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Abstract
Climate change causes a substantial impact on wheat yield and heat stress at the end of the harvest is a major problem for 
wheat production in India. Therefore, a study was carried out to ascertain the effects of terminal heat stress on 40 genotypes 
of Indian wheat with respect to 7 physiological and 6 agronomic parameters. Using chemometric analysis, such as principal 
component analysis (PCA), agglomerative hierarchical cluster analysis (AHC), and heat maps, the genotypes were grouped. 
Based on AHC and heat maps, the genotypes were divided into three clusters: tolerant, moderate, and sensitive. Tolerant 
genotypes such as DBW14, RAJ 3765, WH730, NW1014, and HALNA exhibited improved physiological response in terms 
of membrane stability index (MSI), chlorophyll content (CHL), photosynthesis rate (PN), antioxidative performance, and 
yield attributes under heat stress conditions while genotypes like Chirya7, HW2004, and many others were found to be 
relatively heat sensitive. Physiological traits like MSI, CHL, Proline, catalase (CAT), and PN were found to be the main 
determinants of genotype group assignments and showed positive correlations with grain yield. The results indicated that 
Thousand-grain weight (TGW), Grain yield (GY), and MSI could be used for the identification and assortment of heat-
tolerant genotypes. In conclusion,thousand-grain weight (TGW) can be employed as a final assessment of heat tolerance 
after harvest. The findings also suggest that tolerant genotypes such as DBW 14, RAJ 3765, WH730, NW1014 HALNA, 
HI1563, and WH730 can be employed to develop climate-resilient varieties for India or other countries experiencing high-
temperature stresses (HTS) at their terminal stage.
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Abbreviations
CAT   Catalase
TGW   Thousand-grain weight
MSI  Membrane stability index
PN  Photosynthesis rate
GY  Grain yield
HTS  High-temperature stresses

Introduction

Triticum aestivum L., also known as wheat, is a cereal crop 
that is grown and consumed as a staple food by people 
worldwide because it provides more protein and calories to 
the global diet than any other food crop (Shewry 2009). In 
terms of crop output, wheat is one of the cereals that is one 
of the most widely grown around the globe and contributes 
about 20% of the food resources in the world. Moreover, the 
demand for wheat has gradually increased with the expan-
sion of the population. The projected increase in wheat grain 
output needed to feed the expanding global population is 2% 
annually (Al-Ashkar et al. 2020).

Over the past few decades, a domino effect of climate 
change has led to a rapid change in natural ecosystems and 
consequently affects agricultural output. It has been pre-
dicted that the alteration in climatic conditions led to the rise 
in the earth's temperature with heat waves at the global level 
(Fernie et al. 2022; IPCC 2022). In general, the wheat crop 
may flourish in a particular range of temperatures. Further, 
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in the wheat-growing region, the cultivation of wheat is 
affected due to heat waves (Mondal et al. 2016; Xu et al. 
2022). Wheat farming systems have started to see a slight 
decline in grain productivity as a result of heat stress. In 
the south-Asian scenario, a 3–4 ℃ rise in average tempera-
tures could result in a 25–35% reduction in wheat yield. It 
is forecast that the global wheat yield will decrease by 6% 
for every degree Celsius as the average current temperature 
rises (Asseng et al. 2019; Djanaguiraman et al. 2020). In the 
Indian subcontinent scenario, the majority of developmental 
stages of native wheat crops, particularly blooming and grain 
filling, require temperatures between 12 and 22 ℃.

