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Abstract
High level of salinity present in the soil severely affects plant growth and metabolism, eventually reduces crop productivity. 
In the present study, we have made an effort to obtain detailed insight on the effect of various levels of salinity on various 
physiological, biochemical, genetic, and phytochemical parameters of Andrographis paniculata genotype, CIM-Megha, in 
an attempt towards development of a salt-tolerant variety. The results showed that maximum seed germination efficiency was 
observed at 100 mM among the various salt concentrations. Moreover, with the increase in salt concentration, the overall 
growth of the plant was stunted. High salinity had a negative effect on photosynthetic pigments, free cysteine content, non-
protein thiol content, and nitrate reductase activity. However, proline accumulation and phenol content were found to increase 
with the increasing salt concentration. The results from the study demonstrated that activities of CAT and APX antioxidant 
enzymes increased with the applied salt stress. The accumulation of reactive oxygen species in response to salinity is the 
most important DNA-damaging factor causing a decrease in the genomic template stability of the plant. Quantification of 
important bioactive constituents (andrographolide, neo-andrographolide, and 14-DDA) was done through HPLC, and the 
results showed high variability in constituents. In summary, Andrographis paniculata could be grown at large scale in saline 
areas having up to 100 mM salt concentration.
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Introduction

Andrographis paniculata (Burm. f.) Wallich ex Nees is an 
annual and herbaceous plant belonging to the family Acan-
thaceae. The plant is commonly known as Kalmegh, Chiretta 
or King of Bitters and is extensively used in Ayurvedic, 

Unani, and Siddha systems of medicine (Raina et al. 2013). 
The plant is an important constituent of over 26 Ayurvedic 
formulations mentioned in the Indian pharmacopoeia (Raina 
et al. 2013). The aerial parts extract comprises of several 
phytopharmaceutical metabolites such as, labdane diterpe-
nes, phenylpropanoids, flavonoids, and xanthones (Rao et al. 
2004). Among the labdane diterpenes, andrographolide, 
neoandrographolide, and 14-deoxy-11, 12-didehydroandro-
grapholide (14-DDA) are considered to be the main bioac-
tive constituents (Garg et al. 2015), which are responsible 
for the wide spectrum of pharmacological properties of the 
plant, such as, anti-malarial (Wiart et al. 2005), anti-inflam-
matory (Shen et al. 2002), anti-cancer (Kumar et al. 2004), 
anti-hepatitis (Sharma et al. 1991), anti-diabetic (Yu et al. 
2003; Rao 2006), anti-diarrheal (Gupta et al. 1993), anti-
oxidant (Akowuah et al. 2008), remedy for sexual dysfunc-
tion (Akbarsha and Murugaian 2000), cytotoxic (Nanduri 
et al. 2004), cardio-protectant (Tan and Zhang 2004), immu-
nostimulatory (Calabrese et al. 2000; Kumar et al. 2004), 
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anti-microbial (Singh et al. 2003), anti-HIV (Calabrese et al. 
2000), anti-oedema, and analgesic (Lin et al. 2009), and 
renal-protective (Rao 2006). Because of its immense phar-
maceutical importance, the plant is included in the Indian 
Herbal Pharmacopoeia (IDMA 2002), Herbs of Commerce 
of American Herbal Products Association (AHPA 2004), 
and in Indian Pharmacopoeia (IPC 2007). A capsule dos-
age form KalmCold™, prepared from the leaf extracts of A. 
paniculata by M/s Natural Remedies Pvt. Ltd., Bangalore, 
India, is popular for its efficacy in the treatment of upper 
respiratory tract infection (Saxena et al. 2010).

Presently, due to the tremendous demand of medici-
nal plants by the herbal industry, immediate attention is 
required for their commercial production. However, several 
abiotic factors including soil salinity have been known to 
significantly hinder medicinal plant productivity (Qureshi 
et al. 2005). Soil salinity is considered to be a major abi-
otic factor resulting in reduction in plant growth and pro-
ductivity. Around 20% of the world’s cultivated area and 
around 33% of the world’s irrigated lands are reported to be 
acutely affected by water logging and salinity (FAO 2008; 
Shrivastava and Kumar 2015). Further, salinity in the soil 
is increasing at the rate of 10% annually depending on the 
several biotic and abiotic factors (Jamil et al. 2011). India (7 
million hectares of land) stands second after China among 
the Asian countries possessing high saline and alkaline lands 
(Patel et al. 2011). Thus, improved varieties that are toler-
ant to salt stress are the ultimate solution for the large-scale 
commercial cultivation of important medicinal plants like 
A. paniculata. Detailed studies encompassing morphologi-
cal, physiological, biochemical, genetic, as well as chemical 
changes in plants due to various levels of salinity stress is a 
prerequisite for breeding efforts directed towards develop-
ment of stress-tolerant varieties. High salinity stress affects 
various metabolic and physiological processes such as seed 
germination and seedling vigour, vegetative and reproduc-
tive growth, secondary metabolites content, which ultimately 
define the economic yield of the crop.

Secondary metabolites produced by the plant do not have 
a direct role in the maintenance of plant life processes but 
are used to counter various stresses and play a role in plant 
defense. High salinity conditions in the soil results in the 
increased production of reactive oxygen species (ROS) lead-
ing to oxidative stress and ionic imbalance in the cell. Con-
sequently it causes damage to the lipids, proteins, nucleic 
acids, and cell membrane integrity (Nabi et al. 2019). Oxida-
tive stress developed in the plants can be mitigated through 
antioxidative metabolites such as glutathione, ascorbic 
acid, α-tocopherol and antioxidant enzymes such as super-
oxide dismutase (SOD), guaiacol peroxidase (GPX), cata-
lase (CAT), ascorbate peroxidase (APX), and glutathione 
reductase (GR) (Hayat et  al. 2012). CAT and APX are 
involved in ROS scavenging through the removal of free 

