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Abstract
Drought stress severely affects plant growth and productivity. Black gram is an extensively cultivated legume crop worldwide. 
Its production has not improved much in the last decade as it is adversely affected by biotic and abiotic stresses among which 
drought is a major factor. Salicylic acid (SA) pre-treatment to a Vigna mungo variety significantly increases chlorophyll, 
proline, carbohydrate, and total phenolic content. APX, GPX and SOD activities also increase and CAT activity decreased. 
At molecular level, induced expression of various stress-related genes, i.e. heat shock protein (Hsp), calmodulin (CAM), 
malate dehydrogenase (MD), metallothionein (MT), mitogen-activated protein kinase (MAPK), tryptophan synthase (TSN), 
zinc finger (ZF), phenylalanine ammonia lyase (PAL) and WRKY proteins are analysed by quantitative RT PCR after 1 mM 
SA treatment under short-term drought stress. It is observed that 1 mM SA pre-treatment is optimum to increase tolerance 
against short-term drought stress.
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Introduction

Black gram, originated in India, is a short duration 
(90–120 days) legume crop, accounting for about 20% of 
world pulse production (Pandey 2019). Globally, higher 
production and consumption of black gram is reported in 
India, and here, it is the third important pulse (Pandey and 
Chakraborty 2016). It has a high nutritive value and is also 
used in sustainable cropping systems, medicinal prepara-
tions, nutraceuticals and cosmetics. The production of black 
gram has not improved in last decade mainly due to various 
stresses (Pandey and Chakraborty 2015). Drought stress has 
some typical features; it is a slow event, difficult to find out 
the starting and end points, no single indicator, difficult to 
quantify and is estimated to decrease crop productivity by 
half globally (Feng et al. 2020).

Plant response to drought may be instantaneous by change 
in protein phosphorylation and may extend to prolonged 

period by altered gene expression. The response intensity 
depends on different features, i.e. species and genotype 
of plants, length and severity of drought, age and stage of 
development of plants, organ and cell type and the sub cellu-
lar compartment of plants. Several biochemical and molecu-
lar parameters are modulated in response to drought.

Chlorophyll content is reduced under drought stress by 
chlorophyll degrading enzymes in sunflower (Kiani et al. 
2008), Vaccinium myrtillus (Tahkokorpi et al. 2007) and 
also in cotton (Massacci et al. 2008). Reduced chlorophyll 
content is linked to reduced Rubisco activity, decreased gas 
exchange, instable protein complexes and damaged chloro-
phyll (Bota et al. 2004).

Reduced pigment content and closure of stomata under 
drought leads to reduction in photosynthesis and ultimately 
results in reduced carbohydrate content (Yazdanpanah et al. 
2011).

In addition, increased lipid peroxidation and membrane 
injury index under drought disrupts leaf integrity and further 
reduces photosynthetic capacity (Zlatev et al. 2006).

Proline (a metal chelator) accumulation is a very early 
response of plants against water deficit. It inhibits lipid per-
oxidation, scavenges singlet molecular oxygen and stabi-
lises protein structures (Ashraf and Foolad 2007). It is a 
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key antioxidant and able to prevent programmed cell death 
(Chen and Dickman 2005).

Drought stress in plants increases reactive oxygen species 
(ROS) which can be disruptive if not brought under tolerable 
limits.  H2O2 produced under stress is a signal molecule at 
lower concentrations but highly destructive at higher concen-
trations and may cause programmed cell death (Breusegem 
et al. 2001; Quan et al. 2008).  H2O2 prevents  CO2 fixation 
(up to 50%) in plants by oxidising the SH groups of the 
enzymes in Calvin cycle (Foyer and Shigeoka 2011).

To bring down the levels of ROS, plants have non enzy-
matic-enzymatic clean-up mechanism (Halliwell and Gut-
teridge 2006) where antioxidants play major role in the 
detoxification of ROS. Superoxide dismutase (SOD), cata-
lase (CAT) and ascorbate peroxidase (APX) are key enzy-
matic antioxidants.

Polyphenolic compounds (secondary metabolites) protect 
plants against biotic and abiotic stress and phenylalanine 
ammonia lyase (PAL) play central role in their synthesis 
(Yang et al. 2016). Increase in phenolic content is reported 
under drought, high and low temperature, low soil fertility, 
high light intensity, water logging and UV radiations (Mole 
et al. 1988; Delalonde et al. 1996; Close and McArthur 
2002; Ali and Abbas 2003; Gholizadeh 2011; Kabiri et al. 
2014). Phenyl alanine ammonia lyase (PAL) is a component 
of antioxidative defence system and facilitates the protec-
tion against different stresses such as drought. Superoxide 
dismutase (SOD) works as a first line of defence against 
oxidative stress (Wang et al. 2020). Increased SOD activity 
is studied by Sharma and Dubey (2005) in rice, Zlatev et al. 
(2006) in common bean and also by Wang et al. (2008) in 
white clover and alligator weed against drought stress.

