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Abstract
To enhance the storage potential of pear cv. Punjab Beauty fruit, the effect of putrescine (PUT) treatments was evaluated by 
analysing various physico-chemical characteristics and enzymatic activities. Postharvest dip treatments of PUT (1, 2 and 
3 mM) were given to uniform and healthy fruit, while tap water was used for the control fruit. Treated fruit were stored at 
0–1 °C and 90–95% RH for 75 days. Evaluation of fruit quality parameters was made on the 0th, 15th, 30th, 45th, 60th, 67th 
and 75th days of storage. The PUT treatments (2 and 3 mM) proved to be effective to diminish the softening and enhance the 
storage potential with acceptable quality. These treatments also suppressed the pectin methyl esterase and cellulase activ-
ity, reduced the weight loss and spoilage compared with control. Moreover, 2 and 3 mM PUT applications delayed colour 
changes, retained higher soluble solids content, starch content and titratable acidity at the end of storage than in control. 
These findings suggested that exogenous PUT application of 2 and 3 mM could effectively maintain fruit quality and prolong 
the storage potential of pear cv. Punjab Beauty fruit by reducing the softening during storage.
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Introduction

Pear (Pyrus spp) is one of the much important temperate 
pome fruit ranked second among the fruit produced and 
consumed in the world (FAO 2017). Pear fruit being rich in 
minerals, nutrients and vitamins make an excellent dietary 
supplement (Mahammad et al. 2010). Pears are classified as 
climacteric fruit with high ethylene production (Villalobos 
and Mitcham 2008) and respiration rate (Lammertyn et al. 
2003) after harvest, which cannot be inhibited. Ethylene is a 
ripening hormone associated with various physico-chemical 
changes in fruit like firmness, colour and sugars during stor-
age (Abeles et al. 1992). Under sub-tropics of north-western 
India, pears are harvested in the mid-summer. During this 
period, both temperature and humidity are very high and 
result in the reduction of fruit shelf life. Moreover, dur-
ing long-term storage pear fruit are susceptible to various 

postharvest disorders due to the climacteric nature (Villa-
lobos and Mitcham 2008). So, minimizing the postharvest 
losses and enhancing the storage potential are the major 
goals for growers.

Fruit softening throughout the storage is associated with 
the modification of cell wall matrix and middle lamella 
structure. The various enzymes like PME, cellulase, 
β-galactosidase, etc. are linked to the cell wall modifica-
tion (Fisher and Bennet 1991). Cell wall are made from the 
important functional cell wall components like cellulose, 
hemicellulose, pectin and glycoproteins (Keegstra 2010). 
Alteration of a cell wall structure and intercellular adhe-
sion by depolymerization and solubilization of these poly-
saccharides leads to the softening of fruit (Li et al. 2010). 
In physico-chemical analysis, cell wall degrading enzymes 
activity were the principal factors in inducing fruit soften-
ing (Gwanpua et al. 2014). Changes in SSC and TA were 
accompanied by softening utilized as an indicant for meas-
uring postharvest quality to assess the storability of fruit 
(Park et al. 2016).

Polyamines (PAs) are natural compounds and ubiquitous 
in all organisms and have a significant role in extending the 
storability with quality maintenance (Wannabussapawich 
and Seraypheap 2018). PAs are hormones engaged in the cell 
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membrane stability by binding with anionic sites or phospho-
lipids (Slocum et al. 1984). The three key forms of PAs are 
spermine: spermidine and putrescine have an effect on fruit 
physiology after harvest (Perez-Vincente et al. 2002). In gen-
eral, among the various polyamines the PUT is predominant 
which has closs association with the fruit ripening behaviour 
(Dibble et al. 1998). PAs behave like an anti-senescence agent 
greatly helpful to delay softening in fruits like pear (Singh 
et al. 2019), mango (Malik and Singh 2005) and plum (Khan 
et al. 2007). To the outflank of our cognition, no selective 
information is available on the PUT role in regularizing the 
cell wall degrading enzymes like PME and cellulase activity in 
subtropical pear during low-temperature storage. Thence, the 
intent of this work was to determine the effect of postharvest 
PUT intervention on the storage potential and quality of pear 
fruit.