Heat stress, especially with brief periods of remarkably 
high temperatures, is one of the most important threats fac-
ing wheat farmers worldwide because it severely inhibits 
metabolic functions in all plant tissues throughout the devel-
opmental stages and consequently causes a negative impact 
on grain yield and quality (Al-Ashkar et al. 2020; Riaz et al. 
2021; Fernie et al. 2022). Wheat is particularly vulnerable 
to high temperatures during the flowering and grain-filling 
stages (Asseng et al. 2015; Ullah et al. 2022). The produc-
tion of carbohydrates is limited under conditions of heat 
stress. Heat stress damages the thylakoid membrane and 
consequently restricts photosynthetic electron transfer, and 
halts photochemical reactions (Djanaguiraman et al. 2020; 
Yadav et al. 2022). Heat stress during anther development 
causes pollen sterility limits embryo development and sub-
sequently lowers the number of grains per spike (Al-Ashkar 
et al. 2020). Heat during the grain-filling stage shortens the 
grain-filling time and hastens leaf senescence (Rehman et al. 
2021).

In India, especially in the Indo-Gangetic plane (IGP), the 
cultivation of long-duration rice varieties such as Swarna 
(150-155 days) and the late onset of monsoon are the rea-
sons for the delayed sowing of wheat. This makes wheat 
suffer due to terminal heat stress at the reproductive stage 
during the February–March months at terminal stage (Pan-
dey et al. 2015; Dwivedi et al. 2017). Therefore, delayed 
sowing of wheat led to the crop facing heat stress (Tem-
perature ≥ 31 ℃) at the terminal stage and subsequently a 
reduction in the rate of grain filling and lower grain yield 
(Rehman et al. 2021; Shenoda et al. 2021).

The green color of leaves which proportionally reflects 
the chlorophyll concentrations significantly affects grain 
yield and its constituent parts (Lopes and Reynolds 2012). 
However, the green area diminishes during heat stress. By 
mobilizing the stored stem water-soluble carbohydrates, the 
plant is likely to make up for the detrimental effects of heat-
induced green area loss on final grain size (Rehman et al. 
2021). Moreover, certain wheat genotypes have traits that 
enable them to cool the canopy during grain filling, giving 
them access to subsurface moisture and improving photo-
synthetic maintenance and evaporation (Pinto et al. 2010). 

Furthermore, earlier research established the progressive 
link between low canopy temperature with longer grain yield 
production in many wheat genotypes (Pinto and Reynolds 
2015). Apart from the aforementioned, high temperatures 
also led to the induction of oxidative stress in plants (Hasa-
nuzzaman et al. 2013). Thus, ROS scavenging mechanism 
via higher levels and activity of antioxidants are required for 
the protection of cells from oxidative damage (Hasanuzza-
man et al. 2013; Jahan et al. 2022).

Indirect selection can also be achieved by using physi-
ological traits. Therefore, physiological traits must be inves-
tigated to choose wheat genotypes that yield well and can 
tolerate high temperatures. These characteristics could serve 
as selection criteria. An investigation into an assortment of 
physiological features is required to find wheat genotypes 
that yield well and show tolerance to high temperatures. 
Many previous studies that screened a large number of wheat 
genotypes mainly depended on a few agronomical and physi-
ological traits. Further, the clustering of genotypes by use 
of PCA and heat map gave an idea about the resistance and 
susceptibility of genotypes as per their cluster in the group. 
Thus, the present study was chosen to identify relatively 
heat-tolerant genotypes using chemometric approaches and 
establish their level of tolerance in terms of higher content 
of pigment, better gas exchange activity, and improved ROS 
scavenging mechanism. The identification of germplasm that 
can withstand high temperatures will benefit India as well as 
the global wheat program.

