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Abstract
Nitrogen (N) deposition levels and the frequency of lead (Pb) contamination events are increasing globally. In an effort to 
improve our understanding of plant responses to these stressors, we investigated moss responses to single and combined 
Pb and N stress. Three mosses from different habitats (Syntrichia caninervis, Bryum argenteum and Plagiomnium acutum) 
were studied and simulated Pb/N single and complex stresses were applied to them indoors. The chlorophyll (Chl) content, 
osmotic adjustment substances content, and antioxidant enzyme activities were measured at 7, 14, 21, and 28 days. The results 
revealed that the tolerance of the three bryophyte species to Pb or N stress was in the order of P. acutum > B. argenteum > S. 
caninervis, which was closely related to the conditions of their respective natural habitats. S. caninervis and B. argenteum 
were stress tolerant for 7 days and P. acutum for 14 days. The bryophytes were tolerant to Pb or N stress after the contents 
of osmoregulatory substances and antioxidant enzyme activities increased; however, as toxicity accumulated over time, 
all three species suffered irreversible damage, as indicated by an abrupt decrease in the Chl content and osmoregulatory 
substances, as well as a sudden drop in antioxidant enzyme activities. Under the combined effects of Pb-N stress, the Chl 
content, osmoregulatory substance contents, and antioxidant enzyme activities were significantly higher in the N-loving P. 
acutum (N produced significant benefits) than in P. acutum exposed to Pb stress alone. This phenomenon is likely because 
Pb and N have antagonistic effects on the growth of P. acutum; thus, their recombination generates a counter-balancing 
effect. In the N-sensitive species, S. caninervis and B. argenteum (N caused obvious toxicity), the indicators were slightly 
better than under N tress alone (indicated by the reduction of membrane lipid peroxidation and increased osmoregulatory 
substance contents and enzyme activities), suggesting that there is a certain antagonistic effect exerted by the simultaneous 
addition of Pb and N. Therefore, the detrimental effects of a single abiotic stress (Pb or N) on bryophytes may be diminished 
under the combined conditions of N deposition and presence of the heavy metal, Pb.
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Introduction

In recent years, toxic metal pollution caused by mining and 
metal industries has become the main type of inorganic 
pollution of greatest concern worldwide. Lead (Pb) is one 
of the most toxic heavy metals and is widely distributed 
in the environment, listed by the United Nations World 
Health Organization as one of the top ten pollutants affect-
ing human public health (Chang et al. 2022). The toxic 
effects of Pb on plant growth, metabolism, and enzyme 
activity have been demonstrated and are reflected by 
inhibiting growth (Chaves et al. 2011), interference with 
photosynthesis and sugar metabolism (Prado et al. 2010; 
Velikova et al. 2011), and generation of reactive oxygen 
species (ROS) that inhibit or stimulate the activities of 
several antioxidant enzymes; for example, the activities of 
superoxide dismutase (SOD) and catalase (CAT) decrease, 
while the activities of guaiacol peroxidase (POD), glu-
tathione reductase, and ascorbate POD increase (Choud-
hury et al. 2005, Sun et al. 2009, Usman et al. 2020). As a 
non-essential element of biological growth, Pb contamina-
tion in the soil is toxic to plants, animals, and microorgan-
isms, and can be harmful to human health through food 
consumption (Moustakas et al. 1994; Sharma and Dubey 
2005).

Furthermore, as human activities have increased over 
time (e.g., burning of fossil fuels, production and applica-
tion of chemical nitrogen (N) fertilizers, and the develop-
ment of farming), atmospheric N deposition has increased 
substantially in recent decades and is expected to continue 
to increase in the near future (Liu et al. 2013, 2015; Li 
et al. 2016; Xu et al. 2018; Gao et al. 2019). Currently, 
East Asia (mainly China) has become one of three regions 
with the highest levels of N deposition on a global scale. 
N deposition is high in both rural and urban areas and the 
annual N deposition in cities is as high as 58–100 kg N 
 ha−1   yr−1 (Galloway et al. 2008; Deng et al. 2009; Liu 
et al. 2013; Xu et al. 2018). N deposition improves pho-
tosynthesis and plant biomass under N deficient condi-
tions (Gaju et al. 2016). However, excessive N deposition 
may disrupt the nutrient distribution in plants and the soil 
(Peng et al. 2019), thereby negatively affecting ecosystems 
(Roth et al. 2020). The harmful effects of N deposition 
include the disruption of cell membrane integrity (Pearce 
et al. 2003), lack of other nutrients (Elser et al. 2009), 
reduced photosynthesis (Tripodi and Sievering 2010), and 
oxidant retention (Medici et al. 2004; Koranda et al. 2007).

Both Pb stress and N deposition are threats to eco-
systems; thus, it is important to understand and quantify 
plant responses to these two interacting environmental fac-
tors. Previous studies have shown that excessive N or Pb 
induces oxidative or osmotic stress in plants and affects 

their physiological and ecological performance. However, 
little is known about the effects of elevated N on plant 
responses to Pb stress. A limited number of studies have 
addressed these phenomena and only a few have demon-
strated that Pb uptake and toxicity can be moderated in 
the presence of certain essential cationic nutrients, such 
as Ni, Zn, and Cu (Sun et al. 2009; Malecka et al. 2014; 
Mihailovic et al. 2015), and other non-essential nutrients, 
such as silicon (Si), have been reported to attenuate Pb 
toxicity (Bhat et al. 2019). In contrast, there are no reports 
on the possible role of N deposition in Pb tolerance. In 
previous studies, only the relationship between N deposi-
tion and cadmium (Cd) uptake has been reported, suggest-
ing that moderate N application enhances Cd tolerance in 
vascular plants, such as Morus alba (Li et al. 2013) and 
Toxicodendron vernicifluum (Yu et al. 2022). Thus, our 
lack of knowledge on the combined effects of elevated N 
deposition and Pb stress on plants hinders a more robust 
understanding of plant responses to Pb and other heavy 
metal stressors under different N deposition regimes.