H2O2 (Gharsallah et al. 2016). Seed germination and the 
vigour of plumule and radicle are vital stages during the 
plant life cycle. High salinity conditions impede the water 
absorption to the seeds, causing decreased germination rate 
and low viability percentage. The decline in photosynthetic 
efficiency is also responsible for low productivity and has 
been successfully utilized in evaluating salt tolerance ability 
of plants (Kumar et al. 2017). Reports from earlier literature 
stated that carotenoids help in scavenging ROS, and also act 
as a signaling precursor under abiotic stress thus protect-
ing and stabilizing photochemical processes under stress 
conditions (Zhang et al. 2014). For maintaining plant cel-
lular homeostasis during salt stress, several organic solutes 
are synthesized in the plant cytosol, like proline, trehalose, 
betaine, polyols, etc. (Hasegawa et al. 2000), of which pro-
line accumulation during stress has been extensively studied. 
Further, it has also been reported that proline accumula-
tion in the plant as a result of the stress signal influences 
adaptive responses (Hayat et al. 2012). For individual plant 
species, the relationship between proline accumulation and 
stress tolerance is unclear (Huang et al. 2013). Cysteine is a 
thiol-containing biogenic amino acid, which is considered as 
the sulfur center in the formation of the sulfhydryl group of 
sulfur-containing amino acids and also involved in the syn-
thesis of methionine (Met), iron–sulfur clusters, and some 
vitamins through donating its sulfur group. Cysteine also 
acts as an antioxidant that scavenges ROS, thereby protect-
ing the cell from oxidative damage (Genisel et al. 2015). 
Non-protein thiols are water-soluble antioxidant molecules 
having an important role in ROS scavenging. It has also been 
reported that phenols play an important role in absorbing 
and neutralizing ROS (Valifard et al. 2018). Reduction of 
available nitrate in the soil to nitrite during nitrogen assimi-
lation process is carried out by nitrate reductase enzyme. 
Growth and yield of the plant are often correlated with the 
nitrogen content present in the plant, which is directly corre-
lated with the nitrate reductase activity (Katiyar and Dubey 
1992).

Salt stress not only affects the various physiological and 
metabolic processes but also greatly affects the genetic 
material through point mutations and chromosome rear-
rangements. The accumulations of free radicals are the most 
important DNA-damaging factors causing a decrease in the 
genomic template stability of the plant. The changes in the 
genetic material can be detected through the use of molec-
ular markers (Genisel et al. 2015). Inter-simple sequence 
repeats (ISSRs) are dominant markers present through-
out the genome, and use a single primer for amplification 
(Kumar et al. 2016). Genomic template stability (GTS) in 
the salt-treated plants is calculated using the differences in 
the banding pattern in comparison to the control.

Salt toxicity has been studied in various traditional 
crops as well as in some medicinal and aromatic plants, 
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and it has been reported that some plants are tolerant 
to salinity conditions. The present study on A. panicu-
lata responses to different levels of salinity is valuable. 
Hitherto, several studies have been reported on the effect 
of salt stress on A. paniculata, viz. macro and micronu-
trient uptake (Talei et al. 2012), morphological, physi-
ological and biochemical traits in seedlings (Talei et al. 
2012, 2013a, b), growth indices (Talei et al. 2013a, b), 
proteomic analysis of leaf and root (Talei et al. 2014), 
physiological characteristics (Chen et al. 2014), photosyn-
thetic parameters and andrographolide content (Talei et al. 
2015), effect on growth and antioxidant enzymes (Kumar 
and Srivastava 2018). In the present study, we explore the 
effect of various concentrations of salts on seed germina-
tion efficiency, morphology, several biochemical markers, 
genomic template stability, and content of main bioac-
tive chemical constituents in the elite variety CIM-Megha 
(Misra et al. 2005), developed by CSIR-Central Institute 
of Medicinal and Aromatic Plants, Lucknow, India, in an 
attempt towards development of a salt-tolerant variety.

Materials and methods

Plant materials and salt treatments

Seeds of A. paniculata variety CIM-Megha were pro-
vided by the CSIR-Central Institute of Medicinal and 
Aromatic Plants, Research Centre, Bengaluru (12° 58′ N 
latitude; 77° 35′ E longitude). Seeds were sown in flat 
tray (30 cm length, 20 cm width, and 5 cm height) con-
taining a 1:1 mixture of soil and farmyard manure, and 
allowed to grow in a glass house for 3 weeks under stand-
ard conditions (60–75% relative humidity, 25 ± 2 °C tem-
perature, and 16/8 h photoperiod). Further, the seedlings 
were transferred in pots (20 cm high, and 20 cm internal 
diameter) containing a 1:1 mixture of soil and farmyard 
manure in green house conditions. Until acclimatization, 
the plants were irrigated with field water twice a week. 
After 2 weeks of acclimatization, the plants were treated 
with the salt (non-iodized NaCl) solutions of different con-
centration—0 mM (control), 50 mM, 100 mM, 150 mM, 
200 mM, and 250 mM. The salt treatment was given to 
the plants weekly for 2 months during which field water 
was not applied to the plants. The experiment was con-
ducted in triplicates for each treatment. After 2 months 
of salt treatment, morphological characters [plant height 
(cm), primary branches, leaf length and width (cm)] were 
recorded; biochemical assays, genomic template stability, 
and the quantification of main bioactive constituents were 
performed. For genomic template stability, leaf samples 
were stored in − 80 °C until further use.

Seed germination under salinity condition

To determine the seed germination threshold, seeds of 
CIM-Megha were first surface sterilized using 5% sodium 
hypochlorite (NaClO) and were then sown in 90  mm 
diameter petri dishes (each 50 seeds) containing blotting 
papers for maintaining uniformity in salt solutions. Each 
petri dish was subjected to 10 mL of different salt con-
centrations (10 mM, 50 mM, 100 mM, 150 mM, 200 mM, 
220 mM, 240 mM, 260 mM, 280 mM, and 300 mM) and 
the control was provided with distilled water. Parafilm was 
applied to the petri dishes to prevent any water loss and 
then incubated in a growth chamber maintaining at 27 °C 
temperature, 75% relative humidity with 14/10 h photo-
period and 120 µmoles/m2/s light intensity. Germination 
efficiency, shoot height and tap root length were recorded 
after ten days of sowing. The experiment was conducted 
in triplicates for each treatment.