Material and methods

Experimental layout and growth conditions

The trial was carried out during the dry or rabi (Novem-
ber to April) seasons at the experimental field of the 
ICAR Research Complex for Eastern Region, Patna, India 
(25.594°N, 85.1376°E; 53 m above sea level). The soil of the 
experimental site is categorized as Indo-Gangetic alluvium 
soil having the ratio of sand, silt, and clay is 2.3: 4: 3.7. The 
other physico-chemical soil characteristics of soil as follows: 
pH 7.5, EC 0.05  dSm–1, organic carbon 0.6%, available N, 
P, and K of 213, 19, and 416 kg  ha–1, respectively. The Ran-
domized Block Design (RBD) method was followed for the 
experimental layout having 6 rows. The size of each plot 
was 5.4 × 5.4 m and 23 cm of space between them. Prior 
to the trials, the experimental field was fully laser-labelled, 
and ideal moisture levels were kept throughout the seed-
ing period. The highest standards of crop management were 
upheld by the judicious use of fertilizer, pesticides, and regu-
lar watering. Urea, DAP, and murate of potash (MOP) were 
used as fertilizers and delivered NPK in the ratios of 6:3:2 
respectively. A full dose of P, K, and 50% N was supplied 
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as a basal dose. The 25% N doses were delivered during the 
crown root initiation (CRI), whereas the rest 25% N was 
supplied at the maximum tillering stage. The trial was con-
ducted for two consecutive years.

Plant materials and sowing time

Forty genotypes (n = 40) of wheat were used in the experi-
ment. We acquired wheat genotypes from the Division of 
Genetics, Indian Agricultural Research Institute, New Delhi, 
India. Wheat genotypes were categorized into two groups: 
timely sown normal (TS)—seed was sown in November; 
Late sown heat stress (LS)—seed was sown in January to 
experience heat stress during their terminal phase.

Sampling time and analysis parameters

The decimal code developed by Zadoks et al. (1974) was 
used to evaluate crop phenology. As per the Zadoks code, 
the 50% anthesis (Z65) and the completion of the anthesis 
(Z69) were documented. The plant samples at the Z69 stage 
were taken for physiological and biochemical analyses. The 
experiment included a heat tolerance screening of 40 wheat 
genotypes using phenological data [Days taken to 50% 
anthesis (DTA), days to physiological maturity (DTPM), 
grain filling durations (GFD)], physiological traits [(mem-
brane stability index (MSI), relative water content (RWC), 
chlorophyll content (CHL), proline content, and catalase 
activity)], yield attributes [ear length (EL), thousand grains 
weight (TGW), and grain yield (GY)], and chemometric 
analysis [principal component analysis (PCA), agglomera-
tive hierarchical cluster analysis (AHC), and heat map)].

Analysis of physicochemical parameters

Relative water content

The topmost fully expanded fresh leaves were collected, 
washed, and cut into 4 mm small discs. The fresh, turgid, 
and dry weight of 10 leaf discs were observed following 
the procedure outlined by Weatherley (1950). The RWC is 
computed by the equation mentioned below.

Membrane stability index (MSI)

The procedure outlined by Sairam et al. (1997) was used 
to calculate the leaf MSI. The MSI estimation was carried 
out using two sets of test tubes (C1 and C2), each contain-
ing 100 mg of leaf material and 10 mL of double-distilled 

Relative water content (% ) =
Fresh weight −Dry weight

Turgid weight −Dry weight
× 100

water. In a water bath, set C1 was heated at 40 °C for 30 min, 
and set C2 was boiled at 100 °C for 10 min. Thereafter, the 
electrical conductivity (EC) of leaf samples was assessed 
on a conductivity bridge using a TDS analyzer (Elico, 
CM183EC-TDS analyzer, India). The MSI was computed as:

Total chlorophyll content

The total chlorophyll content (CHL) was extracted in 80% 
chilled acetone following the procedure outlined by Arnon 
(1949). The UV–Vis double beam spectrophotometer (UNI-
CAM 500, Thermo, USA) was to measure the absorbance 
of extracted samples at 663 nm and 645 nm. The CHL was 
expressed as mg  g−1 fresh weight and computed by follow-
ing the equation

where  A645 is the absorbance at 645 nm;  A663 is the absorb-
ance at 663 nm; W is the mass of the sample (in mg); and V 
is the volume of the solvent used (in mL).

Photosynthesis rate

The photosynthetic rate (PN) for fully grown flag leaves 
was determined between 10:00 and 11.30 AM by a portable 
infrared gas analyzer (LI-6400 Model, LICOR, USA) using 
an artificial light source with a power of 1000 mol (photon) 
 m–2  s–1. The PN was expressed as μmol  (CO2)  m–2  s–1.