Mosses are unique organisms that can be used to study 
this response, as they are small, relatively primitive terres-
trial plants without cuticles; thus, they are more sensitive 
to environmental changes than vascular plants (Sun et al. 
2009; Schröder et al. 2014; Agnan et al. 2015). The effects 
of atmospheric N deposition and heavy metal pollution 
have attracted considerable attention (Varela et al. 2017). 
Notably, different moss species have different responses 
(Sun et al. 2009; Liu et al. 2013; Chen et al. 2015). Mosses 
have been used to monitor heavy metals and N deposition 
(González-Miqueo et al. 2010; Basile et al. 2012; Izqui-
eta-Rojano et al. 2016). However, little is known about 
responses after these plants are subjected to Pb stress or 
elevated N supply. Therefore, further studies on these 
responses, effects and associated mechanisms are needed 
to assess the fate of bryophytes in Pb/N complex stresses.

To improve our knowledge of these phenomena, we 
investigated the chlorophyll (Chl) content, osmotic adjust-
ment substance contents, and antioxidant enzyme activi-
ties in three moss species (Syntrichia caninervis, Bryum 
argenteum, and Plagiomnium acutum) from three differ-
ent habitats distributed across China and recorded their 
responses at different times (0, 7, 14, 21, and 28 days) 
under Pb (Pb(NO3)2), N  (NH4NO3), and Pb-N (Pb(NO3)2-
NH4NO3) stress treatments. The goals of this study were 
to (1) compare the tolerance of the three mosses to Pb 
and N stress; (2) investigate the physiological responses 
of these moss species after exposure to stress treatments 
at different times; and (3) comprehensively analyze the 
differences in the effects between combined Pb-N applica-
tion and single stress application in the three moss species.
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Materials and methods

Bryophyte materials and experimental design

Three common and widely distributed mosses, namely S. 
caninervis, B. argenteum and P. acutum, were collected 
from Gurbantunggut Desert, Xitianshan Nature Reserve 

and Kanas Nature Reserve in Xinjiang, China, respectively 
(moss species were identified by native Xinjiang taxono-
mists specializing in moss taxonomy) and brought back to 
the laboratory in uncontaminated envelopes (Tables 1, 2, 
Fig. 1). The phytoplasma of S. caninervis is densely clus-
tered, with strongly dorsally rolled leaf margins and horse-
shoe-shaped warts on both sides. The phytoplasma of B. 

Table 1  Basic information on the three moss species used in this study

Family Species Sampling site Habitat Latitude and longitude Altitude

Pottiaceae Syntrichia caninervis Gurbantunggut Desert Dry barren sand 44°22ˊN, 87°55ˊE 395 m
Bryaceae Bryum argenteum Kanas Nature Reserve Moist fertile soil 48°51ˊN, 87°13ˊE 1,340 m
Mniaceae Plagiomnium acutum Western Tian Shan Nature 

Reserve
Spruce forest 43°10ˊN, 82°52ˊE 2,240 m

Table 2  Meteorological 
information and soil nutrient 
information of the three habitats

Sampling site Nutrient information Meteorological information

SOC (g·kg−1) TN (g·kg−1) TP (g·kg−1) MAT (℃) MAP (mm) Aridity

Gurbantunggut desert 7.725 0.667 0.630 10.60 123.02 0.895
Kanas nature reserve 83.243 3.091 0.892 8.20 150.30 0.725
Western Tian Shan 

Nature Reserve
40.970 1.948 0.827 9.50 136.60 0.822

Fig. 1  Habitat photos of the 
tested mosses (A–C) and 
enlarged images of Syntrichia 
caninervis (D), Bryum argen-
teum (E) and Plagiomnium 
acutum (F) after acclimation 
(× 16)
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argenteum is mostly densely clustered. The leaves are often 
concave, broad-ovate, ovate, lanceolate, etc. The base of the 
leaf blade is often narrower and decurrent with more differ-
entiated margins. The phytoplasma of P. acutum is lax and 
appears green or bright green. Its reproductive branches are 
erect, about 2–3 cm high, and are topped by dense clusters of 
leaves. Its nutritional branches are prostrate or bow-shaped.