Catalase is a light sensitive enzyme that converts  H2O2 
into  H2O and  O2. Sharma and Dubey (2005) reported the 
decrease in CAT activity in rice seedlings under drought 
stress. Scavenging efficiency of CAT for  H2O2 is lower when 
compared with peroxidase (Erdal and Dumlupinar 2010).

Ascorbate peroxidase (APX) uses ascorbate as a hydro-
gen donor to reduce the  H2O2 in water-water and AA-GSH 
cycles (Asada 2000). APX has higher affinity (µM range) 
for  H2O2 when compared with CAT and POD (mM range). 
Increased APX activity is reported by Yang et al. (2008) 
in Picea asperata and by Zlatev et al. (2006) in Phaseolus 
vulgaris against drought stress.

Guaiacol and pyrogallol work as electron donor for 
Guaiacol peroxidase (GPX) activity (Jebara et al. 2005). 
Increased GPX activity was reported by Zhang et al. (2006) 
and by Pan et al. (2006) in liquorice under stress conditions.

At molecular level, plants turn on or turn off a series of 
genes under different stresses. Heat shock protein (Hsp), 
calmodulin (CAM), malate dehydrogenase (MD), metal-
lothionein (MT), mitogen-activated protein kinase (MAPK), 
tryptophan synthase (TSN), zinc finger (ZF), phenylalanine 

ammonia lyase (PAL) and WRKY directly or indirectly pro-
tect plants against stress conditions.

Pre-treatment with nitric oxide, ethylene and salicylic 
acid (SA) that are involved in plant signalling process have 
been used to increase tolerance to environmental stresses. 
SA is a phenolic compound and acts as a plant growth regu-
lator; is able to affect various physiological, biochemical 
and molecular processes. Under stress condition, it pro-
tects photosynthetic pigments and enhances the activity of 
antioxidative enzymes (Gill et al. 2016; Wang et al. 2017). 
Involvement of SA against environmental stresses, particu-
larly against biotic stresses is well established in black gram 
(Kundu et al. 2012).

In the present study, V. mungo plants are given SA pre-
treatment and put under short-term drought stress to evaluate 
its effectiveness in increasing tolerance.

Materials and methods

Seeds of T9 plants were obtained from Division of Plant 
Biology, Bose Institute, Kolkata, India. Germinating seeds 
were transferred to soil filled plastic pots (capacity: 1L). 
The pots were kept in the growth chamber at (30 ± 2 °C). 
Three-week-old test plants (21 DAS) were grouped into 5 
sets, each set consisted of 12–15 replicate plants as follows: 
set 1—healthy control plants; set 2—untreated plants; set 
3, 4 and 5—leaves of T9 plants were pre-treated with either 
0.5 mM, 1 mM or 3 mM of SA, respectively, by spraying 
until run-off and subsequently subjected to drought stress 
by withholding water after three days (72 h). Physiological, 
biochemical and molecular studies were done at the time 
of SA treatment, after 72 h of SA treatment, after 3 days of 
drought stress and after 24 h of re-watering (recovery).

Physiological study

The leaves of T9 plants were noted at the time of SA treat-
ment, after SA treatment, after short drought stress and on 
recovery for any necrotic symptoms.

Biochemical study

Chlorophyll content (Arnon 1949), carbohydrate con-
tent (Hedge and Hofreiter 1962),  H2O2 content (Alexieva 
et al. 2001) total phenolic content (Singleton et al. (1999) 
method with modifications as mentioned by Chakraborty 
et al. (2008), proline content (Bates et al. 1973), and lipid 
peroxidation (De Vos et al. 1989) were determined.

To determine the activities of antioxidant enzymes, fresh 
leaves (0.5 g) were homogenised in a mortar and pestle under 
ice-cold condition with 5 ml extraction buffer (50 mM phos-
phate buffer pH 7.0, 1 mM EDTA, 1 mM ascorbate, 1 mM 
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PVP and 0.05% tritonX100). It was centrifuged at 5000 g 
for 20 min at 4 °C. Supernatant was collected and stored 
at − 20 °C for the assay. Activity of superoxide dismutase 
(Beauchamp and Fridovich 1971) as modified by Madaman-
chi et al. (1994); catalase (Miyagawa et al. 2000), ascorbate 
peroxidase (Chen and Asada 1989), guaiacol peroxidase 
(Kar and Mishra 1976) and PAL activity (Chakraborty et al. 
2008)  were determined.