Analysis of catalase and proline

The catalase activity in pulverized plant leaf tissue was 
assessed following the methods described by Hameed et al. 
(2011). Catalase activity was calculated by recording the 
lysis of hydrogen peroxide (µmoles) per minute gram of 
fresh weight. The proline content was assessed spectropho-
tometrically (UNICAM 500, Thermo, USA) by examining 
the absorbance of leaves tissue extract at 240 nm. The leaves 
tissue extract formed by grinding 100 mg fresh tissue in 
1.5 mL sulfosalicylic acid (3% w/v) following the outline 
prescribed by Bates et al. (1973). The calculated value was 
expressed in µmol  g–1 FW.

Chemometric analysis

To evaluate the impact of heat stress on the observed traits of 
various wheat genotypes and identify the better wheat geno-
type under heat stress conditions, two chemometric analyses, 

MSI = 1 −
EC of set C1

EC of set C2
× 100

CHL =

(

20.2 A645 + 8.02 A663

)

V

1000 × W
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namely PCA and AHC, were performed. Prior to the appli-
cation of chemometrics, all the variables were autoscaled.

Statistical analysis and graph preparation

The experiments were carried out in triplicate and 
ASSISTAT 7.6 β-version software was employed to ana-
lyze the observed data for statistical significance. Duncan’s 
Multiple Range Test (DMRT) was used to compare one-
way analysis of variance (ANOVA) and mean separations at 
the p ≤ 0.05 significant level. The standard error (SE) of the 
mean was calculated using MS Excel 2007. The correlation 
study was carried out using the SPSS16 program. The PCA 
and AHC were performed using JMP13 software.

Results

Forty wheat genotypes were taken under different sowing 
windows (timely (N) and late sown (HS) conditions) to 
assess their performances in terms of the occurrence of phe-
nological stages physiological changes and grain yield. The 
study revealed that on an average days taken to 50% anthesis 
were 83.10 and 70.44 days under timely and late sown heat 
stress conditions respectively. Late sown genotypes take less 
time (13 days less than timely sown) to attain 50% anthe-
sis. Further days taken to 75% physiological maturity was 
117.6 days under TS and 93.95 days under late sown condi-
tions. The difference between timely and late sown condi-
tions was 23.65 days. The finding showed that under late 
sown heat stress conditions crop cycle was shortened and 
led to early maturity. Further grain filling duration was also 
shortened under late sown conditions, providing a shorter 
time for grain development. The average grain filling dura-
tion under timely sown condition was 34.5 while under late 
sown it was 23.51 days indicating 10.99 days less time to 
fill the developing grain at the crucial reproductive phase 
(Table 1).

Principal component analysis (PCA)

To identify any potential clusters within the examined sam-
ples, PCA was used for 40 different genotypes of wheat in 
the current study. The results of PCA produced a new set 
of 13 orthogonal variables (PCs). With an eigenvalue of 
7.00, the first principal component represented 53.85% of 
the overall variability in the data set. The eigenvalues of 
the second and third principle components (PCs) were 1.28 
and 1.02, respectively, accounting for 9.84% and 7.87% of 
the variance in the data. The last ten PCs (PC 4 to PC 13), 
which had progressively decreasing eigenvalues, cumula-
tive represented less than 29% of the data set variability. To 
simplify the data interpretation, Varimax orthogonal rotation 

was applied solely to the first four PCs, which accounted for 
approximately 78.37% of the overall variability. Of the entire 
variability, the first rotating factor (PC1) explained 50.84%, 
and the second one (PC2) accounted for 10.49% variability. 
Whereas, 8.81% and 8.22% of the overall variability were 
explained by the third (PC3) and fourth PC (PC4), respec-
tively. The most significant Varimax rotated PCs produced 
from the 13 variables in the current investigation, along with 
their statistical loading, are displayed in Table 2.

