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Abstract
Methyl jasmonate (MeJA) is a phytohormone involved in plant defense against stress. However, its application as pretreatment 
in soybean seeds is limited. Here, we investigated whether seed pretreatment with MeJA mitigated the negative effects of 
water restriction (WR) and mechanical wounding (MW) in soybean seedlings at the V1 vegetative stage. Seeds of Glycine 
max (Monsoy 6410 variety) were pretreated with water or 12.5 µM MeJA for 14 h. The obtained seedlings were transferred to 
pots containing substrate (soil and sand) kept in a greenhouse and subjected to different growth conditions: control (no stress), 
WR (40% water retention), and MW. The experiment was conducted in a 2 × 3 factorial scheme (2 seed pretreatments × 3 
growth conditions). The variables analyzed were ethylene levels, hydrogen peroxide, lipid peroxidation, antioxidant system 
enzymes, sugars, amino acids, proteins, proline, and growth (root and shoot length). WR negatively affected seedling growth, 
regardless of seed pretreatment, but proline levels increased with MeJA application. In seedlings subjected to MW, MeJA 
increased ethylene release, which was related to reduced damage. It suggests that pretreatment of soybean seeds with MeJA 
is a promising tool to mitigate the deleterious effects of biotic and abiotic stresses during seedling establishment, inducing 
distinct tolerance strategies.
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Introduction

Plant species can be subjected to hostile environments in 
which different abiotic stresses trigger defense responses. 
One of the most substantial approaches to induce tolerance 
against stresses is biosynthesis and signaling via phytohor-
mones (Dar et al. 2015). Jasmonate (JA) or its methyl ether 
methyl jasmonate (MeJA) act as signal transduction mol-
ecules in plant defense reactions to induce the production 
of secondary metabolites (Ashry et al. 2018) and are also 
involved in signaling different stress responses (Mohamed 
and Latif 2017).

One of the stressors that most affects productivity is 
water deficit, which reduces photosynthesis and biomass 

accumulation (Volaire 2018). The water deficit can be even 
more severe when occuring in the early stages of develop-
ment, including germination and seedling establishment 
(Guo et al. 2018). MeJA induces biochemical changes and 
signal transduction with other phytohormones, promoting 
greater tolerance to water deficit (Dar et al. 2015). In adult 
soybean plants, foliar application of MeJA alleviated the del-
eterious effects of water stress, increased photosynthetic pig-
ments, maintained biomass gain, and led to seeds with the 
same nutritional quality as non-stressed plants (Mohamed 
and Latif 2017).

Another stress factor that can reduce plant fitness is injury 
due to loss of nutrients and entry of pathogens. Plants have 
defense mechanisms against wounding to prevent patho-
gen infections (Savatin et al. 2014). Although mechanical 
wounded stems trigger defense responses similar to those 
induced by herbivore insects (Rehrig et al. 2014), these 
stresses also have specific characteristics. Furthermore, 
mechanical wound is not sufficient to trigger the complete 
response activated by herbivores (Maffei et al. 2007; Water-
man et al. 2019). Herbivory induces MeJA biosynthesis, 
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which promotes the synthesis of volatile defense compounds 
that activate a systemic response (Yu et al. 2018).

MeJA signal transduction pathways involve the 
activation of antioxidant system enzymes, ROS signaling, 
and interaction with other phytohormones (e.g., ethylene 
in abiotic stress events), promoting different tolerance 
mechanisms (Nazir et  al. 2023). Positive effects of the 
combined action of MeJA and ethylene on cold, freezing, 
salinity, drought, and heat stresses have been reported in 
adult plants (Kazan 2015; Nazir et al. 2023). However, it is 
still unknown whether MeJA can induce ethylene release in 
seeds and seedlings.

Soybean is one of the most important grain crops 
worldwide. In 2023, countries such as Brazil and the United 
States were responsible for exporting approximately 96 and 
54 million tons, respectively, of this grain (USDA 2023). The 
agricultural importance of soybeans reflects the attention 
given to planting and maintaining the crop to avoid yild 
losses. Because it is widely cultivated in several countries, 
soybean is commonly subjected to abiotic stresses, which 
ultimately reduce productivity. As much of the soybean 
production worldwide relies on rainwater (Soares et al. 2021; 
Felisberto et al. 2023), changes in rainfall distribution and 
mechanical damage lead to reduced photosynthesis and 
loss of leaf area, impairing crop yield. In addition, plants or 
their parts are crushed, cut, punctured, rubbed, or hit due to 
accidental or intentional actions in the field.