Each moss sample consisted of a mix of 5–6 subsam-
ples collected from a 10 m × 10 m area (Wei et al. 2003). 
To maintain the recovery of the “natural state” of the moss 
layer and avoid contamination during experimental sam-
pling and handling, the mosses were soaked in 75% alcohol 
for 30 s, and washed with sterile water for 4 times, then 
soaked with 5% sodium hypochlorite for 60 s, and finally 
moss samples were washed 4 times with distilled water and 
acclimated in distilled water under natural conditions for 
7 days prior to experimentation. The whole experiment fol-
lowed the principle of aseptic operation. Our pre-experi-
ments proved that this acclimation time was sufficient, as 
the physiological indicators of the mosses remained stable 
after 7 days of acclimation. After acclimation, ~ 10 g each of 
vigorous and morphologically similar mosses were used to 
reduce the interference of other factors. Samples were dried 
with filter paper, transferred to sterile petri dishes (9 cm 
diameter, 2 cm height), and immersed in a 50-mL culture 
solution. According to the content of airborne dust pollut-
ants in Urumqi, the culture solution with a concentration 
of 100 μmol·L−1 Pb(NO3)2 was selected for the Pb stress 
treatment. Referring to the maximum N settlement rate of 
4.6 g N  m−2a−1 in Urumqi, a culture solution with a con-
centration of 20 mmol·L−1  NH4NO3 was selected for the N 
stress treatment; the total amount of N applied was ~ 4.4 g N 
 m−2a−1. In the combined stress treatment,  NH4NO3 crystals 
were dissolved in a culture solution with a concentration 
of 100 μmol·L−1 Pb(NO3)2; the concentration of  NH4NO3 
in the mixed solution was adjusted to 20 mmol·L−1. Our 
preliminary pre-experiments showed that all three mosses 
grew normally at the selected Pb/N concentrations. Culture 
solution was used as the blank control. Finally, the plates 
were transferred to a growth chamber under a 12/12 h pho-
toperiod (50 μmol photons  m−2  s−1) at 20 ± 2 °C and 90% 
relative humidity. The materials used for the analyses were 
obtained from the same petri dishes. The liquid in each 
petri dish was changed weekly. The experiment consisted 
of five replicates per treatment and the moss samples were 
harvested on 0, 7, 14, 21, and 28 days after treatment for fur-
ther analysis. The mosses were cultured in a concentration of 
1/2 Hoagland nutrient solution, consisting of: 101.1 mg·L−1 
 KNO3, 236.15  mg·L−1 Ca(NO3)2·4H2O, 98.59  mg·L−1 
 MgSO4·7H2O, 16.01  mg·L−1  NH4NO3, 13.61  mg·L−1 
 KH2PO4, 1.345  mg·L−1  Na2-EDTA, 1.112  mg·L−1 
 FeSO4  7H2O, and trace elements (0.569 mg·L−1  H3BO3, 
0.356 mg·L−1  MnCl2·4H2O, 0.043 mg·L−1  ZnSO4·7H2O, 

0.01 mg·L−1  CuSO4·5H2O, 0.018 mg·L−1  H2MoO4·H2O), 
pH value of 5.5.

The three mosses used in this study were selected for the 
following reasons: (1) these species are widely distributed 
throughout China; (2) the mosses were collected from pro-
tected areas where the air is clean and the atmosphere is 
not polluted; (3) the mosses are from different habitats and 
represent different ecosystems; and (4) the three bryophytes 
have different tolerance levels and were selected from 20 
bryophytes used in the pre-experiment.

Determination of the Chl content

The Chl content was measured using the acetone extrac-
tion method (Arnon 1949). Approximately 0.2 g moss (fresh 
weight (FW)) was ground in a mortar, cooled on ice (away 
from light), homogenized with 3 mL 80% pre-cooled ace-
tone, a small amount of quartz sand, and  CaCO3, washed 
twice with 7 mL 80% precooled acetone, homogenized 
with cleaning liquid, and rapidly transferred to a centrifuge 
tube. The content was centrifuged at 4 °C and 4000 rpm for 
10 min. The supernatant was extracted and diluted to10 mL; 
80% acetone was used as the blank sample. The absorbance 
was read at 663 and 645 nm. Chl concentrations were cal-
culated using the extinction coefficients and equation found 
in Porra et al. (1989).

Measurement of osmotic adjustment substances

We measured the free proline (Pro), soluble sugar (SS), and 
soluble protein (SP) contents in this study. The free Pro con-
tent was determined following previously described methods 
with minor modifications (Monreal et al. 2007). A total of 
0.2 g stems and leaves (FW) from the mosses was weighed 
on an electronic scale (0.001 g precision), ground with 5 mL 
3% sulfosalicylic acid, and extracted for 20 min in boiling 
water. The extract was transferred to a clean centrifuge tube 
and centrifuged at 8000 × g. The supernatant (2 mL) was 
mixed with 3 mL acetic acid and 3 mL acid ninhydrin. The 
mixture was oven-incubated for 40 min at 100 °C. The reac-
tion mixture was extracted with 5 mL toluene and allowed 
to cool. The absorbance values were read at 517 nm; toluene 
was used as the blank. The standard curve was used to deter-
mine the free Pro content.

The SS content was determined using previously 
described methods (Lassouane et al. 2013). Frozen samples 
(0.2 g) were ground to a fine powder in liquid N and mixed 
with 7 mL 70% ethanol (V/V) for 5 min on ice. The mixture 
was centrifuged at 4 °C and 8000 × g for 10 min. After add-
ing 1 mL anthrone solution to 200 mL extract, the mixture 
was shaken, heated in a boiling water bath for 10 min, and 
allowed to cool. The absorbance was read at 625 nm and the 
SS content was calculated from the standard curve.
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The SP content was determined using previously 
described methods (Gonzalez and Pignata 1994). Fresh sam-
ples (0.2 g) were ground in 5 mL cold deionized water (4 °C) 
and centrifuged at 4 °C and 8000 × g for 30 min; centrifu-
gation was repeated twice. The supernatant was added to a 
10 mL volumetric flask. Precisely 200 μL protein extract was 
drawn from the flask and 5 mL Coomassie brilliant blue was 
added and then mixed well. The mix was allowed to stand 
for 3 min. The absorbance was read at 595 nm.