Biochemical assays

Photosynthetic pigment content

Chlorophyll and carotenoid pigments were measured fol-
lowing the method developed by Arnon (1949). Finely 
cut fresh leaves (10 mg) of treated A. paniculata were 
ground to a fine pulp with the addition of 0.2 mL of ace-
tone (100%). The slurry was then centrifuged for 5 min at 
5000 rpm. The supernatant was transferred to a fresh 2 mL 
micro-centrifuge tube. The process was repeated till the 
residue became colorless and a final volume of 1 mL was 
maintained in the micro-centrifuge tube. The absorbance 
of the solution was read at 470, 645 and 662 nm against 
the solvent (acetone) blank. The quantities of chloro-
phyll a, b, total chlorophyll, and total carotenoids were 
expressed as mg gFW−1.

Proline content

Proline quantity was estimated as per the protocol developed 
by Bates et al. (1973). Plant tissue (50 mg) was homog-
enized in 2.5 mL of 3% aqueous sulphosalicylic acid and 
the homogenate was centrifuged at 5000 rpm for 10 min. 
The extract (0.5 mL) was boiled with 0.5 mL acid-ninhydrin 
and 0.5 mL of acetic acid and incubated for 1 h at 100 °C. 
Further, the extract was transferred to an ice bath for 20 min. 
The mixture was then extracted with 1 mL of toluene and 
mixed vigorously for 15–20 s. The absorbance of the pink 
coloured phase was recorded at 520 nm. Free proline content 
was determined against the standard and was expressed in 
µ mol gFW−1.
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Cysteine content

Measurement of cysteine content was done according to 
the method developed by Gaitonde (1967). The plant tis-
sue (100 mg) was pulverized in 1 mL of 5% cold perchloric 
acid and the suspension was centrifuged at 5000 rpm for 
1 h at 4 °C. The perchloric extract (0.2 mL) was mixed with 
0.2 mL of acid-ninhydrin and 0.2 mL of acetic acid and 
incubated for 10 min at 100 °C. The reaction mixture was 
rapidly cooled on ice and diluted by adding 1 mL of 95% 
ethanol. The spectral measurement of the resulting mix-
ture was made at 560 nm. Cysteine content was determined 
against the standard and was expressed as n mol gFW−1.

Non‑protein thiol content

Non-protein thiol content was measured following the 
method developed by Ellman (1959). The plant tissue 
(50 mg) was homogenized with 1 mL of 6.67% sulphosali-
cylic acid and centrifuged at 13,000 g for 10 min. To 250 μL 
of the supernatant, 50 μL of Ellman’s reagent solution and 
2.5 mL of reaction buffer (0.1 M sodium phosphate, pH 8.0; 
1 mM EDTA) was added and incubated for 15 min at room 
temperature. The spectral measurements were recorded at 
412 nm. The concentration of sulfhydryls groups was esti-
mated based on the molar extinction coefficient of 2-nitro-
5-thiobenzoic acid (TNB; 14,150 M−1 cm−1).

Total phenolic contents

The Folin–Ciocalteu’s phenol reagent method was used for 
determining the total phenolic content as described earlier by 
Dai et al. (2006). The plant tissue (50 mg) was pulverized in 
1 mL of acidic methanol, filled in micro-centrifuge tubes and 
incubated at 4 °C under darkness for 24 h. The mixture was 
centrifuged at 4000 g for 10 min, and the supernatant was 
collected in a fresh tube. To remove the residual chlorophyll, 
ether (0.5 mL) was added to the supernatant. To 0.5 mL of 
the resulting solution an equal volume of Folin–Ciocalteu 
reagent (1:5 dilutions with de-ionized water) was added. 
Further, 1 mL of 6% sodium carbonate was added and was 
incubated in the dark for 1 h. The absorbance at 760 nm was 
recorded and the linear equation of a standard curve obtained 
with gallic acid was used to determine the concentration 
of phenols. The total phenolic content was expressed in ng 
gFW−1.

Assay of nitrate reductase (EC: 1·6.6·1) activity

The assay for nitrate reductase activity in A. paniculata 
was performed as per the procedure of Hageman and 
Hucklesby (1971) with few modifications. Fresh leaves 
were chopped into fine pieces and added to pre-cooled 

3 mL each of 0.05 M potassium phosphate buffer (pH 
7.8) and 0.4 M potassium nitrate solution. Incubation was 
carried out in a water bath at 35 °C under darkness for 
75 min. A volume of 200 μL of this mixture was added 
with 1 mL each of 1% sulphanilamide in 1 N HCl and 
0.025% N-(1-Naphthyl)-ethylene diammonium dichloride 
(NEDD) in double distilled water. After 30 min, 6 mL 
water was added, and the absorbance was recorded at 
540 nm. Enzyme activity was expressed in terms of μ 
moles min−1.

Assay of antioxidant enzymes

Leaves (0.5 g) were homogenized in 50 mM phosphate 
buffer (pH 7.0) with 1% polyvinylpyrrolidone, filtered 
through muslin cloth (four layers) and centrifuged at 
15,000 g for 10 min. The crude enzyme extract obtained 
as supernatant was used for catalase (CAT; EC: 1.11.1.6) 
and ascorbate peroxidase (APX; EC: 1.11.1.11) antioxidant 
enzyme assays.

Catalase (CAT) activity

CAT catalyzes the decomposition of H2O2 to give H2O and 
O2, and the activity was determined by the rate of H2O2 
disappearance at 240 nm. A volume of 3 mL reaction mix-
ture contained 50 mM phosphate buffer (pH 7.0), 0.4 mL of 
15 mM H2O2, 0.04 mL homogenate, and 0.04 mL of 0.1% 
(v/v) Triton X-100. The CAT activity was expressed as µmol 
H2O2 reduced min−1 g−1 at 25 ± 2 °C.

Ascorbate peroxidase (APX) activity

Ascorbate peroxidase activity was estimated as per the pro-
tocol described by Nakano and Asada (1981). APX acted 
upon one mole of ascorbate and H2O2 to produce one mole 
of dehydroascorbate. The APX activity was determined by 
measuring the rate of ascorbate oxidation (extinction coeffi-
cient: 2.8 mM−1 cm−1) and followed by a decrease in absorb-
ance at 290 nm. A 3 mL reaction solution comprised of 
50 mM phosphate buffer (pH 7.0), 0.4 mL of 0.1 mM H2O2, 
0.4 mL of 0.5 mM ascorbic acid, 0.04 mL of 0.1 mM EDTA 
and 0.1 mL of enzyme extract. The enzyme activity was 
expressed in terms of µmol of ascorbate oxidized min−1 g−1 
at 25 ± 2 °C.