Material and methods

Plant materials and fruit treatments

Uniform, healthy and mature (Firmness: 65–70 N, SSC: 
12.2–12.5%) fruit of pear cv. Punjab Beauty were picked from 
the Fruit Orchard, Punjab Agricultural University, Ludhiana 
(30.91° N, 75.85° E). Harvested fruit were immediately trans-
ported in plastic crates to the Postharvest Laboratory and dip 
treatments of PUT @ 1 mM, 2 mM and 3 mM were applied for 
5 min, while tap water was used for the control fruit. For fur-
ther storage investigations, 1 kg pear fruit for each replication 
of all the treatments on every storage interval were packed. 
The fruit were stored in cold storage (0–1 °C and 90–95% 
RH) after packing in three-ply CFB boxes (5% perforation) 
along with paper lining. The various physico-chemical and 
enzymatic observations regarding storage potential and fruit 
quality were looked into on the day of storage and on 15, 30, 
45, 60, 67 and 75 days of storage.

Fruit quality measurements

Weight loss

Pear fruit were weighed using an electronic balance (AND 
EK-1200i, Co., LTD. Japan.) on the first day of storage. To cal-
culate the weight loss during cold storage, fruit were weighed 
at each storage interval and weight loss was expressed in per 
cent:

%Weight loss =
(Initial weight − Final weight) × 100

Initial weight
.

Determination of fruit firmness and colour (b*)

Fruit firmness and colour during storage were determined as 
per the method delineated by Singh et al. (2019). Firmness 
was determined using a stand affixed Penetrometer (Model 
FT-327, USA) having steel probe (stainless) with 8 mm 
plunger at the opposite sites of fruit equator after peeling 
the fruit. Firmness was represented in the Newton (N) force 
units. The peel colour of fruit was noted down from both 
sides of fruit using Colour Flex 45°/0° spectrophotometer 
(Hunter Lab Colour Flex, Hunter Associates Inc., Reston, 
VA, USA) and presented as b* hunter colour value (Hunter 
1975).

Sensory quality and spoilage

Sensory quality (SQ) of fruit in all the treatments was done 
by a five-judge panel. Fruit were evaluated by panellists on 
the basis delineated by Amerine et al. (1965) and Singh et al. 
(2019). The spoilage per cent of fruit was measured based 
on the number by counting the fruit spoiled at individual 
storage interval and expressed in percentage:

Estimation of SSC, TA and starch content

SSC of fruit juice of pear was calculated with the help of 
digital hand refractometer (ATAGO PAL-1) and expressed 
in terms of the per cent. TA was ascertained by titration of 
2.0 ml pear juice with 0.1 N NaOH by adding phenolphtha-
lein as indicant and registered as per cent of malic acid. 
Starch content of pear fruit was estimated from the previ-
ously delineated method by Stevens and Chapman (1955) 
and Singh et al. (2019). The starch content was estimated 
through glucose standard curve.

Enzyme extraction and activity assay

Pectin methyl esterase and cellulase activity

The PME activity was estimated from the fruit tissue (20 g) 
by following the method delineated by the Mahadevan and 
Sridhar (1982) and Singh et al. (2019). PME activity is 
uttered as mL of 0.02 N NaOH used. Enzyme extraction and 
estimation for the cellulase activity was similar to the enzy-
matic section discussed by Singh et al. (2019). The cellulase 
activity was represented as per cent reduction in viscosity of 
the substrate (Mahadevan and Sridhar 1982).

Spoilage (%) =
Number of spoiled fruit × 100

Total number of fruit
.
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Experimental design and statistical analysis

The study was conducted in the years 2016 and 2017 and 
designed in Completely Randomized Design with four 
replications. The data were pooled and two-way analysis 
of variance (ANOVA) was performed and means were dif-
ferentiated by the LSD test. Differences among treatments 
were assumed significant statistically at the p ≤ 0.05 level by 
using the statistical SAS software (version 9.3 for windows). 
Statistical data were uttered as the mean ± standard error. 
Further, to calculate the nature and extent of the correlation 
among the various parameters, data were analysed through 
Pearson’s correlation analysis.