The genotype under investigation was also subjected 
to agglomerative hierarchical clustering (AHC). Based on 
shared characteristics, the genotypes were categorized. The 
outcomes acquired using AHC are shown in a heat map 
(Fig. 1) and are consistent with the PCA's results. AHC 
showed a clear clustering of genotypes under heat stress 
and normal conditions. Nevertheless, the distance between 
the genotype grown under normal and heat-stressed condi-
tions was more pronounced. The first cluster comprised all 
the genotypes growing under heat stress conditions due to 
their lower value of DTA, DTPM, GFD, PN, TGW, GY, 
RWC, MSI, EL, CHL and intermediate to higher values of 
proline and CAT. Similarly, the second cluster consists of all 
the genotypes grown under normal conditions due to their 
higher value of DTA, DTPM, GFD, PN, TGW, GY, RWC, 
MSI, EL, CHL and lower values of proline and CAT. Two 

Table 1  Mean of traits investigated under control and heat stress 
treatments

DTA days taken to 50% anthesis, DTPM days to physiological matu-
rity, GFD grain filling durations, EL (Ears length), GY, grain yield, 
TGW  thousand grains weight, TR tiller per plant, RWC  relative water 
content, MSI membrane stability index, CHL chlorophyll content, PN 
photosynthesis rate, CAT  catalase activity

Traits Mean of two-year data

Timely-sown/normal Late-sown/
heat stress

Phenological traits
 DTA 83.10 70.44
 DTPM 117.60 93.95
 GFD 34.50 23.51

Agronomical traits
 EL 10.56 8.91
 GY 4.45 3.08
 TGW 37.81 24.77
 TR 5.12 4.95

Physiological traits
 RWC 71.06 60.54
 MSI 65.45 56.61
 CHL 4.01 3.45
 Pn 23.98 16.32
 Proline 27.77 31.05
 CAT 2.78 5.11
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clusters were further subdivided into four sub-cluster. Sub-
clusters 3 and 4 of cluster 1 were found to be the closest to 
the genotype grown under normal conditions due to their 
intermediate values of GFD, PN, TGW, GY, RWC, MSI, 
and EL.

Physiological and biochemical changes

Physiological and biochemical traits were significantly influ-
enced under heat stress conditions (Table 1; Fig. 1). The 
study revealed that the mean RWC, MSI, Chl, and PN rate 
declined while the activity of catalase and proline content 
was improved under heat stress conditions. The average 
RWC under timely sown condition was 71.06 while under 
late sown it was 60.54%. The RWC showed a 14.8% reduc-
tion as compared to the normal sown condition. Moreover, 
the stability of the membrane is also compromised under 
heat stress conditions. The mean MSI was 65.45 and 56.61% 
under timely and late sown conditions, respectively and the 
average reduction was 13.5% as compared to normal condi-
tions. The photosynthetic pigment content was also meas-
ured and findings revealed that heat stress has a significantly 
negative impact on the total chlorophyll content. The mean 
chlorophyll content was 4.01 and 3.45% under timely and 
late sown conditions, respectively. The average reduction 
from timely sown to late sown conditions was 13.9%. Fur-
ther, the genotypes Halna, DBW 14, Raj3765, GW273, and 
NW1014 were able to maintain high RWC (%) and MSI (%) 

as compared to other genotypes while Babax, HW5210, and 
HI1531 were found susceptible. Further, the heat stress has a 
significant negative effect on gas exchange parameters (Pho-
tosynthesis; PN and transpiration rate; E) also. The average 
PN rate is 23.98 and 16.32 under normal and heat stress 
conditions, respectively. Further genotypes DBW14, Halna, 
Raj3765, NW1014, and GW273 were able to maintain the 
rate of PN and showed lower reduction under heat stress 
conditions as compared to other genotypes studied. Transpi-
ration rate was also studied vis a vis under both sets of con-
ditions. The study showed that the mean transpiration rate 
was lesser (4.95) under heat stress conditions as compared 
to normal conditions (5.12) across the genotypes studied.