Genomic DNA isolation and ISSR analysis

Plant genomic DNA was isolated using the method devel-
oped by Khanuja et al. (1999). A total of 10 ISSR primers 
(UBC set no. 9) were used in the study. PCR reactions 
were performed with a PCR master mix (TaKaRa) in a 
final volume of 20 μL and amplified in a thermal cycler 
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(Applied Biosystems) using the conditions described ear-
lier by our group (Kumar et al. 2018, 2019). Electropho-
resis of amplified products was done on 1.2% agarose gel 
alongside a 2-log DNA ladder. Gel image was captured 
using the Bio-Rad universal hood II gel documentation 
system (Bio-Rad Laboratories Inc.) for further analysis.

High-performance liquid chromatography (HPLC) analysis.
Air-dried leaves (50 mg) of each sample were extracted 

with ultrasonic assisted extraction by ultrasonica-
tor (Microclean-109, Oscar Ultrasonics) using 10 mL 
of methanol, and the process was repeated thrice. The 
extracts were pooled, concentrated under vacuum, re-
dissolved in 1 mL of methanol and filtered with 0.45 µm 
filter prior to HPLC analysis. Quantification of andro-
grapholide, neo-andrographolide, and 14-DDA, were per-
formed on a reversed-phase HPLC system (Prominence-i, 
Shimadzu) equipped with Photodiode Array (PDA) detec-
tor and with a Phenomenex Luna C18 reverse phase col-
umn (250 × 4.6 mm internal diameter, 5 μm particle size). 
Solvent system for HPLC consisted of a mixture of A 
(water, 0.1% trifluoroacetic acid) and B (acetonitrile). 
Mobile phase comprised of 95:5 ratio of A:B was used 
for the first 18 min of run and then ramped to 55:45 for 
the next 7 min. The ratio was further changed to 20:80 for 
the next 5 min and finally to 95:5 ratio for the last 10 min. 
Throughout the run, flow rate was maintained at 1 mL/
min, and the major bioactive constituents were detected 
at 223 nm. Authentic standards of andrographolide, neo-
andrographolide, and 14-DDA (Sigma-Aldrich) were 
used for preparing the stock solution of 1 mg mL−1 con-
centration in methanol and were used as a reference for 
quantification.

Statistical data analysis

The collected data were analyzed by applying the one-
way analysis of variance (ANOVA) using GraphPad 
Prism ver. 7.04 (GraphPad Software Inc.). Significant 
difference between means compared to control was 
done using Dunnett multiple comparison tests (Dun-
nett 1955) at a significance level of p ≤ 0.05 and shown 
as mean ± standard deviation. For GTS determination, 
absence (0) and presence (1) of bands were manually 
scored and were calculated for polymorphism. Poly-
morphism was calculated by comparing the banding 
patterns in each treated plants with control. GTS% in 
the treated sample was calculated using the formula 
GST = (1 − Ps∕TBc) × 100 , where, Ps is polymorphic 
bands present in the treated sample compared to control, 
and TBc is the total number of amplified bands present 
in control (Genisel et al. 2015).

Results

Germination efficiency and vigour under the salt 
concentration

Germination percentage of A. paniculata was signifi-
cantly influenced by salt stress. The germination percent-
age reduced gradually with increasing salt concentration 
(F = 39.62, p < 0.0001). The maximum (96%) germina-
tion was recorded in the control, while in the treatments, 
maximum germination percentage was found to occur in 
100 mM (69%) followed by 50 mM (53%) salt concen-
tration (Table 1). With increase in salt content, a gradual 
decrease in shoot height and tap root length was observed 
(F = 177.2, p < 0.0001; F = 297.3, p < 0.0001 for the shoot 
and tap root length, respectively). Shoot growth was 
observed until 100 mM salt stress condition, above which 
no shoot growth was observed. Maximum shoot length 
was observed in 10 mM (0.60 ± 0.105 cm) followed by 
50 mM (0.56 ± 0.126 cm), while in control, shoot length of 
0.54 ± 0.051 cm was observed. Maximum tap root length 
was observed in control 4.63 ± 0.290 cm, after that, there 
was a gradual decrease in tap root length with an increase in 
salt concentration (Table 1).

Morphological responses under salt stress

With the increase in salt concentration, a gradual decrease of 
plant height and primary branches was observed, while leaf 

Table 1   Salt toxicity on germination and seedling shoot and tap root 
length after ten days in Andrographis paniculata seeds

Values are means ± SD. Means are significant at p < 0.5 (*); 0.001 
(***) or 0.0001 (****) level as determined by ANOVA followed by 
Dunnett test
ns non significant

NaCl (mM) Germination % Root length (cm) Shoot length (cm)

0 96 ± 0.000 4.63 ± 0.291 0.54 ± 0.052
10 44 ± 0.000**** 3.62 ± 0.739**** 0.60 ± 0.105ns

50 53 ± 9.899*** 2.04 ± 0.344**** 0.56 ± 0.126ns

100 74 ± 5.657* 1.08 ± 0.162**** 0.28 ± 0.114*
150 34 ± 5.657**** 0.78 ± 0.352**** 0
200 33 ± 12.73**** 0.46 ± 0.052**** 0
220 26 ± 8.485**** 0.33 ± 0.067**** 0
240 7 ± 1.414**** 0.14 ± 0.052**** 0
260 16 ± 5.657**** 0.10 ± 1.463E-

17****
0

280 7 ± 7.071**** 0.10 ± 1.463E-
17****

0

300 3 ± 1.414**** 0.10 ± 1.463E-
17****

0
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length and width were slightly increased as compared to con-
trol (Fig. 1). The significant gradual decrease in plant height 
was observed in salt-treated plants as compared to control 
(F = 8.967, p = 0.001). Maximum average plant height of 
64.5 ± 13.53 cm was recorded in control, while, a minimum 
of 29.0 ± 1.00 cm was recorded in 250 mM salt-treated plant. 
Mean differences recorded in number of primary branches 
were not significant (F = 2.469, p = 0.0926). A maximum of 
18.66 ± 4.50 and a minimum number of 11.66 ± 1.52 pri-
mary branches were recorded in control and 250 mM salt 
treated plant, respectively. As salt concentration increased, 
leaf length (F = 1.456, p = 0.2129) and width (F = 5.192, 
p = 0.0003) were found to slightly increase as compared 
to the control. Maximum leaf length (11.10 ± 1.10 cm) 
and width (3.88 ± 0.48 cm) were observed for 200 mM 
and 250  mM salt treated plant, respectively, while the 
minimum was observed for control 10.10 ± 0.88 cm and 
3.34 ± 0.24 cm, respectively (Fig. 2).