Results and discussion

Effect of putrescine on fruit quality measurements

Weight loss

Weight loss during storage of fruit is primarily due to the 
water transpiration from the surface of the fruit. As expected, 
weight loss was statistically (p ≤ 0.05) increased in all the 
treatments along the 75-day storage period (Table 1a). How-
ever, reduction in weight loss was recorded by PUT treat-
ment and it was more obvious at the higher concentration 
of PUT (2 and 3 mM). At the storage end, fruit treated with 
3 mM PUT registered 10.40% lower weight loss than the 
control. The lowest average loss in weight was also recorded 
in 3 mM PUT treated fruit. Water commute among inner 
and outer atmosphere and cellular break down after har-
vest causes the fruit weight loss (Ramezanian et al. 2010). 
Martinez et al. (2002) intimated that PUT has the ability to 
modify the permeability of tissue to water by stabilizing the 

Table 1   Changes in weight loss (A), fruit firmness (B), sensory quality (C) and spoilage (D) of pear fruit during cold storage with PUT treat-
ments

Mean values have common superscript are statistically (*p ≤ 0.05) at par, n = 4 ± Standard error

Parameter PUT Storage period (days) Mean

15 30 45 60 67 75

A 1 mM 1.69 ± 0.05n 3.36 ± 0.05j 4.58 ± 0.05h 5.34 ± 0.04d 5.71 ± 0.08c 6.26 ± 0.07a 3.85b

Weight loss (%) 2 mM 1.58 ± 0.05n,o 2.96 ± 0.06k 4.05 ± 0.04i 4.99 ± 0.06f 5.40 ± 0.07d 6.00 ± 0.07b 3.57c

3 mM 1.54 ± 0.05o 2.63 ± 0.07l 4.00 ± 0.10i 4.75 ± 0.19g 5.15 ± 0.06e 5.69 ± 0.07c 3.39d

Control 1.96 ± 0.06m 3.47 ± 0.07j 4.82 ± 0.06g 5.58 ± 0.16c 5.89 ± 0.08b 6.35 ± 0.07a 4.01a

Mean 1.69f 3.10e 4.36d 5.16c 5.54b 6.07a

Base value: 0.00 ± 0.00p

B 1 mM 52.95 ± 1.19c 44.29 ± 0.99e 39.88 ± 0.79g,h 30.95 ± 0.81j 26.91 ± 0.77k 18.02 ± 0.55n 40.03c

Fruit firmness (N) 2 mM 57.80 ± 1.19b 49.26 ± 0.90d 41.23 ± 0.89f,g 35.68 ± 0.91i 30.80 ± 0.83j 19.35 ± 0.48m,n 43.05b

3 mM 56.78 ± 1.31b 51.49 ± 1.10c,d 42.92 ± 0.94e,f 38.47 ± 1.06h 31.76 ± 0.53j 20.46 ± 0.58m 44.16a

Control 49.93 ± 0.95d 39.74 ± 1.31g,h 33.07 ± 1.01j 28.40 ± 0.75k 23.46 ± 0.54l 12.68 ± 0.59o 36.36d

Mean 54.37b 46.19c 39.28d 33.38e 28.23f 17.63g

Base value: 67.22 ± 0.92a

C 1 mM 7.66 ± 0.13e,f,g 8.29 ± 0.09a,b,c 8.39 ± 0.07a,b 8.15 ± 0.08b,c,d 6.92 ± 0.17i 3.46 ± 0.14l 7.15b

Sensory quality (1–9) 2 mM 7.63 ± 0.15f,g 8.09 ± 0.08b,c,d 8.28 ± 0.10a,b,c 8.35 ± 0.09a,b,c 7.20 ± 0.09a,b 4.06 ± 0.17k 7.26a,b

3 mM 7.65 ± 0.18e,f,g 8.00 ± 0.09c,d,e 8.27 ± 0.10a,b,c 8.51 ± 0.11a 7.40 ± 0.07g,h 4.14 ± 0.18k 7.31a

Control 7.86 ± 0.17d,e,f 8.13 ± 0.13b,c,d 8.35 ± 0.12a,b,c 7.50 ± 0.20g,h 6.40 ± 0.15j 3.45 ± 0.52l 6.98c

Mean 7.70c 8.13b 8.32a 8.13b 6.98e 3.78f

Base value: 7.21 ± 0.08h,i

D 1 mM 0.00 ± 0.00e 0.00 ± 0.00e 0.00 ± 0.00e 0.00 ± 0.00e 0.00 ± 0.00e 4.48 ± 0.23b 0.64b

Spoilage (%) 2 mM 0.00 ± 0.00e 0.00 ± 0.00e 0.00 ± 0.00e 0.00 ± 0.00e 0.00 ± 0.00e 3.95 ± 0.17c 0.56b,c