Exogenous application of MeJA alleviates stresses in 
adult plants; however, the effects of seed pretreatment in 
soybean seedlings are poorly known. We hypothethized that 
soybean seeds which were pretreated with MeJa, attenuate 
stress effects through ethylene, increasing antioxidant 
capacity and osmoprotection. Here, we aimed to investigate 
whether seed pretreatment with MeJA would attenuate the 
effects of water restriction (WR) and mechanical wounding 
(MW) in soybean seedlings at the vegetative stage V1.

Materials and methods

Plant material, seed pretreatment, and obtained 
seedlings

Soybean seeds (Glycine max (L.) Merr) of the Monsoy 6410 
variety were kept at 4 °C until the experiments were per-
formed. Seeds were pretreated with 12.5 µM MeJA (Sigma 
Aldrich®) or deionized water (control) for 14 h (in the dark 
at 25 °C) as this concentration and incubation time did not 
reduce the percentage or speed of seed germination (Sup-
plementary Material, Fig. S1, Table S1). Afterward, seeds 
were transferred to gerbox-type boxes and placed in a 
germination chamber at 30 °C under a 12-h photoperiod 

(40 µmol m−2 s−1 of irradiance). Seeds were monitored daily 
until seedlings with roots ≥ 2 cm were obtained.

Cultivation of soybean seedlings under stressful 
conditions

The seedlings obtained in the previous experiment were 
transplanted into 0.5 L polyethylene pots containing a 
mixture of soil and sand (2:1) and kept in the greenhouse 
for nine days until they reached vegetative stage V1, (i.e., 
unifoliate leaves fully expanded in the control samples).
Substrate moisture content was maintained by daily 
monitoring of the pot weights according to the moisture 
retention curve using the gravimetric method (Souza 
et  al. 2000). WR, retention capacity of 40% based on 
Supplementary Material, Fig. S2; Table S2) was imposed 
immediately after seedling transplantation. For the MW 
experiment, the first pair of unifoliate leaves fully expanded 
was mechanically wounded 24 h before the plant material 
was collected by cutting 40% of the leaf area with scissors 
(Lama et al. 2019).

Sample collection and processing

Seedlings at the V1 stage were removed from the substrate, 
washed in running water, followed by deionized water, and 
dried superficially (paper towels). The root and shoot lengths 
were measured (in cm) with a graduated ruler. For the 
analyses using fresh or dry matter, seedlings (shoot + root) 
were frozen in liquid N2 and stored at -80 °C or dried in an 
oven of forced air circulation at 75 °C for 72 h.

Quantification of ethylene

Ethylene was quantified as described by López et  al. 
(2022), with modifications., Two fresh cotyledonous leaves 
(WR condition) or the first pair of unifoliate leaves fully 
expanded (control and MW conditions) per seedling were 
incubated in vacutainer tubes for 48 and 72 h, respectively. 
The timing of incubation was defined regarding the fresh 
weight of each structure used. The plant material from 
each seedling was incubated in three separate vials 
and the gas (3 mL) was removed with a 10 mL plastic 
syringe. Samples from the same seedling were extracted 
with the same syringe, and the total volume of 9 mL was 
subsequently injected into the CI-900 portable ethylene 
analyzer (Bio-Science) for ethylene quantification. 
Ethylene evolution rate was expressed as ppm g−1 FW h−1.
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Hydrogen peroxide (H2O2)

The levels of H2O2 were quantified by spectrophotometry 
at 390 nm according to Velikova et al. (2000) method.

Lipid peroxidation

Lipid peroxidation was determined by the quantification of 
malondialdehyde (MDA) by spectrophotometry at 535 and 
600 nm as described by Buege and Aust (1978).

Extraction and quantification of enzymes 
from the antioxidant system

Aliquots (0.2  g of fresh seedling material) were 
extracted as described by Biemelt et  al. 1998.The 
activity of superoxide dismutase (SOD), catalase 
(CAT), and ascorbate peroxidase (APX) were assayed 
in the supernatants (enzymatic extracts) as described by 
Giannopolitis and Ries (1977), Havir and McHale (1987) 
and Nakano and Asada (1981), respectively.