Effect of salt stress on photosynthetic pigments

As the salinity increases, a significant gradual reduction 
in photosynthetic pigments viz. total chlorophyll, chlo-
rophyll a, chlorophyll b, and carotenoids were observed. 
For total chlorophyll, significant reduction was observed 
with increase in salt concentration (F = 13.23, p = 0.0002). 
A maximum of 24.22 ± 1.480 mg gFW−1 was recorded 
in control, while, minimum of 8.59 ± 1.468 mg gFW−1 
was recorded in 250 mM salt stress condition. Chloro-
phyll a and b content were significantly reduced with 
increase in salt concentration (F = 11.59, p = 0.0003 and 
F = 12.74, p = 0.0002, respectively). However, as com-
pared to the control, reduction in chlorophyll content was 
not significant under 50 mM salt treatment. A maximum 
of 16.37 ± 0.497 and 7.85 ± 1.092 mg gFW−1 of chloro-
phyll a and b, respectively was recorded in the control, 

while a minimum of 6.10 ± 1.739 and 2.49 ± 0.284 mg 
gFW−1 was recorded in 250 mM salt stress condition. 
A significant reduction was also observed in carotenoid 
content with increase in salt concentration (F = 9.049, 
p = 0.0009). Highest carotenoid content was recorded in 
control (4.67 ± 0.324 mg gFW−1), while minimum was 
recorded in 250 mM salt-treated plant (1.71 ± 0.745 mg 
gFW−1). Data pertaining to the photosynthetic pigments 
related to various salt treatments are illustrated in Fig. 3.

Fig. 1   Effect of different salt concentrations on morphology. C 
Control; T1, 50 mM; T2, 100 mM; T3, 150 mM; T4, 200 mM; T5, 
250 mM

Fig. 2   Different morphological parameters under different salt con-
centrations. Values are means ± SD of three replicates. Means are sig-
nificant at p < 0.5 (*); 0.01 (**); 0.001 (***) or 0.0001 (****) level as 
determined by ANOVA followed by Dunnett test

Fig. 3   Effect of different salt concentrations on photosynthetic pig-
ments. Values are means ± SD of three replicates. Means are signifi-
cant at p < 0.5 (*); 0.01 (**); 0.001 (***) or 0.0001 (****) level as 
determined by ANOVA followed by Dunnett test
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Effect of salt stress on biochemical markers

To protect themselves under high salt conditions, organic 
solutes like proline are synthesized by plants. In the present 
study, proline accumulation significantly increased with 
increase in salinity level (F = 261.8, p < 0.0001). In treat-
ments, 50 mM (0.033 ± 0.001 µmoles gFW−1), 100 mM 
(0.035 ± 0.002 µmoles gFW−1), and 150 mM (0.037 ± 0.001 
µmoles gFW−1), almost equal concentration of proline con-
tent was recorded, demonstrating same level of salinity 
resistance and illustrated in Fig. 4a.

Under salt stress conditions, reduced level of free cysteine 
was recorded in A. paniculata (F = 338.6, p < 0.0001). 
Maximum free cysteine content was found in control 
(0.35 ± 0.015 nmoles gFW−1), while minimum was found 
in 250 mM (0.11 ± 0.003 nmoles gFW−1) salt-treated plant. 
Further, almost same level of cysteine was found in 50 mM 
(0.17 ± 0.004 nmoles gFW−1), 100 mM (0.17 ± 0.004 nmoles 
gFW−1), and 150 mM (0.18 ± 0.007 nmoles gFW−1) salt-
treated plant (Fig. 4b).

A gradual decrease in non-protein thiol content (sulfhy-
dryls groups) after salt stress was observed. Compared to 

control, non-protein thiol content was significantly decreased 
in A. paniculata leaves (F = 128.4, p < 0.0001). Data pertain-
ing to the non-protein thiol content related to various salt 
treatments are illustrated in Fig. 4c. Compared to the control, 
50 mM salt-treated plant showed non-significant non-protein 
thiol content (p = 0.1122), while non-protein thiol content 
in 100 mM (p = 0.0009), 150 mM (p < 0.0001), 200 mM 
(p < 0.0001), and 250 mM (p < 0.0001) were significant.

The total phenolic compounds were found to increase 
significantly (F = 54.45, p < 0.0001) upon salt treatments. 
Compared to the control, 50 mM salt-treated plant showed 
non-significant total phenolics content (p = 0.1122), 
while phenolic content in 100 mM (p = 0.0102), 150 mM 
(p = 0.0018), 200  mM (p = 0.0008), and 250  mM 
(p < 0.0001) were significant (Fig. 4d).

The significant gradual decrease in nitrate reductase activ-
ity was observed upon salt stress (F = 12.59, p = 0.0039). 
Maximum activity was recorded in control (12.57 ± 0.389 
µmoles min−1), while the minimum was recorded in 250 mM 
salt treated plant (10.96 ± 0.324 µmoles min−1). Data per-
taining to nitrate reductase activity related to various salt 
treatments are illustrated in Fig. 5.

Fig. 4   Biochemical markers under salt stress. a Effect on proline 
accumulation, b Effect on cysteine content, c Effect on non-protein 
thiol accumulation, d Effect on phenol content, f Effect on activity. 

