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Abstract
Salt stress usually results in severe physiological damage to plants. Melatonin (N-acetyl-5-methoxytryptamine) is an impor-
tant growth regulator that adapts plants to abiotic stress. The present study evaluated the role of melatonin application on 
inducing salt tolerance in sugar beet (Beta vulgaris L.). The protective role of melatonin (0, 30, 60, and 90 µM) was exam-
ined by measuring leaf photosynthetic characteristics, antioxidant system, and osmotic adjustment substances of sugar beet 
seedlings under salt (300 mM Na+) and non-salt stresses. The results showed that salt stress resulted in significantly reduced 
biomass, reduced photochemical activity of photosystem II (PSII), and evoked the production of reactive oxygen species 
(ROS). In contrast, the application of melatonin significantly increased antioxidant enzyme activities (SOD, POD, and CAT) 
under salt stress, reduced ROS accumulation (MDA and O2·−), and enhanced photosynthesis in seedlings. There was no 
significant difference in the above indicators of melatonin pretreatment under control condition (non-salinized). On day 1 of 
stress application, the concentration of sucrose decreased significantly, and the concentration of proline and H2O2 increased 
significantly under melatonin treatment. On day 7, soluble sugar and betaine concentrations increased significantly. Current 
research speculates that melatonin enhances cellular energy metabolism and may be involved in activating the antioxidant 
system to eliminate ROS. In conclusion, these results indicated that the application of 60 µM melatonin could act as a feasible 
way to alleviate the salt stress in sugar beet production.
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Abbreviations
Car	� Carotenoids
CAT​	� Catalase
Chl	� Chlorophyll
Ci	� Intercellular CO2 concentration
E	� Transpiration rate
Fv/Fm	� Maximum quantum yield of PSII
LRWC​	� Leave relative water content

MDA	� Malondialdehyde content
gs	� Stomatal conductance
Pn	� Net photosynthetic rate
qL	� Estimates the fraction of open PSII centers
POD	� Peroxidase
qP	� Photochemical quenching
ROS	� Reactive oxygen species
SOD	� Superoxide dismutase
Y(II)	� Effective quantum yield of PSII
Y(NO)	� Quantum yield of nonregulated non-photo-

chemical energy dissipation
Y(NPQ)	� Quantum yield of regulated non-photochemical 

energy dissipation

Introduction

Salinity accounts for a main abiotic stress inhibiting plant 
growth in the world (Zhu 2001). Currently, approximately 
900 million hectares of land is salinized globally, including 
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around 20% of cultivated land and 50% of irrigated land 
(Cristiano et al. 2016; FAO 2009). Furthermore, the annual 
world farmland has been reduced by 2 million hectares 
owing to secondary salinization, resulting in reduced plant 
productivity (Ke et al. 2016).

Salinity is a complex abiotic stress, including physiologi-
cal water deficiency, ion toxicity, oxidative damage, nutri-
ent disturbance, metabolic disturbance, photoinhibition and 
altered main cell enzymatic activities (Chen et al. 2007; 
Cuin and Shabala 2010; Farouk and Al-Amri 2019c; Farouk 
and Arafa 2018; Helaly et al. 2018; Munns and Tester 2008). 
Plants can establish the antioxidant systems and accumulate 
osmotic adjustment substances in the presence of abiotic 
stresses (Farouk and Al-Amri 2019c). However, the in-build 
system of plants to adapt to salinity is insufficient to prevent 
damage to crops. Therefore, it is urgent to find effective ways 
to improve the salt tolerance of crops.