Statistical analyses

Data are analysed by two-way analysis of variance to detect 
the overall significant (p < 0.05) differences between all 
means using SYSTAT (Ver. no. 13.00.05 SYSTAT software 
Inc. 2009).

Quantitative RT PCR

Quantitative RT PCR was performed and the activity of the 
following genes was observed: heat shock protein (Hsp), 
calmodulin (CAM), mitogen-activated protein kinase 
(MAPK), zinc finger (ZF), malate dehydrogenase (MD), 
tryptophan synthase (TSN), metallothionein (MT), pheny-
lalanine ammonia lyase (PAL), rubisco activase (RA) and 
WRKY proteins, at the time of 1 mM SA treatment, after 
72 h of SA treatment, after short-term drought stress and 
on recovery. Prior to RT PCR, RNA isolation and cDNA 
synthesis were done using Spectrum Plant Total RNA Kit 
(Sigma Aldrich, catalog no. STRN50) and high-capacity 
cDNA reverse transcription kit (Applied Biosystems, cat-
alog no. 4368814), respectively. RT PCR was done using 
DyNAmo Color Flash SYBR Green qPCR kit (Thermo 
scientific, catalog no. F-416L) in a Qiagen Rotor Gene Q 
system. Quantitative study of the candidate genes was done 
according to Livak and Schmittgen (2001).

Results and discussion

Drought stress limits the plant growth and yields. Exogenous 
application of salicylic acid, an endogenous plant growth 
regulator, protects plants against stress conditions.

In the present study, wilting of leaves was observed in 
V. mungo plants under short-term drought stress. SA treat-
ment at 1 mM concentration lowered wilting after 3 days of 
drought stress and on recovery while 3 mM SA treatment 
damaged the leaves and necrotic regions were observed. It 
is reported earlier the lower concentration of SA works as 
a defence strategy against drought stress, while higher con-
centration of SA generally damages the plants (Joseph et al. 
2010).

Reduction in chlorophyll content was observed under 
drought stress (Fig. 1a, b, c). When the plants were re-
watered, increased chlorophyll content was observed in all 
plants except untreated plants when compared with drought-
stressed plants of the same set. Higher chlorophyll content 
was observed in 1 mM SA-treated plants when compared to 
other concentrations. Alam et al. (2013) reported reduced 
chlorophyll content under drought stress.

In the present study, highest  H2O2 content was observed 
in 3 mM SA-treated plants (Fig. 2a) and this may be the 
cause of necrotic regions observed in the leaves. SA treat-
ment is reported to increase  H2O2 and may lead to injury 
to plant tissue (Habibi 2012).  H2O2 at lower concentration 
plays important role in signal transduction against stress 
conditions (Gong et al. 2005) while at higher concentration 
it is harmful to plants.

Total phenolic content was enhanced under drought stress 
as well as after SA treatment in the present study (Fig. 2b). 
Previously, Ali et al. (2007) reported enhanced level of 
total phenolics on SA treatment. Due to higher antioxidant 
properties that decrease ROS level under stress condition, 
phenolic compounds may facilitate plant defence against 
environmental stresses (Chakraborty et al. 2008).
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Fig. 1  Effect of drought stress and SA treatment on chlorophyll content (mg/g fw) of V. mungo leaves; a chlorophyll a, b chlorophyll b, c total 
chlorophyll c (bars with same alphabets are not significantly different at p = 0.05)
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Lipid peroxidation increased in drought-stressed plants 
after 3 days of short-term drought stress while lower level 
of lipid peroxidation was observed in 0.5 mM SA-treated 
plants and 1 mM SA-treated plants (Fig. 2c). Decrease in 
lipid peroxidation has been reported on SA treatment under 
drought stress (Alam et al. 2013; Kabiri et al. 2014).

Higher proline content was observed in 3 mM SA-treated 
plants, while it was lower in drought-stressed plants under 
short-term drought stress (Fig. 3a). Enhanced level of pro-
line under drought stress is reported by Yazdanpanah et al. 
(2011) and Patel and Hemantaranjan (2012) on SA treatment 
and may act as a protective mechanism.