The study showed that the level of osmolyte i.e. proline 
was significantly increased under heat stress conditions. The 
average proline content was 27.77 and 31.05 under timely 
and late-sown conditions, respectively. Further, at the geno-
typic level, the increase in proline content was maximum in 
HI1563 followed by GW273 and then HD2987. However, 
maximum proline content under late sown heat stress condi-
tions was observed in Sonalika followed by HD2733 then in 
Raj3765. Apart from osmolyte, the activity of anti-oxidant 
(CAT) was also increased to combat the ROS activity. The 
finding of the study showed that the activity of antioxidant 
CAT was significantly increased under late-sown heat stress 
conditions. The mean CAT activity was 2.78 and 5.11 under 
normal and heat stress conditions, respectively. Further, at 
the genotypic level, the activity of CAT varies significantly 
among genotypes. It was observed that the increase in CAT 
activity was maximum in PBW273 followed by WH730 and 
then Raj3765 as compared to normal timely sown condi-
tions. Further, the maximum CAT activity under late sown 
heat stress conditions was also observed in PBW273 fol-
lowed by WH730 and then Raj3765.

Discussion

Heat stress at the terminal stage of crops severely affects 
the grain-filling of wheat leading to dramatic yield loss. 
Thus exploration of wheat genotypes for heat tolerance 
under extreme heat environments is the utmost require-
ment for sustainable productivity. Further, the mechanism 
of heat tolerance involves a series of morpho-physiological 
and molecular changes that often vary among wheat geno-
types (Dhyani et al. 2013). The crop varieties can be more 
adapted to the predicted future climate by knowing how 
crops react to high temperatures and how to make crops 
more heat-tolerant (Halford 2009; Hossain et al. 2021). In 
the past several researchers (Viswanathan and Khanna-
Chopra 2001; Sharma et al. 2013) adopted the method 
of stress susceptibility indices of yield for screening of 
the wheat genotypes for heat tolerance. Moreover, very 

Table 2  Factor loadings after Varimax rotation

DTA days taken to 50% anthesis, DTPM days to physiological matu-
rity, GFD grain filling durations, EL (Ears length), GY grain yield, 
TGW  thousand grains weight, TR tiller per plant, RWC  relative water 
content, MSI membrane stability index, CHL chlorophyll content, PN 
photosynthesis rate, CAT  catalase activity

PC1 PC2 PC3 PC4

DTA 0.762 – 0.269 – 0.183 0.158
DTPM 0.922 – 0.226 – 0.070 0.065
GFD 0.895 – 0.127 0.073 – 0.054
EL 0.739 – 0.073 – 0.085 0.210
GY 0.890 – 0.096 – 0.077 0.015
TGW 0.911 – 0.209 0.014 0.032
MSI 0.771 – 0.049 – 0.114 – 0.099
RWC 0.832 – 0.085 0.035 – 0.100
CHL 0.213 – 0.704 0.373 – 0.105
PN 0.908 – 0.137 – 0.022 0.103
TR 0.051 0.035 – 0.056 0.972
Proline – 0.110 0.032 0.911 – 0.048
CAT – 0.177 0.799 0.315 – 0.041
Eigen value 6.659 1.364 1.145 1.069
Variability (%) 50.843 10.499 8.812 8.225
Cumulative % 50.843 61.342 70.154 78.379
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Fig. 1  Agglomerative hierarchical cluster analysis (AHC) and heat 
map of physiological properties of wheat genotype under normal and 
stress conditions. Comparative variable levels correspond to the color 
temperature. The color temperature scheme indicates relative variable 
levels ranging from minimum (green) to maximum (red) contents of 
the respective variable. DTA days taken to 50% anthesis, DTPM days 

