
Vol.:(0123456789)1 3

Acta Physiologiae Plantarum (2020) 42:139 
https://doi.org/10.1007/s11738-020-03124-x

ORIGINAL ARTICLE

Seed priming with gibberellic acid rescues chickpea (Cicer arietinum L.) 
from chilling stress

Tariq Aziz1   · Erkut Pekşen1

Received: 5 March 2019 / Revised: 6 July 2020 / Accepted: 13 July 2020 / Published online: 22 July 2020 
© Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2020

Abstract
Chickpea is sensitive to low temperature stress, especially during germination and stand establishment. Present study was 
planned to rescue the chickpea seedlings from chilling stress through seed priming with gibberellic acid. A study compris-
ing of two chickpea cultivars (cv.) viz. Çağatay (a chilling tolerant cultivar: CTC) and Akçin (a chilling sensitive cultivar: 
CSC) in combination with 0, hydropriming, 5 µM, 10 µM, 15 µM, 20 µM gibberellic acid (GA3) seed priming treatments was 
tested in completely randomized design under chilling temperature. Primed and unprimed seeds were sown at 9 ± 0.5 °C day 
temperature for 14 h and 7 ± 0.5 °C night temperatures for 10 h. Final emergence percentage (FEP) in both cultivars was 
noted higher in 10 µM GA3 seed priming. Coefficient of uniformity of emergence (CUE) was increased and time taken to 
50% emergence (E50) was shorten with the application of 5 or 15 µM GA3. Mean emergence time (MET) was reduced in 
both cultivars in 20 µM GA3 seed treatment. Emergence energy (EE) and emergence index (EI) of CTC were increased in 
15 µM GA3. In CSC 5 µM GA3, seed treatment was most productive treatment under low temperature. Higher doses of GA3 
seed treatments in CSC were proved very effective in maintaining high relative water contents and low electrolyte leakage. 
Plant height, root length and number of flowers were also increased in GA3 primed treatments. In conclusion, seed priming 
with GA3 can be used in chickpea for good stand establishment, crop growth, reducing electrolyte leakage and maintaining 
high relative water contents.
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Introduction

Chickpea ranks third among food grain legume crops in 
the world. Although, it is a member of cool season legume 
crops, but gives poor response to low temperatures (Singh 
et al. 1993). Normally, chickpea requires 21–29 °C tempera-
tures during day and 20 °C during night time for optimum 
growth and development (Kulkarni and Chimmad 2014). 
Low temperature adversely affects its growth and develop-
ment (Croser et al. 2003). The seed germination phase is rel-
atively more sensitive to chilling stress. The performance of 
lateral growth stages is associated with competence of seed 
germination (Farooq et al. 2017). Chilling can slowdown or 

inhibit hydrolytic enzymes activities in germinating seeds. 
Hydrolytic enzymes convert complex food reserve to the 
simple useable form for embryo growth during seed germi-
nation (Szopińska and Politycka 2016). Chilling can disrupt 
the function of cellular membrane and disturb the physio-
logical and biochemical processes. Cell membranes are sites 
considered to be the primary targets of hormonal actions 
in plants to perform different processes (Trewavas and Gil-
roy 1991). These sites are very vulnerable to environmental 
stresses (Kuiper 1985; Lyons 2012). Stability of membrane 
constituents, particularly lipids are very important in main-
taining membrane integrity and cell functionality (Mazliak 
1983; Leshem et al. 1990). Huge changes in membrane’s 
lipid composition occurred in higher plants to maintain 
chlorophyll activity during chilling stress (Pham et al. 1982, 
Quartacci et al. 1995). Such changes might be the result of 
an increase of unsaturated fatty acids ratio in the galactolip-
ids. It decreases the temperature of transition phase of the 
total thylakoid lipid (Moon et al. 1995), resulting in higher 
membrane stability when temperature touches lower critical 
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levels. It has been reported that the impact of chilling is 
not restricted to germination it may also change nutrients 
dynamics, water uptake, interrupt exchange of gases and 
photosynthesis (Yadav 2010), thereby, reducing plant growth 
and yield. Low temperature directly effects the photosyn-
thetic machinery by disturbing thylakoid membranes that is 
the main site of light reactions during photosynthesis (Zhou 
et al. 2007). In chickpea, poor initial crop stand increases 
the chances of chilling vulnerability; therefore, can cause 
considerable damage and yield losses (Croser et al. 2003).