Measurement of lipid peroxidation

The malondialdehyde (MDA) content was used to repre-
sent the degree of lipid peroxidation. The MDA content was 
measured following the thiobarbituric acid (TBA) method 
(Dionisio-Sese and Tobita 1998). Approximately 0.2 g moss 
(FM) was homogenized in 2 mL 0.1% trichloroacetic acid 
(TCA) and centrifuged at 4 °C and 3000 rpm for 10 min; 
then, 2 mL supernatant was extracted and mixed with 2 mL 
20% TCA containing 0.5% TBA. The mixture was placed in 
a water bath at 95 °C for 30 min, and then quickly cooled on 
ice to room temperature. The content was centrifuged at 4 °C 
and 3000 rpm for 10 min. The absorbance of the supernatant 
was read at 532 and 600 nm. The MDA content was calcu-
lated using an extinction coefficient of 155 L  mM−1  cm−1.

Antioxidant enzyme extraction and assay

The extraction procedure was performed following previ-
ously described methods with minor modifications (Sun 
et al. 2009). A total of 0.5 g fresh moss tissue was extracted 
by homogenizing 0.5 g fresh moss tissue under ice-cold con-
ditions with a pre-chilled mortar and pestle in 10 mL extrac-
tion buffer solution containing 0.05 M phosphate buffer (pH, 
7.8). The extract was centrifuged at 4 °C and 8000 × g for 
20 min in a refrigerated centrifuge. The supernatant was 
collected for the SOD, POD, and CAT activity assays. The 
SOD activity was estimated following previously described 
methods (De Azevedo Neto 2006). Specifically, we meas-
ured the ability to inhibit the photochemical reduction of 

Nitro Blue Tetrazolium. The POD activity was assayed fol-
lowing previously described methods (Monnet et al. 2006). 
Briefly, we measured the rate of change in the absorbance 
at 470 nm using a spectrophotometer. The CAT activity was 
determined as the decline in absorbance at 240 nm due to 
 H2O2 consumption following previously described methods 
(Patra et al. 1979).

Data analyses

The data were averaged from four replicates and the error 
bars corresponded with the standard error (SE) of the mean. 
Datasets were tested for normality and heterogeneity prior 
to the analyses. A one-way analysis of variance (ANOVA) 
followed by Tukey’s post-hoc test was used to determine 
significant differences (P < 0.05) of individual moss species 
after treatment. Correlations between experimental param-
eters were performed using Pearson’s correlation test. All 
analyses were performed using SPSS v20.0 (SPSS Inc., Chi-
cago, IL, USA) and mapped with Origin v8.0.

Results

Changes in the Chl content

Both the treatment method and time significantly affected 
the Chl content of the three mosses (Table 3).

S. caninervis (Fig. 2A): both single and combined Pb 
and N treatments contributed to a sustained decrease in the 
Chl content. At 7 days, compared to the control group, the 
Chl content of the N-treated group significantly decreased 
to 38.67% (P < 0.05), while the Pb and Pb-N-treated groups 
decreased to 76.13% and 65.96%, respectively. The dif-
ference in the Chl content among the treatment groups 
decreased over time. At 28 days, the Chl content of the three 
treatment groups did not differ significantly and decreased 
to 9.97%, 12.96%, and 19.91%, respectively.

B. argenteum (Fig. 2B): at 7 days, the Chl content of the 
Pb-treated group significantly increased by 9.22% (P < 0.05) 

Table 3  Multivariate ANOVA results (P-value) of the effects of species, time, treatment, and their interactions on the physiological indicators in 
the three moss species (*P < 0.05, **P < 0.01)

Effect CHL PRO SS SP MDA SOD POD CAT 

Species 21,825.069** 534.180** 1369.974** 623.098** 1697.243** 421.680** 50.725** 178.721**
Time 454.081* 538.811** 293.274** 324.302** 219.563* 302.756** 159.173** 381.544**
Treatment 564.966* 44.037* 46.679** 148.890** 197.318** 49.940* 24.574** 108.723**
Species × Time 16.196* 66.436** 14.313* 9.496* 85.969** 15.427* 21.588* 11.152
Species × Treatment 521.799** 110.420** 108.202* 117.085* 30.996 59.491** 28.226* 46.469*
Times × Treatment 91.573* 78.130** 54.097* 37.027* 50.099* 33.505** 35.886** 81.055**
Species × Time × Treatment 49.384* 30.311** 10.054* 12.451* 38.701* 4.285** 7.303* 5.620*
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when compared to the control, while the Chl content of 
the N and Pb-N-treated groups significantly decreased to 
72.68% and 88.12% (P < 0.05), respectively. After this point 
in time, the Chl content of all treatment groups gradually 
decreased. The rate of decrease was in the following order: 
N > Pb-N > Pb.

P. acutum (Fig. 2C): At 14 days, N treatment induced 
a significant increase in the Chl content, which reached a 
maximum of 39.19% (P < 0.05) when compared to the con-
trol. At 28 days, the Chl content decreased slightly and did 
not significantly differ from the control group. At 7 days, 
in the Pb and Pb-N-treated groups, the Chl content signifi-
cantly increased by 13.17% and 20.26% (P < 0.05), respec-
tively, when compared to the control. Then, the Chl content 
in both groups gradually decreased, where the Pb-treated 
group decreased more rapidly.

Osmoregulatory substances

The contents of three osmoregulatory substances (Pro, SS, 
and SP) were measured. The ANOVA results showed that 
treatment method and time significantly affected the contents 
of osmoregulatory substances (Table 3).