Melatonin is an endogenous growth regulator synthesized 
by animals and plants under stress (Kolár and Machácková 
2010; Reiter et al. 2014). As melatonin was first discovered 
in plants in 1993, considerable progress has been made in 
this field (Farouk and Al-Amri 2019a, b; Van Tassel et al. 
2010). Until date, several studies have demonstrated that 
plant melatonin could be an essential regulator of redox 
homeostasis (Arnao and Hernández-Ruiz 2018). It is asso-
ciated with several physiological functions such as growth 
(Farouk and Al-Amri 2019b), rooting (Arnao and Hernán-
dez-Ruiz 2017), seed germination (Zhang et al. 2017b), and 
photosynthesis (Li et al. 2017a), as well as protection against 
abiotic stress (Arnao and Hernández-Ruiz 2015, 2017; 
Farouk and Al-Amri 2019b; Wang et al. 2018). Melatonin 
plays a critical role in plants to scavenge reactive oxygen 
species (ROS), which is the first-line defense to resist envi-
ronmental and endogenous oxidative stresses (OS) (Arnao 
and Hernández-Ruiz 2018; Farouk and Arafa 2018). Wang 
et al. (2016) investigated the potential role of melatonin 
in salt tolerance and found that 50 to 150 µM exogenous 
melatonin promoted cucumber seedling growth and photo-
synthesis under salt stress (200 mM NaCl). Similarly, Li 
et al. (2017a) found that melatonin treatments at diverse 
concentrations (50, 150, and 500 µM) mitigated OS and 
the reduced photosynthetic rate of watermelon leaf samples 
under 300 mM NaCl stress. According to the results from 
Siddiqui et al. (2019), applying melatonin promoted tomato 
plant development in the meantime of reducing ROS con-
tents through increasing the non-enzymatic antioxidant and 
antioxidant (including catalase and superoxide dismutase). 
However, information on how melatonin is involved in the 
salt tolerance of crops is still scarce (Chao et al. 2012; Wei 
et al. 2015).

Sugar beet (Beta vulgaris L.) represents the main sugar 
crop in the world, which shows high resistance to abiotic 
stresses (Bor et al. 2003). However, there is at present no 

literature related to melatonin involvement in regulating 
sugar beet response to abiotic stress is available. This work 
determined the roles of exogenous melatonin in sugar beet 
growth, antioxidant system, osmotic regulation and photo-
synthesis in the presence of salt stress; analyzed the regula-
tory mode; and laid the foundation for further elucidating the 
physiological and molecular mechanisms of its regulation 
of salt stress.

Materials and methods

Plant materials and growth conditions

Our experiments were carried out in the Northeast Agricul-
tural University (126°63′ E, 45°44′ N, Harbin, P.R. China). 
We grew the sugar beet seeds (KWS0143, KWS, Germany) 
into pots that contained vermiculite within a plant growth 
room under the following conditions, 23 °C at day, 18 °C at 
night and 14 h/10 h light/dark cycle.

In our experiments, the relative humidity (RH) and light 
intensity were set at 60 ± 5% and 450 µmol m–2 s–1 PAR, 
respectively. Following seedling emergence, they were irri-
gated once a day with a 1/2 concentration of Hoagland’s 
solution for 10 days. The uniform seedlings were later trans-
ferred to the above nutrient solution. The pH was maintained 
at 7.0 during the entire plant development period, while 
nutrient solution was replaced at intervals of 3 days.

Experimental design

Melatonin pretreatment (a culture with 1/2 Hoagland’s solu-
tion containing 0, 30, 60 or 90 µM melatonin for 3 days) was 
performed upon the unfolding of the initial true leaf pair. 
Salt treatment (S; NaCl and Na2SO4 in a 2:1 molar ratio) was 
started after the pretreatment (after 3 days), following which 
the Na+ concentration elevated to 100, 200 and 300 mM in 
sequence within 3 days (Hossain et al. 2017). A randomized 
block design comprised 8 treatments: (1) 1/2 Hoagland’s 
solution (M0); (2) 1/2 Hoagland’s solution + 30 µM mela-
tonin (M30); (3) 1/2 Hoagland’s solution + 60 µM melatonin 
(M60); (4) 1/2 Hoagland’s solution + 90 µM melatonin 
(M90); (5) 1/2 Hoagland’s solution + 300 mM Na+ (M0 + S); 
(6) 1/2 Hoagland’s solution + 30 µM melatonin + 300 mM 
Na+ (M30 + S); (7) 1/2 Hoagland’s solution + 60 µM mela-
tonin + 300 mM Na+ (M60 + S); (8) 1/2 Hoagland’s solu-
tion + 90 µM melatonin + 300 mM Na+ (M90 + S). Sugar 
beet seedlings were sampled at 1 day and 7 days after salt 
(300 mM Na+) treatment, and physiological parameters 
were measured. Each collected sample was subjected to 
liquid nitrogen freezing at once, followed by preservation 
under − 80  °C for subsequent biochemical analysis. All 
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experiments were performed thrice and each treatment 
included three biological replicates.

Endogenous melatonin, Na+, and K+, concentration 
measurements

Melatonin was extracted from the leaves of sugar beet in line 
with Pape and Lüning’s description (2006). Afterwards, we 
used the melatonin ELISA kit (EK-DSM; Buhlmann Labo-
ratories AG, Schonenbuch, Switzerland) to quantify endog-
enous melatonin in line with specific protocols. Melatonin 
concentrations were expressed as pg g–1 (fresh mass, FM).