3 mM 0.00 ± 0.00e 0.00 ± 0.00e 0.00 ± 0.00e 0.00 ± 0.00e 0.00 ± 0.00e 3.42 ± 0.16d 0.49c

Control 0.00 ± 0.00e 0.00 ± 0.00e 0.00 ± 0.00e 0.00 ± 0.00e 3.80 ± 0.22c 4.99 ± 0.18a 1.26a

Mean 0.00c 0.00c 0.00c 0.00c 0.95b 4.21a

Base value: 0.00 ± 0.00e
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integrity of cell membrane and cell wall properties. Stabi-
lization of cell membrane integrity significantly limited the 
weight loss of fruit. Similar to our results, PUT treatment 
effectively reduced the weight loss during storage of pear 
(Singh et al. 2019), mango (Wannabussapawich and Seray-
pheap 2018) and kiwi fruit (Yang et al. 2016) compared 
with control.

Fruit firmness

Firmness is the most reliable quality and shelf life indica-
tor for the pear fruit during storage. Fruit firmness was sig-
nificantly reduced throughout the storage, irrespective of 
treatments (Table 1b). Results showed that fruit firmness 
was higher in 2 and 3 mM PUT treatments as compared to 
the control during the storage period. Fruit treatment with 
2 and 3 mM PUT retained 34.47% and 38.03% higher firm-
ness than untreated fruit, respectively, at the end of storage. 
The mean firmness recorded through the whole storage was 
highest in 3 mM PUT treatment. Degradation of indissoluble 
proto-pectin into more simple soluble pectin by enzymatic 
activity led to the reduction in the firmness of fruit (Abd 
El-Migid 1986). PAs reduced the activity of pectic acid 
degrading enzymes like cellulase, poly-galactronse, pectin 
esterase, etc. (Kramer et al. 1989). They have the ability to 
cross-linking to the carboxyl group of pectin substrates in 
the cell wall that lead to rigidification (Abbott et al. 1989). 
Similar to our findings, PUT treatments had been reported to 
maintain the higher fruit firmness of mango (Wannabussapa-
wich and Seraypheap 2018), apricot (Martinez et al. 2002) 
and pear (Singh et al. 2019). Greater cell wall rigidity via 
electrostatic bond between PAs and the carboxylic groups 
of poly-galacturonic acid retained the high firmness during 
storage of fruit (Khosroshahi et al. 2007).

Sensory quality

Sensory quality during storage of pear fruit was significantly 
affected by PUT treatments (Table 1c). In 2 and 3 mM PUT 
treatments SQ improved and peaked at 60 days; thereafter 
it declined, while in control fruit the reduction in SQ was 
noticed after 45 storage days. At the storage end highest 
average SQ was registered in 2 and 3 mM PUT application 
and lowest in the untreated fruit. High SQ rating at end of 
studies in fruit treated with PUT might be due to a lesser 
respiration rate that led to the higher retention of polysac-
charides in comparison to the control (Valero et al. 2002). 
Similar to our findings, Khosroshahi et al. (2007) and Singh 
et al. (2019) also found high consumer acceptability of PUT-
treated strawberry and pear during storage, respectively. 
Anti-senescence action of PUT prevents the transcription, 
synthesis and activity of 1-aminocyclopropane-1-carboxlic 
acid and maintained high SQ during the storage (Valero et al. 

2002). This is related to the binding of positively charged 
PAs to the negatively charged pectic substances during stor-
age (Valero et al. 1999).

Spoilage

It is quite evident from data in Table 1d that no spoilage 
of fruit was recorded up to 60th day of low-temperature 
storage in all the treated fruit. However, only control fruit 
recorded spoilage of 3.8% on 67th day of storage (Table 1d). 
At the storage end, spoilage was noticed in all the treat-
ments. The fruit treated with 3 mM PUT registered 31.46% 
lower spoilage compared with control. It was found that fruit 
treated with PUT significantly lowered the pear fruit spoil-
age depending upon the concentration. The lowest average 
spoilage was registered in 3 mM PUT-treated fruit. Simi-
larly, in strawberry, Khosroshahi et al. (2007) reported that 
fruit spoilage during storage was mainly caused by fungal 
attack; however, postharvest dip treatment of PUT (0.3, 0.5, 
1 and 2 mM) for 1 min expressed lower fungal infection 
compared with control and maintained good appearance up 
to the end of storage. The suppression of decay symptoms 
by PUT might be related to its anti-pathogenic properties 
(Walters 2003).