Extraction and quantification of sugars, amino 
acids, proline, and proteins

Aliquots (0.1  g of seedling dry matter) were extracted 
with different solvents for the quantification of metabolites 
and proteins by spectrophotometry. Total soluble sugars 
(TSS) and reducing sugars (RS) were extracted according 
to Zanandrea et  al. 2010 and quantified following the 
methodology of Yemm and Willis (1954) and Miller (1959), 
respectively. Non-reducing sugars (NRS) were obtained by 
the difference between TSS and RS. Total free amino acids 
(AA) were determined by the ninhydrin method of Yemm 
et al. (1955). Proline levels and total soluble proteins were 
measured according to Bates et al. (1973) and Bradford 
(1976), respectively.

Experimental design and statistical analysis

The experiment was conducted in a completely randomized 
design in a 2 × 3 factorial scheme (2 seed pretreatments—
water and MeJA vs. 3 growth treatments—WR, MW, and 
control) with five replicates consisting of ten seedlings 
each. The number of seedlings per replicate differed in 
some analyses five seedlings for the analyses of hydrogen 
peroxide, lipid peroxidation, and enzymes of the antioxidant 
system; three seedlings for quantification of ethylene (data 
transformed by the square root), and two seedlings for the 
analyses of growth, sugars, amino acids, proteins, and 

proline. Biochemical analysis using spectrophotometer 
were carried out with in triplicates in each biologic replicate. 
Significant differences among treatments were assessed by 
analysis of variance (ANOVA) followed by post hoc Tukey’s 
test at 5% probability using the ExpDes.pt package (Ferreira 
et al. 2021) of the statistical software R version 4.0.5 (R 
Core Team 2021).

Results

Seedlings from seeds pretreated with MeJA showed a sig-
nificant reduction of 21.41 and 20.30% in the root and shoot 
length, respectively, in the WR condition compared to the 
control. However, under the WR treatment, MeJAled to an 
increase of 40.79% in the shoot length and a decrease of 
47.96% in root length compared to water (Fig. 1a, b).

Seeds exposed to the pretreatment with MeJA had higher 
levels of MDA compared to water in all growth conditions 
(WR, MW, and control). Comparatively, this increase was 
more prominent in the WR treatment than in the control 
and MW. Figure 2a, b show that pretreatment of seeds with 
MeJA induced higher concentrations of H2O2 and MDA in 
seedlings subjected to WR treatment compared to water.

Regarding the enzyme activity of the antioxidant system, 
the pretreatment of seeds with MeJA increased the activity 
of CAT by 46.26% when compared to seedlings treated with 
water in the control. Under stressful growth conditions (WR 
and MW), the activity of this enzyme was strongly reduced, 
with no significant differences between them independent 
from the seed pretreatment (Fig. 3). The activities of the 
SOD and APX enzymes were not significantly affected (data 
not shown).

According to Fig. 4a–d, seedlings from seeds pretreated 
with MeJA and subjected to WR had a reduction of 71.04, 
69.44, 64.02 and 93.31% in TSS, proteins, NRS, and AA, 
respectively, than seedlings from seeds pretreated with 
water. For the proline content, an increase of 61.92% was 
observed in the soybean seedlings when the seeds were pre-
treated with MeJA compared to water (Fig. 5) under WR. 
Pretreatment with MeJA increased the release of ethylene by 
the seedlings only in the MW condition (by eightfold after 
72 h when compared to water) (Fig. 6).

Discussion

It has been described that some substances application are 
capable to modulate antioxidant and homonal resposes 
alleviating biotic and abiotic stresses (Nazir et al. 2023). 
This study demonstrated that the pretreatment of soybean 
seeds with MeJA can induce different effects and tolerance 
mechanisms depending on the stress conditions experienced 
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by the seedlings. The activated mechanisms were different 
when seedlings were subjected to WR and MW. Seed 
pretreatment with MeJA was not effective in mitigating the 
effects of WR in soybean seedlings at stage V1, but induced 
greater ethylene release and increased stress tolerance in 
seedlings under MW conditions. Therefore, we investigated 
the mechanisms by which we found these results.

WR applied in the early stages of soybean development 
reduced seedling growth, especially in roots. These results 
are similar to those of Li et al. (2018), who concluded that 
foliar application of increasing concentrations of MeJA 
after plant emergence significantly decreased the growth of 

soybean, tomato, and sunflower plants. On the other hand, 
the results presented here indicate that when soybean seeds 
were pretreated with MeJA, seedlings at the V1 vegetative 
stage invested in the aerial part to mitigate the effects 
WR. Sheteiwy et al. (2018) observed that 2.5 mM MeJA 
alleviated the water stress of rice seedlings and positively 
influenced both the length of the roots and the aerial part. In 
the same way, Sirhindi et al. (2016) found positive effects on 
the root and shoot growth of soybean seedlings treated with 
2 mM MeJA. This positive effect on root growth was related 
to increased cell division, which may have the participation 
of cytokinins (Avalbaev et al. 2016).