The concentrations (mg g−1 DW) of Na+ and K+ were 
determined using the method described by Chen et  al. 
(2018). Leaf samples were subjected to 48 h of oven-drying 
under 75 °C. Later, HNO3:HClO4 (5:1 v/v) was added to 
digest 0.1 g dry sample till the solution became clear. There-
after, we measured K+ and Na+ contents through inductively 
coupled plasma mass spectrometry (Optimal 2100DV; Perki-
nElmer Instruments, Waltham, MA).

Leaf relative water content and photosynthetic 
pigments’ concentration

We determined relative water content (RWC) by the for-
mula as follows: RWC = (fresh weight − dry weight)/(turgid 
weight − dry weight) × 100% (Smart and Bingham 1974).

We measured photosynthetic pigment contents by the 
acetone approach (Lichtenthaler and Wellburn 1983). To 
be specific, we isolated photosynthetic pigments from the 
freshly prepared samples contained within the 80% acetone. 
Then, the UV-754 spectrophotometer (Zealquest Scientific; 
Shanghai, China) was employed to measure supernatant 
absorbance (OD) values at 470, 645, and 663 nm. Later, the 
corrected extinction coefficients were utilized to calculate 
the Car, chlorophyll (Chl) a and Chl (a + b) contents, which 
were presented in the manner of mg g–1 FW.

Gas exchange and photosynthetic activity 
measurements

We adopted the photosynthesis system (GFS-3000; WALZ, 
Germany) to measure gas exchange in the leaf samples 
attached using the light source of 3040-L LED. Typically, 
we set the photosynthetic photon flux density (PPFD) and 
cuvette air flow rate as 400 µmol m–2 s–1 and 750 mL min–1, 
respectively. At the same time, we determined the stomatal 
conductance (gs), net photosynthetic rate (PN), transpiration 
rate (E) and intercellular CO2 contents (Ci). Each experiment 
was carried out for thrice, with 5 leaf samples from diverse 
plants being used under every replicate. In this experiment, 
we used the initial 2 completely folding leaf samples on the 
top (Zou et al. 2019).

Chlorophyll fluorescence measurements

After leaf samples were adapted to dark for 25 min, we 
used the Portable Chlorophyll Fluorometer (PAM-2500; 
WALZ, Germany) to measure Chl fluorescence param-
eters within leaf samples. In the meantime, we measured 
the maximal (Fv/Fm) and actual ([Y(II)]) photochemi-
cal efficiency of PSII, as well as the non-photochemical 
[Y(NPQ)] and photochemical (qP) quenching, respectively 
(Pfündel et al. 2008).

Determination of RuBPcase activity

RuBPcase (ribulose-1, 5-bisphosphatecarboxylase) activ-
ity was determined using an ELISA kit according to the 
manufacturer’s (CHUNDUBIO Ltd., China). 5 mL PBS 
(pH = 7.4) was used to extract 0.5 g freshly prepared leaf 
samples. Supernatant OD value was detected at 450 nm, 
while the eventual enzymatic activity was presented in the 
manner of µmol CO2 g–1 FM−1 min–1.

Determination of malondialdehyde (MDA), 
superoxide radical, and hydrogen peroxide (H2O2)

Thiobarbituric acid (TBA) was used to extract MDA, and 
later the supernatant OD values were measured at 450, 
532 and 600 nm according to Shi et al.’s method (2013).

We applied Liu and Pang’s approach (2010) to deter-
mine superoxide (O2·−) contents. O2·− was extracted from 
plant materials using the potassium phosphate buffer 
(pH 7.8) supplemented with 7 mM α-naphthylamine and 
17  mM sulfonamide, and incubated for 20  min under 
25 °C. Finally, we determined the OD value at 530 nm 
and presented O2·− content in the manner of nmol g−1 FM 
min−1.

H2O2 contents were measured according to Velik-
ova et al.’s description (2000). First, root tissues were 
extracted with 0.1% (w/v) trichloroacetic acid, followed 
by the addition of PBS and the 1 M KI solution to react for 
1 h in dark. Then, we determined the OD value at 390 nm. 
A standard curve was produced using solutions of known 
H2O2 concentration, with H2O2 content expressed in mM 
g FM−1.

