0.49 ± 0.12 0.39 ± 0.08 0.46 ± 0.12 CO
N
CO: N

GR 3.50 ± 0.17 2.74 ± 0.36 2.78 ± 0.35 3.34 ± 0.28 CO
N
CO: N

POX 0.03 ± 0.01 0.02 ± 0.00 0.01 ± 0.01 0.03 ± 0.01 CO
N
CO: N

Spike SOD 0.25 ± 0.02 0.17 ± 0.01 0.17 ± 0.01 0.20 ± 0.01 CO*
N
CO: N*

CAT 0.22 ± 0.05 0.22 ± 0.02 0.27 ± 0.03 0.38 ± 0.07 CO*
N
CO: N

APX 1.87 ± 0.15 1.83 ± 0.05 1.33 ± 0.37 1.56 ± 0.09 CO*
N
CO: N

GR 0.32 ± 0.07 0.64 ± 0.22 0.38 ± 0.04 0.37 ± 0.06 CO
N
CO: N

POX 0.02 ± 0.00 0.03 ± 0.00 0.05 ± 0.00 0.07 ± 0.01 CO **
N
CO: N

Fig. 1  Grain yield of wheat grown under ambient and elevated  CO2 
with and without influence of nitrogen. Ambient (400  ppm) and 
elevated (800  ppm)  CO2  level, N1 = without  NH4NO3, N2 = with 
 NH4NO3, *P < 0.05, **P < 0.01, ***P < 0.001
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activities of sucrose enzymes, alongside decreased activities 
of fructose in leaves when subjected to greater N supply 
in recent findings. Additionally, it has been proposed that 
optimizing the balance between leaf and spike could offer 
a potential way for regulating wheat grain yield responses 
to  e[CO2] levels.

In this study, among the nonstructural carbohydrates, 
glucose and sucrose content were higher at e(CO2) in both 
leaf and spike (Table 1). Possibly it was due to higher photo-
assimilation under  e[CO2] which enhanced the activity of 
sucrose synthase and sucrose phosphate enzymes. In the 
previous studies, it was found that nonstructural carbohy-
drates increased under  e[CO2] (Li et al. 2020a, b; Yang 
et al. 2009). Correlation analysis also showed the strong 
positive correlation of sucrose with yield (Fig. 2a). Varia-
tions in results could be explained by the fact that sucrose 
first disintegrates and then move to the green organs of 
plants (Gesch et al. 2007). Moreover, a higher dose of nitro-
gen resulted in a reduction of nonstructural carbohydrates 
(fructose, sucrose and carbohydrates) in both leaf and spike, 
which was similar with previously published studies (Liu 
et al. 2018; Cao et al. 2020). In addition, opposing results 
has also been reported earlier under different experimental 
setup and plant species used. For example, when Nicotiana 
plumbaginifolia grown in hydroponic culture in high nitrate, 
 e[CO2] led to a significant increase of sugars where starch 
did not change significantly. Furthermore, when the plants 
were grown in pots on a lower nitrogen supply, it led to a 
significant increase of starch and a slighter increase of sugars 
(Ferrario-Méry et al. 1997). This is due to lower activities 
of starch metabolism enzymes such as starch synthase, sec-
ondary branch enzymes, and adenosine diphosphate-glucose 

pyrophosphorylase under high nitrogen application (Li et al. 
2018).

Antioxidant enzymes play a pivotal role in mitigating the 
damage caused by reactive oxygen species (ROS) (Mittler 
2002). The action of these enzymes relies on not only in 
scavenging the free radicals but blocking the reactions lead-
ing to generate ROS, and repairing the damages caused by 
ROS. In the spike, SOD activity was higher in the N2 treat-
ment under  e[CO2]. In the leaf, CAT activity increased with 
greater nitrogen levels under both carbon concentrations, 
while in the spike, CAT activity increases in response to 
elevated  CO2 in both nitrogen treatments (Table 2). Addi-
tionally, POX activity was higher in the spike under  e[CO2]. 
Previous research has shown mixed effects, such as reduced 
ZnSOD and POD activities but increased GR and Mn-SOD 
activities in soybeans under  e[CO2] (Badiani et al. 1993). 
Similarly, decreased SOD activities in spruce, pine, and oak 
(Polle et al. 1993; Schwanz et al. 1996) and reduced CAT 
activities in spruce and tobacco (Havir and McHale 1989; 
Polle et al. 1993) were observed. Interestingly, CAT activi-
ties in the leaves of orange, oak, and pine were unaffected 
by  e[CO2] (Schwanz et al. 1996).

Differential findings exist regarding the relationship 
between nitrogen (N) levels and antioxidant enzymes. For 
instance, in wheat (Triticum aestivum L.) leaves, low N 
conditions resulted in significantly increased activities of 
SOD, APX, and CAT (Polesskaya et al. 2004), whereas 
coffee (Coffea arabica L.) leaves exhibited higher SOD 
and APX activities under low N (Ramalho et al. 2018). 
However, in rice and Arabidopsis thaliana, low N condi-
tions led to reduced CAT and APX activities (Kandlbinder 
et al. 2004). Notably, a positive correlation was observed 

Fig. 2  A Correlation matrix of 
nonstructural carbohydrates and 
antioxidant activities of leaf 
with yield. B Correlation matrix 
of nonstructural carbohydrates 
and antioxidant activities of 
spike with yield. SOD super-
oxide dismutase, CAT  catalase, 
APX ascorbate peroxidase, GR 
glutathione reductase, POX 
peroxide
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between SOD and CAT activities and grain yield under 
stress conditions, as depicted in Fig. 2b, which aligns with 
our study's results, where SOD and CAT displayed a posi-
tive correlation with grain yield (Tabarzad et al. 2017). 
Veronica et al. (2017) found that increased catalase (CAT) 
activity under phosphorus stress conditions was correlated 
with higher grain yield.

Globally, climate change results in significant wheat yield 
losses. Our research highlights the impact of  (e[CO2]) and 
nitrogen supply on wheat crop yield. Elevated  CO2 main-
tains antioxidant activities, aiding ROS scavenging and car-
bohydrate metabolism under  e[CO2] and nitrogen supply. 
Alterations in nonstructural carbohydrates and antioxidant 
enzymes in leaves and spikes likely contribute to grain yield 
maintenance.
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