Drought stress adversely affected the ability of the 
plant metabolism and decreased carbohydrate content was 
observed after 3 days of drought stress (Fig. 3b). Treatment 
with SA could prevent the adverse effects of drought and 
an increase in carbohydrate concentration was observed. 
Increased carbohydrate content after SA treatment is previ-
ously reported by Yazdanpanah et al. (2011).

PAL activity increased on SA treatment in a concentra-
tion-dependent manner and also after 3 days of short-term 
drought stress (Fig. 4). The increase in PAL activity explains 
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the increased phenolic concentration in the leaves and is 
previously reported by Ali et al. (2007).

The activity of the antioxidant enzymes, APX, GPX and 
SOD activity (Fig. 5a–c) increased, while CAT activity 
(Fig. 6) decreased on SA treatment. Increased activity of 
the antioxidant enzymes APX (Saruhan et al. 2012), GPX 

(Horvath et al. 2007) and SOD (Saruhan et al. 2012), and 
decreased activity of CAT (Shakirova, (2007) on SA treat-
ment is due to the activation of antioxidant defence mecha-
nism of plants to increase tolerance under stress conditions.

Induced Hsp (heat shock protein) expression is reported 
in biotic as well as abiotic stress conditions (Reddy et al. 
2014; Pavlova et al. 2009), while there are no reports of their 
induction under normal conditions (Zhang et al. 2008). In 
the present study, increased Hsp expression was observed 
after SA treatment as well as under short-term drought stress 
and among all treatments higher fold change was observed 
for 1 mM SA-treated plants after short-term drought stress 
(Fig. 7a). HSPs work as molecular chaperones, highly con-
served polypeptides and play pivotal role under biotic and 
abiotic stress (Kotak et al. 2007). HSPs also increase the 
membrane stability and scavenge ROS by regulating anti-
oxidant enzymes. They help in protein folding and restrict 
irreversible mis fold of proteins to maintain cellular homeo-
stasis against biotic and abiotic stress (Ahuja et al. 2010).

Intracellular plant  Ca2+ level is influenced by differ-
ent environmental stress conditions including salinity and 
drought stress, during plant growth and development (Xu 
et al. 2011). Intracellular  Ca2+ plays important role in plant 
defence mechanisms as it acts as a signal molecule against 
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stress conditions (Yang et al. 2010). Calmodulin (CAM) is 
a  Ca2+ sensor, important in different calcium-dependent 
signalling pathways (Sun et al. 2001). AtCML9 (Magnan 
et al. 2008), AtCML24 (Delk et al. 2005) and AtCML42/43 
(Chiasson et al. 2005) are  modulated under different stress 
conditions.

In the present study, expression of CAM was induced 
after SA treatment and among all treatments higher expres-
sion was studied in 1 mM SA-treated plants under short-term 
drought stress (Fig. 7b).

Malate dehydrogenase (MD) expression was induced 
after SA treatment as well as under short-term drought 
stress in the present study (Fig. 7c). MD is a key enzyme of 
malate/aspartate shuttle and TCA (tri-carboxylic acid cycle). 
Different isoforms of MD differ in their localization and 
specificity for the NAD or NADP. Higher accumulation of 
MD is reported in soyabean leaf against drought and heat 
stress (Das et al. 2016). Increased expression of malate dehy-
drogenase like protein is reported in common bean against 
water-deficit conditions (Recchia et al. 2013).

A higher expression of Metallothionein (MT) was 
observed on 1 mM SA treatment under 3 days of short-term 
drought stress. Induced expression of MT was also stud-
ied after SA treatment but it was less when compared with 
1 mM SA treatment under drought stress (Fig. 8a). MTs 
keep intracellular metal homeostasis and work as a ROS 
scavenger (Zhou et al. 2006). Yang et al. (2009) found the 
over expression of OsMT1a that increased the level of APX, 
CAT and POD in transgenic rice plants when compared to 
wild-type rice plants under drought stress. Accumulation of 
OsMT1a (Yang et al. 2009) and MT3 (cotton metallothio-
nein protein) (Xue et al. 2009) are reported under water-
deficit condition that protect plants from harmful effects of 
ROS. On the other hand, MT2 (metallothionein protein) in 
Arabidopsis is not induced by SA treatment (Murphy and 
Taiz 1995).