Analysis of antioxidant enzymes

Superoxide dismutase (SOD, EC 1.15.1.1) activity was 
measured using the NBT method of Stewart and Bewley 
(Stewart and Bewley 1980). Enzymatic activities were pre-
sented in the manner of unit g–1 (FM). To be specific, we 
monitored the guaiacol oxidation rate by Fu et al.’s method 
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(2014) to determine peroxidase (POD, EC 1.11.1.7) 
activity at 470 nm, then expressed in mmol (guaiacol) 
min−1  g−1 (FM). In addition, we determined catalase 
(CAT, EC 1.11.1.6) activity by Aebi’s method (1984).

Flavonoids’ concentration measurements

Contents of flavonoids were determined by Pekal and Pyr-
zynska’s method (2014). Briefly, 0.3 mL NaNO2 (5%, w/v) 
was blended with 1 mL of the 50% ethanolic extract, fol-
lowed by the addition of 0.5 mL AlCl3 (2%, w/v), as well as 
0.5 mL NaOH solution (1 M) for neutralization. At 10 min 
later, we detected the OD value at 510 nm. Meanwhile, the 
standard flavonoid solution was utilized to prepare the stand-
ard curve.

Determination of soluble sugar and sucrose

We measured the content of soluble sugar through the 
anthrone approach according to Spiro’s description (1966). 
In brief, we blended 100 μL root extract into the solution 
supplemented with 2.1 mM anthrone, 1.09 mM thiourea and 
1.08 M H2SO4 till 3 ml. Thereafter, we heated the mixed 
solution for 10 min under 100 °C, and measured the OD 
value at 620 nm. In addition, we also constructed the calibra-
tion curve based on D-glucose for reference.

The sucrose content was determined by a spectrophoto-
metric method following Alcázar et al. description (2005).

Determination of proline and betaine concentration

Proline concentration was determined as described by Bates 
et al. (1973). 3% (w/v) sulfosalicylic acid was utilized to 
extract 0.5 g samples. Thereafter, acid ninhydrin along with 
glacial acetic acid was added, and the obtained mixed solu-
tion was maintained for 1 h under 100 °C within the water 
bath, while the ice bath was used to terminate the reaction. 
We used toluene to extract proline and measured its OD 
value at 520 nm. Meanwhile, the proline level was deter-
mined based on the standard curve, which was presented in 
the manner of standard µg g–1 FM.

This study determined the glycine betaine (betaine) 
level according to Nishimura et al. description (2001). In 
brief, 0.1 g dried leaf powder was blended sufficiently with 
5 ml distilled water. Then, we extracted the supernatants 
and filtered them using the 0.2-µm filter membrane. For the 
subsequent esterification, Gorham’s approach (1984) after 
modification was applied. To be specific, 100 µL standard 
betaine solution or plant extract was added into the micro-
tube and blended with 50 µL buffer solution consisting of 
100 mM KH2PO4,100 mM KHCO3 and acetonitrile at 1:1:4 
(v/v), followed by the addition of 300 µL of the 20 mg/
mL p-bromophenacyl bromide solution contained within 

acetonitrile. Later, we capped the tube and then heated it for 
90 min under 80 °C. Afterwards, we adopted the centrifu-
gal evaporator to evaporate the reaction mixture till dryness 
under 80 °C. Later, the electrolyte solution was run, and each 
sample was injected in hydrostatic mode (10 cm, 10 s), with 
the potential applied and peak being 15 kV and 254 nm, 
respectively. At last, we used the standard betaine solution 
calibration curve to obtain betaine levels in plant extracts.

Statistical analysis

Values were presented in the manner of mean ± SD. All 
experiments were totally randomized and three replicates 
were set for each experiment. GraphPad Prism 8.3 (San 
Diego, CA, USA) and Visio 2013 were used to create fig-
ures. SPSS22.0 (IBM, Chicago, IL) was employed for all 
statistical analyses, while Duncan’s multiple range test was 
conducted to compare means.