Gibberellic acid is a growth hormone involved in seed 
germination. Earlier research findings demonstrated that 
low-temperature stress harmed seedling emergence in rice 
but seed treatment with GA3 significantly increased seed-
ling emergence (Chen et al. 2005). In many other studies, it 
has been reported that GA3 improves abiotic stress tolerance 
in chickpea (Kaur et al. 1998). Seed priming with growth 
hormones or salts is one of the pragmatic methods used to 
improve seed germination and seedling establishment under 
chilling stress (Farooq et al. 2017). Up to now, many studies 
have been reported about the progressive role of seed prim-
ing in developing tolerance in plants (Farooq et al. 2008) 
but the role of GA3 via seed priming under chilling stress 
still not investigated. So, using seed priming to overcome 
chilling stress could be one of possible options to grow up 
crops under abnormal temperatures. In the current research, 
we studied the role of seed priming with gibberellic acid to 
improve chilling tolerance in chickpea during seed germina-
tion and early growth stages under controlled conditions.

Materials and methods

Plant material

Seeds of chickpea cultivars were obtained from Black Sea 
Agricultural Research Institute, Samsun, Turkey, and were 
used as an experimental material. The selection of the cul-
tivars was made on the bases of our own earlier screening 
experiments. Out of 24 Turkish released chickpea cultivars, 
two cultivars (Çağatay and Akçin) were selected for further 
study. Çağatay cultivar was known to be chilling tolerant 
cultivar (CTC) and Akçin cultivar to be chilling sensitive 
cultivar (CSC).

Method

The experiment was conducted in plastic pots. The dimen-
sions of the pots were comprising of 22 cm width × 28 cm in 
height having capacity of carrying 9 kg soil. The soil used in 
the pots was passed through 5 mm sieve to get off all coarse 
materials out. Sieved soil was mixed with peat soil and 
farm yard manure by keeping 1:1:1 ratio of each material. 

Pots were filled with that well homogenized mixture. Three 
pots were excessively irrigated and left overnight allow to 
draining out extra water to determine the field capacity by 
calculating the actual amount of water hold by the soil mix-
ture. Primed and unprimed seeds were sown in pots. After 
sowing, pots were irrigated with calculated amount of water 
to bring them at field capacity. After irrigation, pots were 
shifted to growth room by setting growth room temperatures 
at 9 ± 0.5 °C day: 7 ± 0.5 °C night. Photoperiod was set to 
14 h and 10 h for day and night, respectively. Light intensity 
was set at 350 mE m2 s1 photon flux density.

Seed priming

Seed priming was carried out by dipping the seeds in 
well aerated solution of gibberellic acid consisting of 0 
(hydropriming or HP), 5, 10, 15 and 20 µM for 4.5 h at 
23 ± 2 °C. Seed weight to solution volume ratio was kept 
1:5 (w/v) (Farooq et al. 2006). After each seed priming treat-
ment, seeds were surface washed with running tap water and 
placed in the shade under forced air at 23 ± 2 °C, until initial 
moisture level was achieved. Finally, seeds were packed in 
plastic bags and kept in a cool place at 4 °C till sowing (Lee 
and Kim 2000). Seeds without any treatment were consid-
ered as a control treatment.

Stand establishment and seedling vigour 
evaluation

The number of germinated seeds was calculated every day 
according to the protocol described in seedling evaluation 
Handbook of Association of Official Seed Analysis (1990). 
Time taken to 50% emergence (E50) was measured following 
the equation described by Coolbear et al. (1984), and revised 
by Farooq et al. (2005). Mean emergence time (MET) was 
determined using the formulae of Ellis and Roberts (1981). 
The energy of emergence (EE) was calculated according to 
Farooq et al. (2008). The coefficient of uniformity of emer-
gence  (CUE) was measured by applying the equation of 
Bewley and Black (1994). The emergence index (EI) was 
measured as described in the association of official seed 
analysis (AOSA 1983). Seedling dry weight was determined 
after drying the plant samples at 70 °C for 72 h days.