Fruit colour

Peel colour of pear fruit changes from green to yellowish-
green during storage. Change in fruit colour is a valuable 
ripening indicator for the pear. In present investigations, a 
continuous change in colour coordinate ‘b*’ was recorded 
in all the treated fruit during the whole storage (Fig. 1a). 
PUT treatments of 2 and 3 mM had a considerable delay in 
a colour change of pear fruit, with a lower value of colour 
coordinate ‘b*’ than in control. A similar delay in colour 
changes was reported in PA-treated table grapes (Champa 
et al. 2015) and PUT-treated pear fruit (Singh et al. 2019). 
The catabolic pathway of chlorophyll during ripening and 
senescence of fruit accumulate the colourless products 
within the cell vacuole. The degradation of chlorophyll was 
considered vital during the ripening of fruit, while PUT 
application retarded the chlorophyll degradation and carot-
enoid synthesis of the fruit by reducing the hydrolytic activi-
ties of chloroplast thylakoid membranes (Malik and Singh 
2006; Popovic et al. 1979).

Soluble solids content and titratable acidity

SSC and TA are important post-harvest quality attributes of 
climacteric fruit. SSC of pear fruit was found to be statisti-
cally (p ≤ 0.05) increased up to 67th day in fruit treated 
with 2 and 3 mM PUT; while only upto 45th day in the 
control. Afterwards, a significant reduction was recorded 
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in all the treatments (Fig. 1b). During the initial period of 
storage (15th, 30th and 45th day), steady increase in SSC 
was noted in higher doses (2 and 3 mM) of PUT treatments, 
while it increased rapidly in untreated fruit. Among various 
treatments, no significant difference in SSC was observed on 
60th and 67th day of storage. At the storage end, fruit treated 
with 2 and 3 mM PUT retained higher SSC compared with 
control might be due to the reduction in the respiration of 
the fruit. The minimum average SSC was registered in 3 mM 
PUT treated fruit. Organic acid contents depend mainly upon 
the fruit species and malic acid was found as major acid in 
pear (Hulme and Rhodes 1971). TA of the pear fruit effec-
tively reduced in all the PUT-treated fruit throughout the 
storage period (Fig. 1c). However, the reduction was found 
at a lesser rate in 2 and 3 mM PUT-treated fruit as compared 

to the control. TA content reduction in pear fruit was noted 
to be 65.52% in untreated fruit in comparison with 3 mM 
PUT-treated fruit that had only a 31.03% reduction during 
the entire storage period.

SSC increased during storage as a result of the conver-
sion of polysaccharides into soluble solids by the process 
of dehydration and hydrolysis. This impact of PUT on 
pear fruit for maintaining quality may be imputed to the 
low respiration and ethylene production and delayed in the 
ripening process compared with control. A similar impact 
of PUT on pear and kiwifruit was reported by Singh et al. 
(2019) and Yang et al. (2016), respectively. The organic acid 
consumption during storage led to a reduction in TA, while 
putrescine maintained it by affecting the respiration process 
(Zokaee et al. 2007). Similar to the findings, Singh et al. 

Fig. 1   Variation in colour value 
b* (a), soluble solids’ content 
(b) and titratable acidity (c) of 
pear fruit during cold storage 
with different PUT treatments. 
Vertical bars represent ± SE of 
means for four replicates. *Val-
ues at zero day: Colour value 
b*—37.79, SSC (%)—12.31, 
TA (%)—0.33. Mean values 
have common superscript are 
statistically (*p ≤ 0.05) at par
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(2019) and Yang et al. (2016) revealed that PUT-treated pear 
and kiwifruit, respectively, retained higher titratable acidity 
that might be due to the reduction in the respiration rate and 
enzymatic activity.