Results

Effects of exogenous application of melatonin 
on the growth in sugar beet under salt stress

Relative water content and plant biomass of the leaves were 
measured to study how exogenous melatonin affected sugar 
beet development. As shown in Fig. 1a, the LRWC was sig-
nificantly reduced under salt stress, whereas melatonin pre-
treatment significantly attenuated leaf water loss. On day 7, 
comparison with the non-salt control, the LRWC of M0 + S 
was significantly reduced by 43.66%, whereas the change 
of M60 + S treatment was insignificant. No significant was 
observed in the biomass of sugar beet seedlings between 
treatments under non-salt conditions (Fig. 1b). The appli-
cation of salt stress inhibited plant development under salt 
stress in the presence or absence of melatonin (Fig. 2). For 
salt-exposed sugar beet seedlings subjected to melatonin pre-
treatment, their biomass elevated. Compared with M0 + S, 
the biomass of M30 + S, M60 + S, M90 + S leaves and peti-
ole was increased significantly (P < 0.05), of which M60 
increased 51.00% of leaf biomass and 43.79% of whole plant 
biomass.

Effects of exogenous application of melatonin 
on endogenous melatonin, Na+ and K+ 
concentration measurements under salt stress

As shown in Fig. 1c, the endogenous melatonin concentra-
tion of the leaves increased remarkably with exogenous 
treatment, and especially under salt stress. As shown in 
Fig. 1d, e, the application of exogenous melatonin signifi-
cantly (P < 0.05) reduced the Na+ concentration of the beet 
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seedlings and increased the K+ concentration, while reduc-
ing the Na+/K+ ratio. Compared with M0 + S, the Na+/K+ 
ratio of M30 + S, M60 + S, and M90 + S was decreased 

significantly (P < 0.05), of which 60 mM melatonin effect 
was the most obvious.
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Fig. 1   Effects of different concentrations of melatonin on the growth 
of sugar beet seedlings. a Leaf relative water content of sugar beet 
seedlings under 0, 30, 60 and 90 µM melatonin and exposed to salt 
stress for 1 day. b Plant biomass in sugar beet seedlings with 0, 30, 
60, and 90  µM melatonin treatments and exposure to salt stress for 
7  days. c Melatonin concentration in sugar beet leaves following 
different treatments for 7  days. d Na+ content e K+ content, and f 
Na + /K + ratio in sugar beet leaves following different treatments for 

7 days. M represents no salt stress after melatonin pretreatment, while 
M + S stands for melatonin treatment combined with salt treatment. 
In the figures, the diverse uppercase letters on the top of columns 
stand for statistically significant differences (P < 0.05; Duncan’s range 
test) in salt treatment compared with control. The diverse lowercase 
letters on the top of columns stand for statistically significant differ-
ences (P < 0.05; Duncan’s range test) among melatonin treatments. 
The same as below.
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Effects of exogenous application of melatonin 
on photosynthesis and chlorophyll fluorescence 
in sugar beet under salt stress

Photosynthesis shows tight correlation with plant develop-
ment. Therefore, we analyzed the gas exchange chlorophyll 
concentration, carotenoids, together with Chl fluorescence 
parameters. As a result, melatonin made no obvious differ-
ence to the above parameters under non-salt stress condi-
tions (Figs. 3 and 4). However, carotenoids and Chl mark-
edly reduced after salt treatment (P < 0.05). On day 7, the 
concentration of chlorophyll and carotenoids of melatonin 
treatment M60 + S and M90 + S were higher compared with 
M0 + S. The chlorophyll content of M60 was increased by 
51.08%, whereas carotenoid concentration was increased by 
47.70%. As shown in Fig. 3d, RuBPcase activity showed 
no significant change between treatments on the first day 
of stress. On day 7, salt stress significantly decreased RuB-
Pcase activity, which then increased and finally decreased 
with increasing melatonin concentration. Among them, 
M60 + S-treated treatment showed the greatest enzymatic 
activity, evidently increased compared with control.

Leaf Fv/Fm and qP significantly decreased on the day 1 of 
salt stress, and were efficiently kept under melatonin expo-
sure (Fig. 4). On day 7 of salt stress, the difference of Fv/Fm 
and qP between all treatments was insignificant, whereas the 
Y(II) for M60 + S treatment was still significantly increased. 
Despite after a decrease on day 7, leaf Y(NPQ) increased 
substantially after salt treatment. Melatonin efficiently sup-
pressed the elevation in Y(NPQ), whereas M60 treatment 
produced the lowest effect.

Salt exposure remarkably decreased photosynthe-
sis (Fig. 5). On day 1 of stress, PN, E and Gs of M0 + S 

decreased sharply, until these recovered on day 7. The 
melatonin treatment significantly alleviated the salt stress, 
and M60 + S-treated PN, E and gs higher than M0 + S by 
818.25%, 605.95% and 705.11%, respectively.