Mitogen-activated protein kinase (MAPK) cascades play 
pivotal role in various signalling pathways and respond to 
drought, wounding, salt stress, cold and oxidative stress 
(Ichimura et al. 2000; Yuasa et al. 2001). In the present 
work, MAPK expression was induced after SA treatment 
but not under short-term drought stress (Fig. 8b). Among 
all treatments, higher fold change was observed in 1 mM 
SA-treated plants on 3 days of drought stress. MAPK genes 
as AtMPK3, AtMPK4, AtMPK6, OsMPK1, OsMPK5, 
OsMPK12, GhMPK7 and p48 SIP kinase, etc. are reported 
to be induced by SA treatment and are essential for signal 
transduction (Li et al. 2012). Expression of OsMAPK44 is 
induced in rice against water deficit and salt stress (Jeong 
et al. 2006).

Tryptophan synthase is an important enzyme in trypto-
phan and indole synthesis. Higher expression of TSN gene 
was observed at 1 mM SA treatment after drought stress 
(fold change: 3.81) and lower expression in recovered 
drought-stressed plants (fold change: 0.33) (Fig. 9a). Here, 
expression of this gene was induced after drought stress (D) 
and SA treatment (1 mM SA and 1 mM D). There is no 
literature available on the effect of SA treatment on TSN 
expression. Camalexin (3-thiazol-2′-yl-indole) which is 
originated from tryptophan is a phytoalexin of Arabidopsis 
thaliana. Inducted expression of Camalexin is studied by 
plant pathogens and salicylic acid plays important role in it 
(Glawischnig 2007).

Zinc finger motifs are involved in RNA binding, tran-
scriptional regulations, apoptosis, protein–protein interac-
tions and growth and development of plants. These motifs 
are able to protect plants against salt and drought stress and 
suitable for engineering crop plants with enhanced resist-
ance (Xu et al. 2008). Expression of various ZF proteins, 
i.e. ZFP252, ThZF1, GsZFP1, OsZnI, AtZAT6, AtTZF2, 
AtTZF3, GhTZF1 and OsTZF1 are reported under drought 
stress (Jan et al. 2013; Shi et al. 2014; Zhou et al. 2014). 
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ZF activity was induced after SA treatment and also after 
short-term drought stress (Fig. 9c). Different ZF proteins 
as CaKR1, GhTZF1 and OsTZF1 are regulated by SA (Jan 
et al. 2013).

Collaborating the biochemical study, PAL gene was also 
induced on SA treatment and under short-term drought stress 
(Fig. 10a). Higher fold change was studied for 1 mM SA-
treated plants after 3 days of drought stress. These findings 
are in accordance to the results obtained by Phimchan et al. 
(2014). Regulation of PAL activity by SA has been reported 
by Xu et al. 2012.

Rubisco gene expression was increased after SA treatment 
but after short-term drought stress, it decreased (Fig. 10b). 
Drought stress damages the Rubisco protein and Rubisco 
activase (RA) works as a chaperone and protects synthesis 
of chloroplast protein from drought-induced damage. Aran-
juelo et al. (2011) and Zhou et al. (2007) reported reduced 
RA activity in plants under drought stress while some work-
ers reported minor or even no hindrance in Rubisco activity 
(Pelloux et al. 2001; Flexas et al. 2006).

WRKY genes (group of transcription factors) are 
involved in plant development, dormancy, drought tolerance, 
embryogenesis and thermal hysteresis (Xie et al. 2005) and 
some of them are reported to be regulated by SA (Zhang 
et al. 2012). WRKY transcription factors play pivotal role 
in stress response or tolerance and also regulate different 
plant processes (Phukan et al. 2016). Ding et al. (2016) in 
wheat, Wang et al. (2015) in soybean and Wu et al. (2017) 
in common bean studied that WRKY proteins facilitate tol-
erance against abiotic stresses. Niu et al. (2012) studied the 
role of TaWRKY2 (wheat WRKY gene) in growth, devel-
opment and also against stress condition. Increased level 
of WRKY21 is reported in Arabidopsis that facilitates the 
drought tolerance (Jiang et al. 2012). In the present study, 
expression of WRKY was induced under short term of 
drought stress and also after SA treatment (Fig. 10c). Higher 
fold change was observed for 1 mM D (1 mM SA-treated 
plants after 3 days of drought stress).
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Fig. 9  Effect of drought stress and 1 mM SA treatment on a TSN and b ZF gene expression in V. mungo 
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Conclusion

A summary of modulation of biochemical and molecular 
processes in V. mungo plants treated with SA and then put 
under drought stress is represented in Fig. 11. The role of 
SA against biotic and abiotic stresses as a plant defence mol-
ecule is well established but there is no literature available 
for the effect of SA pre- treatment in pulses under short-term 
drought stress. 1 mM SA treatment was found to suitable 
for T9 plants to tolerate short term of drought stress while 
higher concentrations, i.e. 3 mM damaged the plants.
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