S. caninervis (Fig.  3A, D, G: the contents of three 
osmoregulatory substances in the Pb-treated group increased 
at first, and then decreased over time, reaching their maxi-
mum values at 7 days. The contents significantly increased 
to 56.14% (Pro), 36.10% (SS), and 37.51% (SP) when com-
pared to the control (P < 0.05). The synthesis of the three 
osmoregulatory substances was continuously inhibited by 
N treatment and decreased to 30.62% (Pro), 25.29% (SS), 
and 17.12% (SP) when compared to the control at 28 days. 
The synthesis of the osmoregulatory substances in the Pb-N-
treated group ranged between the Pb and N-treated groups.

B. argenteum (Fig. 3B, E, H: short-term Pb stress stimu-
lated the synthesis of Pro and SS, which reached their maxi-
mum values at 14 and 7 days and significantly increased 
to 53.73% and 98.37%, respectively, when compared to the 
control (P < 0.05). Short-term N stress promoted the synthe-
sis of the three osmoregulatory substances, which increased 
to 84.09% (Pro), 23.29% (SS), and 23.77% (SP) at 7 days 
when compared to the control. Subsequently, the content 
of the osmoregulatory substances decreased sharply in all 
treatment groups. Throughout the experiment, the Pro and 
SS contents were lower in the Pb-N-treated group than in 
the Pb-treated group, while the SP content was lower in the 
N-treated group.

P. acutum (Fig. 3C, , F, I: In the Pb and N-treated groups, 
the contents of the three osmoregulatory substances 
increased at first, and then decreased over time when com-
pared to the control. The Pb-treated group reached its maxi-
mum value at 7 days, increasing by 106.72% (Pro), 49.52% 
(SS), and 23.77% (SP), while the N-treated group reached its 
maximum at 14 days and increased by 61.93% (Pro), 28.68% 
(SS), and 78.22% (SP). The Pro and SS contents of the Pb-
N-treated group were lower than the Pb-treated group before 
14 days, but higher after 14 days, while the SP content was 
always higher than the Pb-treated group.

Lipid peroxidation

Both treatment method and time significantly affected the 
MDA content (Table 3).

S. caninervis (Fig. 4A): the MDA content in the Pb and 
N-treated groups significantly increased, reaching its maxi-
mum values at 21, 7, and 14 days, which correspond to 2.08, 
1.72, and 1.58 × (P < 0.05) that of the control, respectively. 
After 21 days, the MDA content significantly decreased 

Fig. 2  Effects of single and combined Pb and N stress on the chlo-
rophyll (Chl) content in S. caninervis (A), B. argenteum (B) and P. 
acutum (C). (FW): fresh weight. Each value represents the mean of 

5 replicates ± standard error (SE). Different letters within each treat-
ment indicate significant differences (P < 0.05, Tukey’s test)
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rapidly in all treatment groups, decreasing to 65.92%, 
42.96%, and 34.78%, respectively, when compared to the 
control group at 28 days (P < 0.05).

B. argenteum (Fig. 4B): the MDA content in the Pb 
and Pb-N treated groups reached its maximum values at 
14 days, which were 2.67 and 1.90 × that of the control 
group, respectively (P < 0.05). The MDA content of the 
N-treated group reached its maximum at 7 days and was 
2.06 × that of the control group. Subsequently, the MDA 
content significantly decreased in all three treatment 
groups. At 28 days, the MDA content of the N-treated 
group was 45.32% significantly lower than the control 

group (P < 0.05), while the Pb and Pb-N-treated groups 
were significantly higher than the control group (P < 0.05).

P. acutum (Fig. 4C): the MDA content of the Pb and 
Pb-N treated groups reached its maximum values at 14 
d, which correspond to 3.93 and 3.79 × that of the control 
group, respectively (P < 0.05). The MDA content of the 
N-treated group reached its maximum at 21 days, which 
corresponds to 2.88 × that of the control group. Subse-
quently, the MDA content significantly decreased in all 
treatment groups and remained higher than the control 
group after 28 days (P < 0.05).

Fig. 3  Effects of single and combined Pb and N stress on osmoregu-
latory substance contents (Pro, SS, and SP) in S. caninervis (A, D, 
G), B. argenteum (B, E, H) and P. acutum (C, F, I). (FW): fresh 

weight. Each value represents the mean of 5 replicates ± standard 
error (SE). Different letters within each treatment indicate significant 
differences (P < 0.05, Tukey’s test)
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Antioxidant enzyme activity

The activities of three antioxidant enzymes (SOD, POD, 
and CAT) were measured. The ANOVA results showed that 
treatment method and time significantly affected the activi-
ties of all three enzymes (Table 3).

S. caninervis (Fig. 5A, D, G): the SOD and CAT activi-
ties in the Pb-treated group reached their maximum values 
at 7 days, while the POD activity reached its maximum at 
14 days, significantly increasing by 15.54% (SOD), 26.79% 
(POD), and 52.63% (CAT) when compared to the control. 
The POD and CAT activities increased in the N-treated 
group, which significantly increased by 14.68% and 32.25%, 
respectively, when compared to the control at 7  days 
(P < 0.05). In the Pb-N-treated group, the SOD and CAT 
activities were consistently higher than the N-treated group, 
while the POD activity was only elevated after 14 days when 
compared to the N-treated group.

B. argenteum (Fig. 5B, E, H): the enzyme activities of the 
three treatment groups increased at first and then decreased 
over time. Compared to the control, the SOD activity 
reached its maximum at 7 d and significantly increased by 
5.43% (Pb), 17.04% (N), and 7.12% (Pb-N) (P < 0.05). The 
POD activity reached its maximum values at 14 (Pb), 21 
(N), and 14 d (Pb-N), significantly increasing by 47.33%, 
33.89%, and 41.07%, respectively (P < 0.05). The CAT 
activity reached its maximum value at 7 days and signifi-
cantly increased by 63.72% (Pb), 47.92% (N), and 29.08% 
(Pb-N) (P < 0.05).