Exogenous melatonin mitigated ROS damage 
while enhancing the antioxidant enzymatic 
activities within salt‑exposed sugar beet

As shown in Fig. 6a–c, on day 1 and 7 day after salt stress, 
compared with M0, M0 + S resulted in increased in MDA 
concentrations of sugar beet leaves by 174.13% and 203.61% 
and O2·− by 55.54% and 72.90%, respectively. However, mel-
atonin treatment significantly reduced MDA and O2·− under 
salt stress. Compared with M0 + S, M60 + S produced lower 
MDA (− 46.30% and − 12.89%) and O2·− (− 31.24% and 
− 23.19%) on days 1 and 7 (P < 0.05). On day 1 of salt stress, 
with the increase in melatonin concentration, the concentra-
tion of H2O2 in leaves first increased first and then decreased. 
The trend on day 7 of stress was the opposite of that on day 
1, in which M60 + S and M90 + S was significantly reduced.

The results showed that under non-salt stress conditions, 
melatonin did not change the activity of SOD, POD and 
CAT (Fig. 6). Under salt stress, the activity of SOD, POD, 
and CAT in melatonin-treated sugar beet seedlings was sig-
nificantly higher than that under M0 + S. On day 1 of stress, 
the SOD, POD, and CAT activities of M60 + S treatment 
were 68.46%, 210.56%, and 79.13% higher than that under 
M0 + S, respectively. On day 7 of stress, SOD and CAT 
activities were maximal, and the CAT activity was approxi-
mately twice that on day 1. However, compared day 7, the 
POD activity was stronger on day 1 under salt stress.

Fig. 2   Growth performance of 
sugar beet seedlings under salin-
ity and melatonin conditions
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Exogenous application of melatonin altered 
accumulation of osmolytes in sugar beet under salt 
stress

The accumulation of proline, betaine, and flavonoids in 
sugar beet seedlings was evaluated in this study. Figure 7 
demonstrates that salt stress significantly enhanced the 
accumulation of compatible solutes in sugar beet seed-
lings. Salt stress reduced the sucrose concentration of 
leaves; however, it increased the soluble sugar concen-
tration. In the absence of salt exposure, melatonin treat-
ment did not significantly affect sucrose or reduce sugar 
level. Upon salt exposure, melatonin treatment remarkably 
decreased sucrose level within leaves of sugar beet while 
markedly increasing soluble sugar content (P < 0.05). 
Compared with day 1 of salt stress, the trend on day 7 was 
more pronounced.

Relative to controls, betaine and proline contents mark-
edly elevated upon salt exposure (P < 0.05), whereas the 
concentration of flavonoids was significantly reduced 
considerably. On day 1 of salt stress, melatonin treatment 
significantly increased the concentration of proline and 
betaine in sugar beet leaves (P < 0.05) and inhibited the 
reduction in flavonoid concentration. The increase in pro-
line concentration was the most pronounced, M30 + S, 
M60 + S and M90 + S increased by 91.22%, 216.95%, 
and 28.21%, respectively, compared with M0 + S (Fig. 7). 
Compared with day 1 day, proline concentration was sig-
nificantly decreased on day 7 of salt stress, whereas the 
concentration of betaine increased significantly by 4.86%, 
34.78%, and 29.89%, respectively.
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Fig. 3   Effects of different concentrations of melatonin on photosyn-
thetic pigments and the RuBPcase activity. a Chlorophyll a concen-
tration, b chlorophyll concentration, c carotenoid concentration and d 

RuBPcase activity of sugar beet seedlings with 0, 30, 60, and 90 µM 
melatonin treatments and exposure to salt stress for 1 and 7 days



	 Acta Physiologiae Plantarum (2022) 44:57

1 3

57  Page 8 of 15

Discussion

Biomass is a reliable indicator of plant growth, whereas 
salt stress significantly suppresses plant growth (Egea et al. 
2018; Sui et al. 2018). Melatonin exerts a vital part in the 
increase of biomass through elevating PN in the exposure to 
salt (Li et al. 2017b). Overcoming osmotic stress accounts 
for a crucial strategy for the adaptation to salt exposure in 
plants. In this work, salt exposure markedly suppressed 
sugar beet seedling growth, reduced PN, and promoted plant 
leaf dehydration, resulting in reduced plant biomass (Fig. 1). 
However, melatonin effectively alleviated the water loss of 
beet seedlings and significantly improved PN, which in turn 
increased the biomass of the plants.