to physiological maturity, GFD grain filling durations, PN photosyn-
thesis rate, TGW  thousand grains weight, GY grain yield, RWC  rela-
tive water content, MSI membrane stability index, EL (Ears length), 
CHL chlorophyll content, CAT  catalase activity, TR tiller per plant. 
Prefix N and S before the variety name represents timely sown/nor-
mal and late-sown/heat stress, respectively
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little information is available on the screening of wheat 
genotypes for heat tolerance using various physiological 
and biochemical traits. Various physiological and bio-
chemical parameters were employed in the current study 
to screen 40 wheat genotypes for heat stress resistance. 
The PCA is a variable reduction technique that identifies a 
smaller set of artificial variables, or principal components, 
that together explain the majority of the variation in the 
observed variables. The correlation between the original 
variable and the component (or rotated factor) obtained 
via PCA is known as factor loading. These figures indi-
cate that the physiological parameter significantly con-
tributes to the overall variability. The most crucial vari-
ables and characteristics in each dimension, or PCs, were 
found using significant factor loading values greater than 
or equal to 0.7, in accordance with the theoretical justifi-
cations of PCA presented by Hair et al. (2005). PC1 was 
positively contributed by DTA, DTPM, GFD, EL, GY, 
TGW, MSI, RWC, and PN whereas PC2 was positively 
contributed by negatively by CHL and positively by CAT. 
PC3 positively contributed by proline and PC4 contributed 
by TR (Table 2). The majority of heat-tolerant genotypes 
in the current investigation, including DBW 14, HALNA, 
WH730, and NW1014, were found in cluster I. The geno-
type DBW 14 has also been observed to be heat tolerant in 
the North Western/Eastern Plain Zone of India (Chatrath 
2004). A total of four cultivars—RAJ 3765, HALNA, 
DBW 14, and WH730—that belong to the tolerant group 
were primarily grown in significantly warmer regions of 
India including western, eastern, and central areas. Fur-
ther, the GY, TGW, CHL, MSI, and PN were determined to 
be the primary factors influencing the genotype clustering. 
These conclusions are supported by the correlation analy-
sis. In the correlation study (Table 3), a positive associa-
tion between grain yield and MSI, Chl, TGW, GFD, and 
PN were observed. Moreover, a significant positive cor-
relation of PN with CHL value, and MSI emphasized the 

importance of these physiological traits as key factors for 
heat stress tolerance in wheat (Gupta et al. 2015).

The physiological functions of wheat and its phenological 
stages attainment differ significantly under heat stress con-
ditions (Gupta et al. 2015). Further, genotypic differences 
play a key role in determining the tolerance level of wheat 
in terms of morpho-physiological responses (Almeselmani 
et al. 2012). In this study the grain yield decline under late 
shown heat stress conditions that might be due to lesser 
time for grain filling (GFD) (Table 1). Moreover, heat stress 
shortens the duration between anthesis and physiological 
maturity of the crop (Warrington et al.1977), which in turn 
reduces the grain weight (Warrington et al.1977; Shpiler 
and Blum 1991). Due to the high temperature at the terminal 
stage, the loss of an ample amount of water leads to lesser 
relative water content in leaves (Dwivedi et al. 2017). Heat 
stress led to disruptions in the chlorophyll pigment in terms 
of structure and function, and its content thus lower photo-
synthesis (Xu et al.1995). Heat stress severely altered the 
rate of photosynthesis and transpiration (Ahmad et al. 2021). 
Furthermore, damage to cellular membranes also resulted 
in the inhibition of chlorophyll biosynthesis and interrup-
tion in photosynthetic performance, thereby reducing the 
productivity of plants (Camejo et al. 2005). In another study, 
Savicka and Škute (2010) accounted that heat stress triggers 
the production and accumulation of ROS inside the plant 
cells. As a result, the lipid membrane of cell organelles like 
chloroplast is damaged and consequently, photosynthesis 
and overall growth of the plant are hampered. A similar 
observation was also observed by other workers (Hasanuz-
zaman et al. 2020; Dubey et al. 2020). Moreover, the recent 
finding revealed that heat stress decreases  CO2 assimilation 
rate which was attributed to the reduction in stomatal con-
ductance and intercellular  CO2 (Kumari et al. 2021; Hussain 
et al. 2021). Furthermore, photosystem II (PSII) has more 
sensitivity towards heat stress (Bibi et al. 2008; Brestic et al. 
2012); thus, impairment of PSII results in an interruption in 