Starch

It was exhibited from the present studies that the starch 
content of pear fruit decreased during the storage period 
due to the starch conversion into the soluble sugar content 
(Fig. 2a). The fruit treated with 3 mM PUT retained the 
higher average starch content. At the storage termination, 
fruit treatment with 3 mM PUT registered 46.67% higher 
starch content compared with control. The starch content 

Fig. 2   Variation in Starch con-
tent (a), PME (b) and cellulase 
(c) activities of pear fruit during 
cold storage with different PUT 
treatments
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reduction during the fruit storage is due to starch hydroly-
sis which was inversely proportional to the concentration of 
PUT treatment. Arthey and Philip (2005) suggested that the 
starch conversion to the sugars by the process of hydroly-
sis reduced the starch content of the fruit. Similarly, mango 
fruit treated with PAs (Malik and Singh 2006) and pear fruit 
treated with PUT (Singh et al. 2019) retained more starch 
content throughout the storage as compared with control. 
This might be due to a decrease in the transition of starch 
into sugars because of the low rate of respiration.

Effect of putrescine treatments on enzymatic 
activities

Pectin methyl esterase activity

PME activity during pear fruit storage increased signifi-
cantly at a faster rate in untreated fruit up to 30th storage 
day followed by a sturdy enhancement to the peak on the 
45th day, and thereafter it declined rapidly toward the stor-
age termination (Fig. 2b). However, 2 and 3 mM treatment 
of PUT registered statistically (p ≤ 0.05) lower PME activ-
ity. In these treatments, PME activity increased with steady 
increment along the storage period and peaked on the 60th 
and 67th storage interval, respectively. At the storage last, an 
abrupt decline in PME activity was registered in all the PUT 
treatments. However, fruit treated with PUT @ 2 and 3 mM 
retained higher enzymatic activity of PME as than control 
due to more availability of SSC (described above) as pri-
mary substrates for enzymatic activity. Several biochemical 

and metabolic processes in harvested fruit are responsible 
for changes in the enzymatic activities. During the ripen-
ing and senescence, cell wall structure was affected by the 
pectin matrix, which is greatly influenced by PME activity 
(Deytieux-Belleau et al. 2008). PAs are positively charged 
molecules that fortified the cross linking between cell walls 
and carboxyl (COO−) group which reduced the enzymatic 
PME activity (Valero and Serrano 2010). In correspondence 
to these results, PA and PUT treatment reported lowest PME 
activity in grapes (Champa et al. 2015) and pear (Singh et al. 
2019), respectively, than in control.

Cellulase activity

It was quite evident from the present study that cellulase 
activity increased in all the treated pear fruit during storage 
(Fig. 2c). However, a steady increase in cellulase activity was 
found in pear fruit treated with 2 and 3 mM PUT up to 67th 
day of storage period followed by abrupt decline to the end of 
storage. In control, cellulase activity increased sharply up to 
30th day of storage, which slowly increased to the peak value 
on 45th day and then abruptly declined afterwards. At the end 
of storage, the highest cellulase activity was retained in PUT 
(2 and 3 mM) treated fruit compared with control. During the 
entire storage, lowest mean cellulase activity was estimated 
in 3 mM PUT-treated fruit. Cellulase composed of endoglu-
canase, exoglucanase and glucosidase is a multi-enzyme sys-
tem which degrades the cellulose matrix and reduced the firm-
ness as well as quality during storage (Li et al. 2010). Similar 
finding for PUT-treated pear fruit was reported by Singh et al. 

Table 2   Pearson’s correlation 
coefficients among quality 
attributes of pear fruit

**Significant at p ≤ 0.01

WL Firmness SQ Spoilage SSC Starch PME Cellulase

WL 1.000
Firmness − 0.962** 1.000
SQ − 0.371** 0.521** 1.000
Spoilage 0.519** − 0.645** − 0.889** 1.000
SSC 0.698** − 0.613** 0.194** − 0.010 1.000
Starch − 0.979** 0.932** 0.271** − 0.434** − 0.764** 1.000
PME 0.532** − 0.417** 0.385** − 0.256** 0.778** − 0.604** 1.000
Cellulase 0.756** − 0.656** 0.169** − 0.020 0.862** − 0.816** 0.801** 1.000

Table 3   Linear regression 
relationship among different 
quality attributes

Combination Equation R2

WL Firmness = − 7.379 × WL + 68.231 0.925
SQ Firmness = 5.472 × SQ + 1.637 0.272
Spoilage Firmness = − 6.387 × spoilage + 45.607 0.416
SSC Starch = − 2.951 × SSC + 40.702 0.583
PME activity Firmness = − 40.642 × PME activity + 98.372 0.174
Cellulase activity Firmness = − 14.564 × cellulase activity + 75.716 0.431



	 Acta Physiologiae Plantarum (2020) 42:28

1 3

28  Page 8 of 10

(2019). PA application affects the ethylene-modulated ripen-
ing enzyme like cellulase activity (Koehler et al. 1996) by 
reducing the ethylene production, as they both compete for the 
common precursor, i.e., S-adenosyl methionine decarboxylase 
at the binding site (Bregoli et al. 2002).