Fig. 1   Root and shoot length of 
soybean seedlings from seeds 
pretreated with MeJA or water 
subjected to no stress (control)
water restriction (WR), and 
mechanical wounding (MW) . 
Data are means ± standard error 
(n = 5). Lowercase and upper-
caseletters represent significant 
differences (ANOVA, Tukey’s 
test (P < 0.05)) between seed 
pretreatments and among 
growth conditions, respectively

Fig. 2   H2O2 and MDA levels of 
soybean seedlings from seeds 
pretreated with MeJA or water 
subjected to no stress (control)
water restriction (WR), and 
mechanical wounding (MW). 
Data are means ± standard 
error (n = 5). Lowercase and 
uppercase letters represent sig-
nificant differences [ANOVA, 
Tukey’s test (P < 0.05)] between 
seed pretreatments and among 
growth conditions, respectively
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Thus, we can infer that WR negatively influenced the 

growth variables, causing oxidative stress, regardless of the 
application of MeJA. This was probably due to the initial 
seedling stage when the WR was imposed. This finding is 
corroborated by the H2O2 and MDA quantification data. 
Pretreatment with MeJA promoted lipid peroxidation 
in relation to water in all treatments, especially in WR. 
However, MeJA applied exogenously to the seeds may have 
been the target of lipid peroxidation, as this phytohormone 
is derived from the oxidation of polyunsaturated fatty 
acids (Muñoz and Munné-Bosch 2020), which may have 
contributed to the increase in MDA levels. To better 
understand the oxidative damage regarding the MeJa 
application, we investigated the activity of antioxidant 
enzymes.

Besides CAT activity in control seedlings from seeds 
treated with MeJA, antioxidant system enzymes were 
not induced by MeJA in soybean seedlings, which could 
attenuate the effects of oxidative stress under the stress 
conditions tested. These results disagree with the increased 
activity of antioxidant system enzymes in adult plants of 
maize (Tayyab et al. 2020) and soybean (Mir et al. 2018) 
subjected to water stress. It was discussed that MeJA also 
modulates antioxidant system to improve tolerante to biotic 
stress in plants (Demiwal et al. 2024) and seeds (Kaushik 
et al. 2024). In this work it was not the strategy induced by 
MeJA in the soybean seeadlings. However, the increasing 
activity of CAT mediated by MeJA treatment in control 
seems to be a promissor mechanism induced by methyl 

Fig. 3   CAT activity in soybean seedlings from seeds pretreated with 
MeJA or water subjected to no stress (control), water restriction 
(WR), and mechanical wounding (MW). Data are means ± standard 
error (n = 5). Lowercase and uppercase letters represent significant 
differences [ANOVA, Tukey’s test (P < 0.05)] between seed pretreat-
ments and among growth conditions, respectively. (ptna = protein)

Fig. 4   Content of TSS, proteins, 
NRS, and AA in soybean 
seedlings from seeds pretreated 
with MeJA or water subjected 
to no stress (control), water 
restriction (WR), and mechani-
cal wounding (MW). Data are 
means ± standard error (n = 5). 
Means followed by the same 
Lowercase and uppercase 
letters represent significant 
differences [ANOVA, Tukey’s 
test (P < 0.05)] between seed 
pretreatments among growth 
conditions, respectively
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jasmonate, that can be deeper studied. Therefore, the effects 
of the stress condition associated with the stage of soybean 
seedlings could not be attenuated by MeJA application on 

improving antioxidant enzymes system. It suggests that other 
physiologic mechanisms could be induced by MeJA.

Regarding the reserves compounds, the application of 
MeJA was efficient in increasing carbohydrate levels in 
soybean seedlings under the control and MW conditions. 
However, under WR, the opposite effect was observed. 
Other studies have shown that the foliar application of 
MeJA in adult soybean plants increased carbohydrates 
to maintain cellular osmotic adjustment under water 
stress (Mohamed and Latif 2017). The Me-JA-induced 
carbohydrates homeostasis was also positively affected in 
rice plants under arsenic stress (Nazir et al. 2023). Seedlings 
subjected to WR had a significant developmental delay 
(i.e., cotyledons still present during sampling) (Fig. 1). 
One possible explanation is that treatment with MeJA may 
have reduced the mobilization of reserves during seedling 
establishment, as also observed by Yang et al. (2018) for 
Astragalus membranaceus seedlings, making it not possible 
to maintain osmotic adjustment when subjected to WR. This 
would delay the mobilization of reserves.