P. acutum (Fig. 5C, F, I): in the N-treated group, the activi-
ties of the three enzyme significantly increased, reaching their 
maximum values at 14 days, increasing by 21.54% (SOD), 
42.60% (POD), and 66.17% (CAT) when compared to the 
control. The SOD and CAT activities in the Pb-treated group 

reached their maximum values at 7 days, significantly increas-
ing by 12.79% and 16.81%, respectively, when compared to 
the control (P < 0.05). The POD activity reached its maximum 
at 14 days and significantly increased by 25.72% (P < 0.05). 
Subsequently, the enzyme activities in each treatment group 
gradually decreased. Throughout the experiment, the SOD and 
CAT activities were significantly higher in the Pb-N-treated 
group than in the Pb-treated group.

Relationship between physiological traits

The correlations between the physiological indicators of the 
three mosses differed across treatment groups and over time; 
the correlations also varied among species (Figs. 6, 7, 8). 
Specifically, there were more positive correlations detected 
between the three osmoregulatory substances (Pro, SP, and 
SS) and enzyme activities (SOD, POD, and CAT) of the three 
mosses in the pre-treatment period, suggesting that these 
moss species can resist stress through the synergistic effects 
of osmoregulatory substances and protective enzymes. Over 
time, the MDA content was more negatively correlated with 
other indicators, indicating that the accumulation of MDA 
resulted in the decreased Chl content and enzyme activities. 
At later stress stages, the indicators showed more positive cor-
relations. Owing to severe damage to the moss cells, all the 
physiological indicators gradually decreased over time.

Discussion

Effects of Pb and N deposition on the Chl content

Chl is the main pigment of photosynthesis in plants. Its 
content reflects the strength of photosynthesis in leaves and 

Fig. 4  Effects of single and combined Pb and N stress on the malond-
ialdehyde (MDA) content in S. caninervis (A), B. argenteum (B) and 
P. acutum (C). (FW): fresh weight. Each value represents the mean of 

5 replicates ± standard error (SE). Different letters within each treat-
ment indicate significant differences (P < 0.05, Tukey’s test)
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characterizes the growth and development of plants under 
adverse conditions or stress (De Azevedo Neto et al. 2006). 
A previous study showed that adverse conditions or stress 
factors such as heavy metals (such as Pb, Cd, mercury (Hg), 
chromium (Cr), nickel (Ni), copper (Cu), and zinc (Zn)), 
inhibit or destroy the photosynthetic system by damaging 
the structure of plant cell membranes and chloroplasts, or 
affect Chl synthesis by disrupting the enzymes required for 
its synthesis (Shakya et al. 2008). In this study, changes in 
the Chl content varied with bryophyte species and exposure 
time. Under 100 μmol·L−1 Pb, the Chl content of S. canin-
ervis continuously decreased over time, which was similar 
to S. caninervis under Hg Stress (Lin 2017), indicating that 

S. caninervis from desert areas is sensitive to heavy metal 
stress. The Chl content in B. argenteum and P. acutum was 
higher than the control group up to 7 days, but gradually 
decreased afterwards. This result showed that the Chl con-
tent of B. argenteum and P. acutum have a stress response 
mechanism under short-term Pb stress, similar to Hypnum 
plumaeforme and Timmiella barbuloides from humid areas 
(Sun et al. 2009, Aydoğan et al. 2017), which showed similar 
increases in their Chl contents under low Pb concentrations.

We acknowledge that this short-term, rapid, and large-
scale application of the N method is difficult and does 
not simulate natural N deposition. It is also more likely 
to cause severe damage than real N deposition. However, 

Fig. 5  Effects of single and combined Pb and N stress on antioxidant 
enzyme activities (SOD, POD, and CAT) in S. caninervis (A, D, G), 
B. argenteum (B, E, H) and P. acutum (C, F, I). (FW): fresh weight. 

Each value represents the mean of 5 replicates ± standard error (SE). 
Different letters within each treatment indicate significant differences 
(P < 0.05, Tukey’s test)
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the short-term addition of high N significantly increased 
the Chl content in P. acutum (plants were observed to be 
considerably greener during the experiment). Although the 
Chl content decreased slowly after 14 days, it was higher 
than the control group, indicating that P. acutum is an 
N-loving bryophyte. The short-term exposure to high N 
concentrations significantly promoted Chl synthesis, while 
long-term exposure exerted negative effects on growth and 
photosynthetic processes in P. acutum. In contrast, high 
concentrations of N had a strong inhibitory effect on the 
Chl content in S. caninervis and B. argenteum (the color 
of S. caninervis gradually turned red and B. argenteum 
gradually turned yellow over time). The negative effects 
of high N concentrations on these two bryophytes may be 
due to nutritional imbalances or cellular acid–base imbal-
ances caused by these high concentrations (Pearson and 
Stewart 1993; Van der Heijden et al. 2000). Previous stud-
ies have shown that S. caninervis is an N-sensitive bryo-
phyte (Zhang et al. 2016). Although the Chl content in B. 
argenteum decreased at a slower rate than S. caninervis, it 

appeared be more tolerant to N; however, 20 mm N expo-
sure had inhibitory effects on their Chl contents.