Correlation and regression analysis

To further examine the correlation between fruit quality 
attributes which influence the storage life of pear fruit, Pear-
son’s coefficient of correlations was calculated by a linear 

R² = 0.925
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association between parameters (Table 2). Firmness was 
correlated with weight loss, SQ, spoilage, PME and cellu-
lase activity. Similarly, starch was correlated with SSC. The 
significantly associated combinations of parameters were 
assessed with correlation coefficient (near to 1 or − 1) and 
further regression analysis was conducted to figure out the 
regression equation between these factors. Significant plots 
and their individual regression equations were found and 
presented in Table 3 and Fig. 3a–f.

Results of the current reporting elucidated that the 
weight loss enhancement led to the firmness reduction 
during cold storage ascertained from association analysis 
between weight loss and firmness (Table 2 and Fig. 3a). 
Firmness was observed to be correlated negatively with 
weight loss during storage (− 0.962). Similarly, Wan-
nabussapawich and Seraypheap (2018) and Singh et al. 
(2019) reported that PUT treatment to the mango and 
pear fruit, respectively, reduced the loss in weight and 
maintained the high firmness, which supports the hypoth-
esis that firmness of the fruit is greatly influenced by the 
weight loss during storage. PUT modified the permeability 
of tissue to water by stabilizing the cell membrane integ-
rity and cell wall properties (Martinez et al. 2002) which 
retained firmness ascribed to their cross-linking capability 
to the carboxyl group of pectin substances of the cell wall 
that lead to rigidification (Abbott et al. 1989). SQ showed 
positive correlation with fruit firmness (0.521) (Table 2 
and Fig. 3b). The higher SQ during storage in pear fruit 
treated with PUT may be imputed to retention of fruit firm-
ness, SSC and lower loss in weight. The anti-senescence 
properties of positively charged PUT maintained the cell 
wall unity by adhering to negatively charged molecules 
which were maintained the higher SQ (Valero et al. 1999).

Spoilage of the fruit increased during storage which nega-
tively correlated with firmness (− 0.645, R2 = 0.416) which 
revealed that reduction in firmness led to spoilage of the 
fruit (Tables 2, 3 and Fig. 3c). Arthey and Philip (2005) 
depicted that decrease in starch content of the fruit during 
storage might be due to the conversion into sugars. In the 
present study, a negative correlation (− 0.764, R2 = 0.583) 
was found indicating the reduction in starch content with 
increment in the sugars during storage (Tables 2, 3 and 
Fig. 3d). The PUT-treated fruit @ 2 and 3 mM registered 
higher starch content during the storage in comparison with 
control. Akhtar et al. (2010) also reported the hydrolysis of 
starch, as well as other polysaccharides into soluble sugars 
and water loss, led to enhance SSC of loquat fruit, while PA 
application maintained more starch content by lower respira-
tion rate, resulting in a reduction in conversion of starch into 
sugars (Devlieghere et al. 2004)

The relationship between enzymatic activity and firmness 
during storage showed a statistically (p ≤ 0.05) negative cor-
relation of firmness vs. PME activity (− 0.417) and firmness 

vs. cellulase activity (− 0.656) (Table 2 and Fig. 3e, f). Fruit 
firmness is the major postharvest quality parameter, which 
is greatly influenced by pectic substances. A similar result 
for the reduction in PME and cellulase activity along with 
higher firmness retention was reported in pear fruit by PUT 
application (Singh et al. 2019). PME and cellulase enzymes 
degrade or reduce the firmness as well as quality during 
storage (Fisher and Bennet 1991).

Conclusion

PUT treatments (2 and 3 mM) significantly retained the 
higher TA and starch content, delayed the colour changes 
and maintained the fruit firmness by reducing the activity of 
PME and cellulase enzymes. Therefore, it can be concluded 
from present findings that PUT is a potential tool to delay the 
softening and maintain the quality as well as extend the stor-
age potential of pear fruit cv. Punjab Beauty up to 67 days.
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