Besides carbohydrates, proteins levels can better explain 
the mechanisms mediated by MeJA in soybean seedlings. 
Proteins are hydrolyzed by proteases to provide amino acids 
for cell storage, transfer, and osmotic adjustment. Thus, 
during WR and with the use of MeJA, protein contents 
probably decreased to protect macromolecules, regulate 
osmosis, maintain the pH, detoxify, and control free radicals 
in the cell (Parida et al. 2004). MeJA increased proline in 
seedlings under WR, corroborating the results observed by 
Sheteiwy et al. (2018) for rice seedlings. Furthermore, this 
result is in agreement with other studies and supports the 
idea that proline accumulation occurs in plants exposed 
to water stress (Sohag et al. 2020; Javadipour et al. 2021) 
due to its property of stabilizing subcellular structures, 
eliminating free radicals, and mitigating cellular redox 
potential (Zulfiqar and Ashraf 2023).

However, the increase in proline by treatment with MeJA 
was not sufficient to completely mitigate the effects of water 
stress in soybean seedlings. The results obtained here are 
nevertheless promising for future studies and corroborate the 
assumption that MeJA induces the synthesis of compatible 
osmolytes, especially proline, as a tolerance mechanism to 
various stresses (Sheteiwy et al. 2018). Our results suggest 
that this mechanism can be induced from the early stages of 
plant development. Therefore, together with carbohydrates, 
proline can be an important mechanism mediated by MeJA 
application.

Interestingly, the increase in ethylene release was only 
observed in seedlings from seeds pretreated with MeJA and 
subjected to MW, suggesting that this mechanical stimulus 
induces a synergistic action between MeJA and ethylene to 
attenuate the stress effects. A molecular crosstalk between 
jasmonic acid and ethylene to attenuate the wonding effect 

Fig. 5   Proline content in soybean seedlings from seeds pretreated 
with MeJA or water subjected to no stress (control), water restriction 
(WR), and mechanical wounding (MW). Data are means ± standard 
error (n = 5). Means followed by the same Lowercase and upper-
case letters represent significant differences [ANOVA, Tukey’s test 
(P < 0.05)] between seed pretreatments and among growth conditions, 
respectively

Fig. 6   Ethylene release in soybean seedlings from seeds pretreated 
with MeJA or water subjected to the no stress (control), water restric-
tion (WR), and mechanical wounding (MW). Data are means ± stand-
ard error (n = 5). Means followed by the same Lowercase and upper-
case letters represent significant differences [ANOVA, Tukey’s test 
(P < 0.05)] between seed pretreatments and among growth conditions, 
respectively
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through reactive oxygen species was recently described 
in broccoli (Torres-Contreras et  al. 2023). Mechanical 
stimulation is widely used in the scientific community to 
simulate the attack of herbivorous insects (Waterman et al. 
2019; Cunha et al. 2023). According to Waterman et al. 
(2019), simulated herbivory can be used to complement 
true herbivory to decipher the mechanisms of plant defense 
responses. After an attack by herbivores, some secondary 
metabolites(e.g., phenolic compounds, isoflavonoids, 
and flavonoids) are produced as a plant defense response 
(Zaynab et al. 2018; Dillon et al. 2017). However, according 
to Dillon et al. (2018), isoflavonoids are induced exclusively 
by ethylene in soybean plants, which indicates that seed 
pretreatment with 12.5 µM MeJA is promising to attenuate 
the damage induced by herbivory.

Conclusions

The pretreatment of soybean seeds with MeJA is a 
promising technology to mitigate the deleterious effects of 
abiotic stresses. MeJA increased proline content under WR 
conditions, pointing to an important tolerance mechanism 
induced by compatible osmolytes. However, a different 
mechanism may be related to the tolerance to MW, in which 
MeJA increased ethylene release. This finding corroborates 
that the biosynthesis of ethylene under biotic stress can be 
induced by jasmonates in soybean. These different strategies 
and mechanisms may help in future breeding projects aiming 
to obtain seedlings more tolerant to biotic and abiotic stress.
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