The Chl contents of the three bryophytes under each 
exposure treatment were ordered as follows: S. caninervis 
followed by B. argenteum (CK > Pb > Pb-N > N) and P. acu-
tum (N > CK > Pb-N > Pb). Under Pb-N exposure, the Chl 
content slightly increased when compared to single stressor 
exposure, which was the most harmful to each bryophyte, 
indicating that the addition of Pb and N at the same time had 
a certain antagonistic effect. However, owing to stress expo-
sure over time, different stressors gradually caused irrevers-
ible damage to the bryophytes and even death, resulting in 
smaller, insignificant differences between different exposure 
treatments.

Effects of Pb and N deposition on osmotic 
adjustment substances

Osmoregulation is an important physiological mechanism 
for plant adaptation to adverse stress. Under adversity stress, 

Fig. 6  Correlation analysis of physiological indexes of Syntrichia caninervis at different treatment stages
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plants may increase the osmotic potential of the cytoplasm 
by accumulating osmoregulatory substances, such as pro-
line, soluble sugars, and soluble proteins, to maintain cell 
expansion pressure and reduce water loss (Schobert 1977). 
The accumulation of osmoregulatory substances can, on the 
one hand, protect cell membranes and proteins from dam-
age and maintain normal physiological activity; on the other 
hand, osmoregulatory substances can act as scavengers of 
reactive oxygen species and alleviate oxidative damage in 
plants (Malecka et al. 2014; Mihailovic et al. 2015; Usman 
et al. 2020; Zhang et al. 2020). Therefore, the accumulation 
of osmoregulatory substances is an important stress toler-
ance mechanism in plants. Moreover, several studies have 
found that plants accumulate a large amount of free Pro, SS, 
and other osmoregulatory substances to resist certain con-
centrations of heavy metals (Saxena et al. 2009, Sun et al. 
2009, Zhang et al. 2016). Our study found similar results: 
the SS, free Pro, and SP contents in the three bryophytes 
under short-term heavy metal stress exposure (< 7 d) were 
significantly higher than in the control group. This finding 
may indicate that bryophytes are similar to vascular plants in 

the cumulative concentration of osmoregulation substances 
in response to heavy metal exposure. Naturally, osmoregu-
latory resistance varies among species. We observed that 
the three bryophytes exhibited different increasing ranges 
of osmoregulatory substances in the early stages of stress, 
but decreasing ranges in the late stages, indicating that P. 
acutum, which had the smallest decline after 28 d, may have 
better stress tolerance.

Compared to heavy metal stress, there is a lack of research 
on the responses of bryophyte osmoregulatory substances to 
increased N deposition. Liu et al. (2017) investigated two 
bryophytes from South China (H. plumaeforme and Pogo-
natum cirratum subsp. fuscatum) under 0–60 kg N  hm−2 
N stress for 10 d and found that the SS and SP contents of 
both bryophytes increased as the N concentration increased. 
Zhang et al. (2016) found that under the exposure of simu-
lated N deposition for three years (0–3.0 g N  m−2  year−1), 
the SP content of S. caninervis from a northwestern desert 
area increased at low N concentrations (up to N1), and then 
decreased at high N concentrations (N1.5 and N3), while 
the Pro and SS contents had an overall downward trend (a 

Fig. 7  Correlation analysis of physiological indexes of Bryum argenteum at different treatment stages
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slight increase was observed at N0.3). Similarly, our results 
showed that the three osmoregulatory substances in S. canin-
ervis decreased continuously under stress and in B. argen-
teum increased up to 7 d, while the Chl content in P. acutum 
remained higher than the control up to 21 days. These find-
ings may reflect the fact that, although N is directly absorbed 
by bryophyte leaves and easily converted into protein and 
Pro (Soares and Pearson 1977), due to obvious differences 
in plant preferences for N, the N-loving bryophytes are more 
likely to absorb more N to synthesize these substances. In 
contrast, a large amount of N will impair the metabolic func-
tions in the leaves of N-sensitive bryophytes, thus destroying 
the photosynthetic process (Zhang et al. 2016).

In this study, the three osmoregulatory substances did 
not synergistically coordinate in response to external stress, 
indicating that under limited resource conditions, plants 
sacrifice some osmoregulatory substances to preserve more 
important substances for plant survival (Yin et al. 2017). 
The Pb-N treatment caused severe damage to the cellular 
structure of the bryophytes and the metabolic processes that 
produce osmoregulatory substances were inhibited, result-
ing in a decrease in their contents (Saxena et al. 2009, Sun 

et al. 2009, Zhang et al. 2016). Under the Pb-N treatment, 
the decline rate was slower and the range of osmoregula-
tory substances was lower in S. caninervis and B. argenteum 
than under the most harmful N concentrations, while the 
osmoregulatory substances in P. acutum were significantly 
lower than under in N exposure, indicating that the Pb-N 
treatment also had an antagonistic effect on the synthesis of 
osmoregulatory substances in the bryophytes.