Values are means ± SD of three replicates. Means are significant at 
p < 0.5 (*); 0.01 (**); 0.001 (***) or 0.0001 (****) level as deter-
mined by ANOVA followed by Dunnett test
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Effect of salt stress on antioxidant enzymes

A significant increase in the CAT activity was observed 
with increasing salt content (F = 31.62, p = 0.0003). 
However, when compared with control, CAT activity 
was not significant at 50 mM (p = 0.2878) and 100 mM 
(p = 0.0637) salt stress. Moreover, 1.7 × CAT activity was 
increased in 50 mM, 2.1 × in 100 mM, 2.7 × in 150 mM, 
3.8 × in 200 mM, and 4.1 × in 250 mM salinity conditions 
(Fig. 6a).

With the increase in salt stress, APX activity was also 
significantly increased (F = 112.5, p < 0.0001). Compare 
to the control, the 50 mM salt-treated plant had 2.5-fold 
activity followed by 100 mM (3.1-fold activity), while 
in 250 mM salt treated plant 5.4 fold APX activity was 

recorded. APX activity related to various salt treatments 
was illustrated in Fig. 6b.

Effect of salt stress on genomic template stability

Salt-treated plants were checked for genomic stability using 
10 ISSR primers. ISSR primers used in the study were tar-
geted for di-nucleotide (6), tri-nucleotide (2), tetra-nucleo-
tide (1), and penta-nucleotide (1) repeats. A total of 57 bands 
were recorded in control, while 77 bands were obtained in 
50 mM, 79 bands in 100 mM, 75 bands in 150 mM, 78 
bands in 200 mM, and 68 bands in 250 mM salt-treated 
plants. 2–8 bands were generated from each primer with 
an average of 5.7 bands per primer in the control. In salt-
treated plants, 5–9 bands were recorded in 50 mM, 4–11 
bands in 100 mM, 4–10 bands in 150 mM, 6–10 bands in 
200 mM, and 5–8 bands in 250 mM. Compared to the con-
trol, 50 mM salt-treated plants were 52.63% polymorphic, 
100 mM treated plants were 59.65% polymorphic, 150 mM 
treated plants were 70.17% polymorphic, 200 mM treated 
plants were 75.44% polymorphic, and 250 mM treated plants 
were 78.95% polymorphic in nature. Polymorphism occur-
ring in salt-treated plants was caused due to loss or gain of 
amplicons. As compared to loss of amplicons, gain of ampli-
cons was more prominent in the treated plants. The results 
from the study demonstrated that 13 new bands appeared in 
all the salt-treated plants, while two bands were lost in all 
the treatments. Of the ten primers used in the study, six were 
able to detect the appearance of new bands in all salt-treated 
plants, of which UBC 855 detected a maximum of four new 
bands followed by UBC 862 (2 bands). Primers UBC 862 
and UBC 881 detected loss of bands in salt-treated plants.

Quantitative changes in the genome were measured 
through genomic template stability (GTS). From the results 
obtained from the study, it was deduced that with an increase 

Fig. 5   Effect of salt stress on nitrate reductase activity. Values are 
means ± SD of three replicates. Means are significant at p < 0.5 (*); 
0.01 (**) level as determined by ANOVA followed by Dunnett test

Fig. 6   Effect of salt stress on the activity of antioxidant enzymes. a CAT activity, b APX activity. Values are means ± SD of three replicates. 
Means are significant at p < 0.01 (**); 0.001 (***) or 0.0001 (****) level as determined by ANOVA followed by Dunnett test
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in salt concentration, GTS decreases significantly. For 
50 mM salt-treated plants, GTS was 47.37%, for 100 mM 
40.35%, for 150 mM 29.82%, for 200 mM 24.56%, and for 
250 mM 21.05% was recorded. Increase in GTS was directly 
proportional to the polymorphism observed in treatments. 
A maximum of 45 polymorphic bands were recorded in 
250 mM salt-treated plants, while a minimum of 30 poly-
morphic bands was recorded in 50 mM treated plants. With 
the increase in salt concentration, a maximum of 17 bands 
were lost in 250 mM treated plants, while 28 bands were 
gained. Banding patterns observed after salt treatment and 
in control are depicted in Table 2.

Effect of salt stress on major chemical constituents

HPLC analysis of salt-treated plants showed high vari-
ability in the studied chemical components. A HPLC chro-
matogram (control plant) showing the separation of its 

main bioactive constituents is shown in Fig. 7. Maximum 
andrographolide content was found in the 100 mM salt 
treated plant (17,600 ± 58 µg gDW−1), while the mini-
mum was in 150 mM (4900 ± 42 µg gDW−1). A maxi-
mum of 13,900 ± 54 µg gDW−1 was recorded in control 
(F = 25,405, p < 0.0001). In case of neoandrographolide, 
maximum was recorded in the 50 mM salt-treated plant 
(12,600 ± 59  µg gDW−1), while the minimum was in 
150 mM (1500 ± 47 µg gDW−1), with control to possess 
5800 ± 50 µg gDW−1 (F = 16,325, p < 0.0001). Another 
important chemical constituent of A. paniculata, 14-DDA 
was found to be highest in control (500 ± 36 µg gDW−1), 
while 50 mM, 100 mM, and 150 mM salt treated plant pos-
sess 200 ± 15 µg gDW−1 of total constituents. 200 mM and 
250 mM salt-treated plants were recorded to contain little 
higher (300 ± 17 µg gDW−1) than the less concentrated 
salt-treated plants (F = 96.51, p < 0.0001). Variability in 
chemical constituents is depicted in Fig. 8.