Table 3  Correlation between 
physiological traits and each 
agronomic trait under heat 
stress treatment

DTA days taken to 50% anthesis, GFD grain filling durations, GY grain yield, TGW  thousand grains weight, 
MSI membrane stability index, RWC  relative water content, CHL chlorophyll content, PN photosynthesis 
rate, CAT ,catalase activity. Critical values for Pearson’s correlation coefficient of  two-tailed test: *and ** 
indicate the significance of values at P ≤ 0.05 and P ≤ 0.01, respectively

DTA GFD GY TGW MSI RWC CHL PN CAT 

DTA 1 – 0.7454 – 0.1361 – 0.2307 – 0.2508 – 0.1345 – 0.125 – 0.2544 – 0.1333
GFD 1 0.469** 0.5619** 0.5348** 0.2551 0.0743 0.4515** 0.2958
GY 1 0.6279 0.4312** 0.1816 0.1541 0.6132* 0.1371
TGW 1 0.6246 0.3936* 0.288 0.5016*** 0.0411
MSI 1 0.4173* 0.2016 0.5411** 0.121
RWC 1 0.0451 0.198 0.0556
CHL 1 0.3044 – 0.1254
PN 1 0.2592
CAT 1
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electron transport and ATP synthesis during the photosyn-
thetic function of pigment (Wang et al. 2018). Chovancek 
et al. (2019) demonstrated that the recovery mechanism fol-
lowing heat stress was provided by the effective control of 
linear electron transport and the avoidance of over-reduction 
in the acceptor side of photosystem I. Further, heat stress 
affects more promptly on water status of the plant by modu-
lating osmotic adjustment due to the deprived photosynthetic 
ability, which subsequently causes sinking sugar content, 
decreasing the osmotic potential, and increasing transpira-
tion rate (Hemantaranjan et al. 2018). In the study, wheat 
genotypes WH 730, Halna, HI1563, and NW 1014 main-
tained the PN rate under LS condition thereby validating 
its thermo-tolerance. Furthermore, scavenging of ROS by 
enhanced activity of the antioxidant enzyme in flag leaves 
under high-temperature conditions helped in the mitiga-
tion of oxidative damage (Zhao et al. 2018). In the current 
study also wheat genotypes RAJ 3765, GW 273, and HI1563 
showed enhanced CAT activity and thus have the ability to 
detoxify the ROS and attenuated heat stress-induced oxida-
tive membrane damage, and grain filling (Zhao et al. 2018). 
Osmoprotectant accumulation is expected to be another 
tactic employed by plants to withstand heat stress (Nahar 
et al. 2016). This study demonstrated a significant increase 
in proline content in RAJ2765, GW273, and HI1563, which 
is consistent with previous findings. Proline has also been 
reported to perform as a ROS scavenger and to protect cells 
from stress-induced damage (Hasanuzzaman et al. 2014).

Conclusion

This study demonstrated significant genotype-to-genotype 
heterogeneity in wheat's resistance to terminal heat stress. 
It would be preferable for the genotype screening process 
to combine physiological variables with agronomic, mor-
phological, and yield traits. Our study clearly showed that 
the physic-chemical parameters found to be from cultivar 
to cultivar and even also varied with climate change played 
a crucial role in providing tolerance from the heat stress. 
In conclusion, 7 cultivars viz Raj3765, NW1014, Halna, 
HI1563, WH730, GW273, and DBW14 were found to be 
relatively more heat tolerant. These are the promising cul-
tivars that can be employed in breeding programs for the 
further development of heat-tolerant new wheat varieties.
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