Effects of Pb and N deposition on lipid peroxidation 
and enzyme activities

The cell membrane is a medium for plant cells to communi-
cate with the external environment and consists of the most 
important receptors of external environmental signals. Its 
structural integrity is directly related to the ability of cells to 
perform their physiological functions properly (Dixon et al. 
1990). Previous studies have shown that plants exposed to 
adverse environments (e.g., UV-B radiation, heavy met-
als, drought, high temperature, and high N) generate large 
amounts of ROS in their cells, causing an increase in cel-
lular membrane lipid peroxidation and severe damage to 

Fig. 8  Correlation analysis of physiological indexes of Plagiomnium acutum at different treatment stages
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the composition and integrity of the cell plasma membrane, 
mainly in the form of a large accumulation of a membrane 
lipid peroxidation product, MDA (Sun et al. 2009; Kou-
bouris et al. 2015; Liu et al. 2015). Choudhury et al. (2005) 
treated with 1000 µM Pb and Cd, MDA content of Taxithe-
lium nepalense increased by 191% and 159%, respectively. 
Sun et al. (2009) found that the increase of MDA content 
in Hypnum plumaeforme under the treatment of 10 mM Pb 
and 1 mM Ni was 59% and 64% of the control, respectively, 
which was also confirmed in this study. We found that Pb, 
N, and Pb-N treatment resulted in a significant increase of 
the MDA content in all three bryophytes. Additionally, under 
Pb-N stress, the MDA content of the three bryophytes was 
lower than under Pb alone, indicating that the addition of 
N alleviated membrane damage caused by Pb stress, which 
may be because N is an essential element that is beneficial 
to plants. Moreover, the MDA content of the three bryo-
phytes decreased after 21 days of stress, suggesting that the 
excessive accumulation of MDA in the plant body prior 
to this time had been disrupted and irreversibly damaged 
the internal defense system. Zeng et al. (2016) showed that 
a large amount of MDA crosslinked lipids, nucleic acids, 
sugars, and proteins, thereby adversely affecting the struc-
ture and function of the plasma cell membrane and leading 
to changes in the membrane structure, membrane fluidity, 
and its ability to bind to enzymes. This process destroys the 
structure and function of the cell membrane, resulting in the 
outflow of intracellular solutes, which leads to a depletion of 
MDA. This may explain the decrease of the MDA content in 
the three bryophytes investigated in this study.

In addition to osmoregulation, the plant body activates 
the antioxidant enzyme defense system to remove excess 
ROS, thereby enacting protection against stress. SOD, POD, 
and CAT are three important protective enzymes involved 
in the antioxidant enzyme system. SOD is the enzyme that 
specifically results in the dismutation of oxygen radicals 
 (O2−) to hydrogen peroxide  (H2O2) in plants. POD and CAT 
further remove  H2O2, which is toxic to plant cells; POD has 
more affinity for  H2O2 and acts on low concentrations of 
 H2O2 in plants (Bhaduri and Fulekar 2012). Sun et al. (2009) 
showed that the activities of SOD, POD, and CAT in H. plu-
maeforme increased to prevent oxidative stress caused by Pb 
or N. Saxena et al. (2011) found that the antioxidant enzyme 
activities in Racomitrium crispulum exhibited an increas-
ing trend, and then decreased as heavy metal concentrations 
increased over time under Cu/Cd stress for 15 d.

The results of this study showed that Pb treatment 
increased the activities of SOD, POD, and CAT in the 
three bryophytes, but the increase of different enzyme 
activities differed and the peaks appeared on different 
days. There may be two explanatory reasons for these 
findings. First, we observed differences in the tolerance 
of the three bryophytes. Second, under stress, the enzymes 

that play major roles in different species may be different, 
indicating that the changes in plant antioxidant enzymes 
vary in response to stress. Zhang et al. (2016) found that 
the moderate addition of N alleviated N deficiency and 
reduced the activities of POD, SOD, and CAT in S. canin-
ervis by simulating N deposition. Large amounts of N had 
a negative effect on the growth and physiology of S. canin-
ervis, resulting in an increase in the activities of these anti-
oxidant enzymes. In contrast to the results of this study, N 
stress alone directly increased the activities of SOD, POD, 
and CAT in the three bryophytes, including the phenom-
enon of alleviating the lack of N and reducing enzyme 
activities in P. acutum with a more appropriate amount of 
N application. It is speculated that due to differences in N 
application methods, a single large amount of N applica-
tion may more likely cause oxidative stress in bryophyte 
antioxidant enzymes than long-term simulated N deposi-
tion. Similar to changes in the Chl content and osmoregu-
latory substances, we observed an abrupt decrease in the 
enzyme activities during the late stages of stress, indicat-
ing that the three bryophytes are unable to prevent dam-
age caused by excessive Pb-N through osmoregulatory 
substances and antioxidant enzymes. Additionally, we 
found that the effects of Pb-N on the antioxidant system 
in P. acutum reduced the inhibition of antioxidant enzyme 
activities under Pb stress, similar to the results of Yu et al. 
(2022), who found that N addition improved the tolerance 
of M. alba to Cd stress.

Conclusions

In this study, we found that: (1) Sensitivity: the sensitiv-
ity of three mosses to Pb/N single stress was: S. canin-
ervis > B. argenteum > P. acutum. (2) Temporal effect: 
S. caninervis and B. argenteum for 7 days and P. acu-
tum for 14 days could tolerate Pb-N stress by increasing 
their osmoregulatory substances content and antioxidant 
enzyme activity. (3) Combined effect: under the combined 
Pb-N stress, the indices of the three mosses were better 
than those under the single stress treatment (manifested by 
the reduction of membrane lipid peroxidation, the increase 
of chlorophyll content, osmoregulatory substance content 
and enzyme activity), which proved that there was a cer-
tain antagonistic effect of the simultaneous addition of Pb 
and N. In future studies, we will verify the responses of 
these physiological indicators in bryophytes to combined 
pollution conditions with higher gradients of heavy metal 
concentrations and N deposition. The feasibility of using 
bryophytes as biomarkers of urban air pollution and pol-
lution alert thresholds will also be investigated.
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