Table 2   Banding patterns and GTS index detected through ISSR marker system in salt treated Andrographis paniculata 

T [°C] annealing temperature; R (A, G), Y (C, T), TBc total amplified band present in control, PBs polymorphic band (gain + loss) present in 
samples, GTS % percentage genomic template stability index

S. no ISSR primer Sequence (5′-3′) T [°C] Control 50 mM 100 mM 150 mM 200 mM 250 mM

TB Gain Loss Gain Loss Gain Loss Gain Loss Gain Loss

1 UBC 809 (AG)8G 60.0 5 3 0 4 0 4 0 6 3 6 3
2 UBC 823 (TC)8C 54.0 5 1 1 1 0 1 2 1 0 1 1
3 UBC 828 (TG)8A 52.0 5 3 0 5 0 5 0 3 1 3 2
4 UBC 841 (GA)8YC 52.0 8 1 0 3 0 2 2 3 1 2 2
5 UBC 844 (CT)8RC 54.0 5 3 0 3 0 2 1 2 1 2 1
6 UBC 855 (AC)8YT 53.0 2 8 1 7 0 7 1 8 1 7 1
7 UBC 862 (AGC)6 57.2 7 2 1 2 2 2 1 2 2 2 3
8 UBC 866 (CTC)6 57.2 8 1 0 1 1 1 1 1 1 1 1
9 UBC 876 (GATA)2(GACA)2 48.0 6 2 1 2 1 3 1 3 0 2 1
10 UBC 881 (GGGTG)3 58.7 6 1 1 0 2 2 2 2 2 2 2

TBc 57
PBs 30 34 40 43 45
GTS % 47.37 40.35 29.82 24.56 21.05

Fig. 7   A representative HPLC 
chromatogram showing the 
separation of its main bioactive 
constituents (Control Plant)
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Discussion

Among the various abiotic stresses, salt stress is consid-
ered as one of the important ones that severely affects plant 
growth and metabolism, which ultimately reduces the pro-
ductivity of the crops. The present study was conducted 
to examine the influence of salinity on seed germination, 
seedling vigour, morphology, biochemical indices, genomic 
template stability, and the main bioactive phytoconstituents 
of A. paniculata in an attempt to develop salt tolerant varie-
ties. The plant seeds were viable and started germinating 
from the third day (control) or fourth day (in salt-treated). 
In general, seed germination efficiency and germination pro-
cess of halophytes, as well as glycophytes, decreases with 
increasing salt concentration (Cordazzo 1999). The decline 
in the germination is mainly due to osmotic stress as well as 
ionic toxicity developed due to salt stress (Bajji et al. 2002). 
The results reported here demonstrated low germination 
efficiency as compared to control; however, in salt-treated 
seeds, maximum germination efficiency was observed in 
100 mM concentration followed by 50 mM. The result was 
comparable with the study conducted by Talei et al. (2012), 
and Rajpar et al. (2007). Comparatively seedling growth is 
more affected than seed germination during salt stress (Cor-
dazzo 1999). The result shows that shoot growth was not 
observed over 100 mM concentration, while taproot growth 
was observed until 240  mM beyond which, no growth 
was observed. This demonstrates that salinity has a higher 
adverse effect on shoots rather than on roots. The possible 
explanation for the reduced growth of seedling in saline con-
ditions may be due to the adverse effect on water absorption, 
nutrient uptake, as well as biochemical processes (Talei et al. 
2013a, b). Generally, salt stress has a significant effect on 

plant growth, reducing the overall growth of the plant with 
the increase in salt concentration (Parida and Das 2005). 
Reduction in growth can be attributed to injury caused by 
osmotic stress, and ion toxicity caused by the accumulation 
of Na+ ions, which hinders the uptake of K+ ions (Meloni 
et al. 2001). Also, during salt stress, plants generally focus 
on conserving water through the closure of stomata. As a 
result, low CO2 fixation occurs.

Photosynthetic pigments are well-known indicators of 
the adverse effects of salt stress. With the increase in salt 
concentration, photosynthetic pigments are degraded due 
to the accumulation of ROS, along with the activation of 
chlorophyll degrading enzyme chlorophyllase (Acemi et al. 
2017). One more important factor for the reduced amount 
of chlorophyll pigments in salt-treated plants could be due 
to the suppression of specific enzymes responsible for the 
synthesis of chlorophyll (Zhang et al. 2014). In the present 
study, the photosynthetic pigments including chlorophyll a, 
chlorophyll b, and total chlorophyll along with carotenoids 
were significantly reduced. Our result is in accordance with 
the study carried out by Talei et al. (2015) on A. panicu-
lata, whereby the amount of photosynthetic pigments was 
reduced on increasing the salt concentration.

Plants accumulate various organic solutes as a change in 
an external osmotic potential to cope with salt stress. Proline 
an organic solute is well known for its osmotic adjustment 
activity, and role in enhancing salt tolerance through protec-
tion of cellular membranes and enzyme integrity (Kumar 
et al. 2017). Our results demonstrated a significant increase 
in free proline content in salt-treated plants as compared to 
non-treated plants. Moreover, nearly equal level of proline 
in 50 mM, 100 mM, and 150 mM salt-treated plants shows 
similar adaptation against salt stress. On the other hand, phe-
nols play an important role in maintaining cellular home-
ostasis during salt stress. Results from our study showed 
an increase in total phenolic content with increase in salt 
concentration. Increase in phenolic content in salt-treated 
plants might be due to the excessive amount of reactive oxy-
gen species (ROS) production. Increase in phenolic content 
could also be attributed to the scavenging activity of phenols 
that might protect the plants from ROS through neutralizing 
free radicals, quenching singlet oxygen, and decomposing 
peroxides, which are inevitably produced during salt stress 
condition. Same type of finding was also reported from other 
medicinal and aromatic crops such as Rosmarinus officinalis, 
Ocimum basilicum, Mentha pulegium (Waskiewicz et al. 
2013), where phenolic content increases with increase in 
salt concentration. However, unexpectedly in Nigella sativa 
(Bourgou et  al. 2010), phenolic content decreases with 
increase in salt concentration.

The present study demonstrated a significantly reduced 
level of free cysteine and non-protein thiol content with 
increase in salt concentration. The result obtained was in 

Fig. 8   Bioactive constituents quantified through HPLC in response 
to different salt concentrations. Values are means ± SD of three repli-
cates. Means are significant at p < 0.0001 (****) level as determined 
by ANOVA followed by Dunnett test
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line with the study carried out by Rohman et al. (2016), 
where it was stated that under salt stress, synthesis of 
cysteine was inhibited, which might affect the non-protein 
thiol synthesis. Moreover, the non-protein thiol content 
of the cell might be utilized as a reducing substrate in the 
synthesis of ascorbate. Another important reason for the 
low content of non-protein thiol in the salt-treated plant is 
that it might get consumed to protect cellular membranes 
from lipid peroxidation. Interestingly, Ruiz and Blumwald 
(2002) while studying the effect of salt stress on Brassica 
napus reported an increase in cysteine and non-protein 
thiol content. Under salt stress, nitrate reductase activity 
could be lowered due to inactivation of the enzyme as well 
as inhibition of nitrate reductase protein synthesis gene 
expression (Meloni et al. 2004). Decreased nitrate activity 
also resulted from an imbalance in minerals and nutrient 
uptake, especially nitrogenous compound. Results from 
the study showed a significant decrease in nitrate reductase 
activity in salt-treated plants as compared to control.