Different concentrations of exogenous melatonin could 
increase the endogenous melatonin concentration only to 
a certain extent, with no absolute effect. The leaf endog-
enous melatonin content was dose-dependent when sugar 
beet roots were pre-treated with exogenous melatonin 
(Fig. 1c). On the contrary, certain studies have suggested 
that relatively high exogenous melatonin concentration has 
a more effective promoting effect on tomato (Siddiqui et al. 

2019) and corn seedlings (Chen et al. 2018). Compared 
with the results of these studies, multiple concentrations 
may be more representative. Consistent with the obser-
vations from Li et al. on watermelon seedlings (Li et al. 
2017a), exogenous melatonin content had first increased 
and then weakened impacts on sugar beet seedling growth.

Salt exposure has certain impact on plant photosynthe-
sis via non- and stomatal limitations (Zhou et al. 2016). 
The stomatal limitation is attributed to the partial closure 
of the stomata, resulting in a reduced concentration of CO2 
entering the mesophyll cells of the plant, which in turn 
blocks photosynthesis (Sharkey et al. 2007). In this work, 
the decrease in E and gs and the high level of Ci indicated 
that reduced PN could be a result of physiological dryness 
which caused by the high osmotic stress of salinity, leading 
to almost complete closure of stomata (Fig. 4). The carbon 
dioxide generated simultaneously during plant respiration 
increases Ci. In the late stage of melatonin application, PN, 
gs, and Ci increased indicating melatonin maintenance of 
stomatal opening under salt stress as the primary reason 
for elevated PN in the leaves of sugar beet seedlings.
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The relationship between abiotic stress and RuBPcase 
activity is highly controversial. Studies have shown that 
leaves do not alter RuBPcase activity when they are within 
the acceptable RWC range (Bota et al. 2004; Lawlor 1995). 
However, there exist studies that hold the opposite view and 
believe that increasing the RuBPcase activity contributes 
to crop growth and can also increase the crop yield under 
adverse conditions (Ren et al. 2018). RuBPcase activity was 
not markedly changed during the initial salt treatment stage, 
which might be caused by the physiological drought of sugar 
beet (Fig. 3). Under long-term salt stress, the RuBPcase 
activity of sugar beet leaves was significantly reduced that 
improved with melatonin pretreatment.

A series of photoreaction processes caused by photosyn-
thetic pigments (chlorophyll, carotenoids, etc.) in plants to 
absorb photosynthetically active radiation forms the basis of 
photosynthesis (Fig. 3). Studies have shown that salt stress 
reduces the photosynthetic pigment concentration of plant 
leaves. Melatonin maintains a high pigment concentration 
and enhances photosynthesis. Results from studies on corn 
and watermelon concluded the same (Chen et al. 2018; Li 
et al. 2017b).

Fv/Fm and Y(II) are indicative of the real and maximum 
light energy conversion efficiency of Photosystem II, respec-
tively (Genty et al. 1989; Kitajima and Butler 1975). In the 
current study, the Fv/Fm and Y(II) of the leaves significantly 
increased compared with the non-melatonin treatment, and 
PN, E, and gs increased in the later stage of stress (Fig. 3), 
which indicated that melatonin exerted a positive regula-
tory effect on plant photosynthetic systems under salt stress. 
Chen et al. (2018) showed that melatonin treatment could 
alleviate oxidative damage in photosynthetic organs. Under 
salt stress, melatonin increased E or gs; however, it did not 
decrease LRWC, indicating that melatonin could positively 
affect water conservation and photosynthesis protection 
(Ahmad et al. 2019; Chen et al. 2018).

Until date, only a few studies are available on the pro-
tective effect of melatonin on the oxidative defense system 
of sugar beet in the presence of salt exposure. Salt expo-
sure frequently leads to the disturbance in ROS generation 
and scavenging, thereby increasing ROS accumulation and 
aggravating oxidative damage to proteins, lipids, and nucleic 
acids (Tahjib-Ul-Arif et al. 2019; Zhang et al. 2019). Exces-
sive amounts of ROS within plant cells will induce lipid 
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peroxidation while increasing H2O2, MDA and O2·− lev-
els (Farouk and Al-Amri 2019b, c). In the present study, 
melatonin-treated MDA and O2·− accumulation was lower, 
indicating that melatonin attenuated the membrane lipid per-
oxidation under salt stress and reduced the oxidative damage 
of sugar beet seedlings under salt conditions (Fig. 6). In 
salt-stressed oat (Gao et al. 2019), corn (Chen et al. 2018), 
and soybean (Wei et al. 2015), melatonin was found to be 
involved in reducing the concentration of MDA, thus keep-
ing the membrane permeability and integrity (Li et al. 2019). 
Critical antioxidant enzymes, including POD, CAT and 
SOD, usually exert important parts in preventing damage to 

plant cell membrane systems by ROS accumulation (Jaleel 
et al. 2009; Tahjib-Ul-Arif et al. 2019; You and Chan 2015). 
As shown in Fig. 6, the activity of SOD, POD, and CAT in 
sugar beet leaves was significantly increased in the current 
study, with POD playing the most crucial role, indicating 
that melatonin effectively decreased ROS accumulation 
and avoided membrane structural or functional degrada-
tion in sugar beet cells in the presence of salt exposure. 
These results are strengthened by those of the study that 
reports that melatonin effectively participates in physiologi-
cally regulating plants upon salt exposure (Li et al. 2019). 
In the present study, the flavonoid concentration following 
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melatonin treatment under salt stress was opposite to that 
of Y(NPQ). Flavonoids were inhibited by salt stress, and 
melatonin pretreatment protected the leaves by decreasing 
the reduction of flavonoids.

Recently, numerous studies have demonstrated that H2O2 
acts as the signal transduction element in plants in the pres-
ence of biotic or abiotic stress (Li et al. 2018; Neto et al. 
2005; Smirnoff and Arnaud 2019). In the present study, 
melatonin pretreatment significantly reduced MDA and 
O2·− levels in the early stage of stress; however, it increased 
H2O2 concentration in seedlings on day 1, which could be 

attributed to the fact that H2O2 as a signaling substance 
involved in plant responses to stress (Neto et al. 2005). On 
day 7, H2O2 contents in M60 + S and M90 + S were lower 
than that of M0 + S, suggesting that it was cleared by the 
antioxidant system induced by melatonin (Chen et al. 2018).

The cellular energy status has been suggested to be a 
vital modulator for plant growth as well as stress decrease 
(Jamsheer and Laxmi 2015). In our study, salt stress signifi-
cantly reduced sucrose concentration; however, it increased 
the concentration of soluble sugar (Fig. 7). Melatonin treat-
ment effectively promoted this process. According to certain 
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studies, plants are required to consume energy in response 
to stress (Crawford et al. 2018; De Block et al. 2005). In the 
early stages of salt stress, melatonin reduced the concentra-
tion of soluble sugar. We speculate that melatonin could 
cope with stress by enhancing energy metabolism in cells 
(Zhang et al. 2017a; Zhao et al. 2020). Cells can produce 
large amounts of ATP through sucrose metabolism and TCA 
cycling accompanied by the accumulation of several pri-
mary and secondary metabolites, such as proline, betaine, 
and flavonoids. The accumulation of soluble sugars, pro-
line, and betaine ensures plant photosynthesis (Ashraf and 
Foolad 2007; Rady et al. 2018; Wei et al. 2015). In general, 
an increase in soluble sugar and proline concentration helps 
reduce damage under abiotic stress (Ben Ahmed et al. 2010; 
Yang et al. 2007).

Proline and betaine account for 2 main organic per-
meants accumulating within multiple plant varieties upon 
environmental stress (Farouk and Al-Amri 2019c). Gener-
ally, plants respond to abiotic stress on the basis of cer-
tain permeates production and accumulation. These per-
meations not only positively affect membrane and enzyme 

integrity but also exert vital parts in plant osmotic adjust-
ment that mediates growth under stress conditions (Liu 
et al. 2018; Vicente et al. 2016). Our data suggest that 
melatonin could first act through responsive regulation of 
proline (early stage) and betaine (late stage) and subse-
quently activate an antioxidant defense system to combat 
cellular damage caused by salt stress (Fig. 8).

Conclusion

Our study demonstrated that exogenous application of 
melatonin could alleviate inhibition of the growth of sugar 
beet seedlings which exposed to salt stress. Melatonin may 
rapidly enhance the production of H2O2 as a signaling sub-
stance in sugar beet leaves, induce high levels of proline 
synthesis, and perform the osmotic adjustment. Simultane-
ously, melatonin could enhance the activity of protective 
enzymes to remove ROS.

Fig. 8   The model showing 
that melatonin precondition-
ing reduces the potential 
mechanism of salinity-induced 
photosynthesis inhibition and 
oxidative stress in sugar beet
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