Under salt stress, plants are prone to the oxidative 
stress through increased production of ROS (Parida and 
Das 2005). The oxidative stress developed in plants can 
be mitigated through the potential role of antioxidant 
enzymes such as SOD, GPX, CAT, APX, and GR (Geni-
sel et al. 2015). In the present study, we have evaluated 
the performance of CAT and APX activity. Under various 
salt concentrations, a significant increase in the activity of 
both the enzymes was observed. This increase in CAT and 
APX activity could be attributed to the scavenging nature 
of the enzymes towards ROS, thus providing improved 
tolerance to salt stress.

The present study used ISSR markers to check the geno-
toxic effect of salt stress on A. paniculata. ISSR markers 
have an edge over the usual RAPD markers in that they 
possess relatively higher annealing temperatures, thereby 
reducing the chances of non-specific binding (Sukumaran 
and Grant 2013). Another important reason for selection 
of ISSR primers was that the micro/minisatellite regions 
are prone to have a higher rate of mutations than another 
variable segment of genomic DNA. DNA polymorphism 
detected in the present study using ISSR primers was good 
enough to evaluate salt-induced DNA damage. GTS has 
been used as a quantitative parameter in several crops to 
check the effect of various stresses such as lead in Sesbania 
grandiflora (Malar et al. 2014), aluminum in Plantago spe-
cies (Correia et al. 2014), cadmium on Hordeum vulgare 
(Liu et al. 2005), etc. It was also observed that loss of ampli-
cons in salt-treated plants as compared to non-treated plants 
was more for the high molecular weight bands. This can be 
attributed to the fact that chances for DNA damage increase 
with the increased length of fragments. Similar reports were 
also reported by Liu et al. (2005), while studying the geno-
toxic effect of cadmium on H. vulgare.

Accumulation of various secondary metabolites directly 
depends on the responsible metabolic pathways which are 
again directly related to various stress conditions. Likewise, 
terpene biosynthesis is influenced both by genetic and envi-
ronmental factors (Valifard et al. 2018). Our results showed 
that at 100 mM salt concentration, andrographolide content 
was maximum, while neoandrographolide content was maxi-
mum at 50 mM salt concentration. Similar results were also 
obtained for terpenoid phytoalexins production in Zea mays, 
where higher concentration of salts resulted in induction of 
zealexins while lower concentration induced kauralexins 
(Vaughan et al. 2015). Studies in Mentha pulegium (Mkad-
dem et al. 2007), Coriandrum sativum (Neffati and Marzouk 
2008) also showed similar affects. Salt stress is reported to 
not only affect the composition but also the tissue specific 
induction of terpenoids. Basyuni et al. (2009) reported that 
under salt stress, terpenoid biosynthesis increased in both 
leaf and root of halophytes Kandelia candel, and only in 
the root of Bruguiera gymnorrhiza. The increase in specific 
secondary metabolites with decrease in chlorophyll con-
tent under salinity stress can be attributed to the adaptive 
change in the resource partitioning with carbon skeletons 
being diverted more towards terpene biosynthesis (Valifard 
et al. 2018). The major carbon source for the biosynthesis of 
terpenoids are the photosynthetic products and a decrease in 
chlorophyll content under stress may result in reduced level 
of photosynthesis and a consequent decrease in terpenoids 
(Behnke et al. 2013). However, a contrasting pattern may be 
observed under stress condition as observed in the present 
study under moderate salinity stress. Carbon sources like 
sugar and starch can be re-mobilized or the intermediates of 
the Mevalonate pathway and photorespiration can divert to 
isoprenoid biosynthesis when the carbon supply from pho-
tosynthesis is decreased due to stress (Ghirardo et al. 2011; 
Vickers et al. 2009). This may be utilized in the synthesis 
of protective compounds like terpenes against stress condi-
tions (Penuelas and Llusia 2004; Vickers et al. 2009; Vali-
fard et al. 2018). Interestingly, we also observed maximum 
content of 14-DDA in the control plants. Comparable differ-
ences in the composition of terpenoids with salinity stress is 
also reported in Salvia mirzayanii, where terpenoids like lin-
alyl acetate, 1,8-cineole, a-terpinyl acetate were induced by 
salinity stress, however, bicyclogermacrene decreased with 
stress and was found to be higher in control plants (Valifard 
et al. 2018). Similar trend of change in composition and 
quantity of terpenoids in response to stress is also reported 
in Salvia officinalis and Petroselinum crispum (Aziz et al. 
2013). Such variation in the composition and concentration 
is due to the change in demand for the essential terpenoids 
in plants in response to environmental stress (Valifard et al. 
2018). A number of physiological and genetic factors may 
be affecting the biosynthesis of terpenoids under salinity 
stress and hence literature also records salt stress to decrease 
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content in Salvia hispanica, and no affect in Matthiola tri-
cuspidata (Heuer et al. 2002).

Conclusion

The present study was conducted with an attempt to obtain 
a detailed insight into the effect of salt stress on A. panicu-
lata. The economic yield of the medicinal crop is directly 
related to the main bioactive constituents present in it. It 
was observed that up to 100 mM salt concentration, seed 
germination efficiency and seedling vigour was sustained. 
Moreover, at the same salt concentration, the content of its 
main bioactive constituents slightly increased, in comparison 
to the control and other treatments. The study, demonstrates 
that A. paniculata var. CIM-Megha could be cultivated in 
large scale in saline areas having up to 100 mM salinity in 
the soil. Furthermore, a variety with the more salt tolerant 
capability and higher andrographolide content will be desir-
able in future.
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