Measurement of electrolyte leakage

Membrane stability was estimated on the bases of electrolyte 
leakage following the protocol of Blum and Ebercon (1981). 
Leaf segments, weigh 0.5 g were rinsed with distilled water 
and immersed in test tubes having 10 ml distilled water. Heads 
of all test tubes were covered with aluminum foil and placed 
in a water bath (NÜVE BS 302) at 40 °C for 30 min. All the 
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test tubes were taken out and kept at room temperature to bring 
their temperature down to 25 °C, followed by measuring EC1 
of the test tubes with a conductivity meter (Delta OHM HD 
8706). After measuring EC1 of the all test tubes containing 
same leaf samples were again placed in water bath for 10 min 
at 100 °C. Samples were taken out and cool down to 25 °C. 
The electrical conductivity of killed tissues (EC2) was meas-
ured. Electrolyte leakage was calculated as the ratio between 
EC1 and EC2.

Relative water content (RWC)

Fresh leaves were used to measure the relative water contents. 
Leaf samples (0.5 g; Wf) were floated on distilled water in 
Petri dishes for the period of 2 h to absorb water. After due 
time, saturated leaves were taken out and were surface dried 
with soft tissue paper. The saturated weight (Ws) were taken 
and then dried the leaves samples for 24 h at 80 °C in oven for 
determining the dry weight (Wd) (Jukanti et al. 2012).

Relative water content (RWC) was calculated by the fol-
lowing equation (Barr and Weatherley 1962):

RWC (%) = [(Wf − Wd)/(WS − Wd)] × 100

Phenological parameters

Phenological parameters like time taken from sowing to first 
flowering (days), time taken from sowing to 50% flowering 
(days), time taken from sowing to 100% flowering (days) 
and time taken from sowing to physiological maturity (days) 
were considered when almost 50% of plants reached to their 
particular stage.

Statistical analysis

Experiments were conducted in a completely randomized 
design (CRD) with factorial arrangement using four repli-
cations. For the comparison of treatment means, standard 
errors were figured out using Microsoft Excel program. Data 
from the study were analysed using ‘Statistix 10′ window 
program at 0.05% probability level. Means showing statisti-
cally significance were separated by LSD test at p < 0.05 
and mean separation were shown on the columns on the 
graphs for each parameter. Graphical presentation of means 
with error bars based on the standard error of the mean were 
made using Microsoft Excel program.

Results

Stand establishment

Low temperature is a major constraint to the seed germi-
nation, stand establishment and early seedling growth of 

chickpea. The state of crop establishment and the level of 
its productivity is related to the vigorous seed germination. 
Chilling stress has many adverse effects on seed germina-
tion and stand establishment. In our study, chilling stress 
reduced final emergence percentage (FEP) but seed priming 
with 10 μM GA3 improved FEP in both cultivars followed 
by 5 μM GA3 seed treatment in CTC (Fig. 1a). CSC showed 
lower FEP than that of CTC. Emergence energy (EE) was 
recorded higher in CTC in combination with 15 μM GA3 
seed priming while EE of CSC was recorded higher in 5 μM 
GA3 seed treatment (Fig. 1b). Although, chilling stress 
delayed time taken to 50% emergence (E50) and mean emer-
gence time (MET) in both cultivars but seed priming with 
GA3 reduced E50 and MET. E50 and MET were distinctly 
higher in untreated control treatment as compared to the 
GA3-treated seeds. Minimum E50 and MET were recorded in 
seed priming with 10 and 15 μM GA3, respectively (Fig. 2a, 
b). The data related to the comparison of coefficient of uni-
formity of emergence (CUE) showed that both cultivars 
differ significantly with each other. GA3 seed treatments at 
the rate of 5 and 15 μM increased CUE in CSC and CTC, 
respectively. Likewise, emergence index (EI) was recorded 
higher in CSC in 15 μM GA3 seed treatment. In CTC, HP 
improved EI as compared to other seed priming treatments 
(Fig. 3a, b).
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Fig. 1   Influence of pre-sowing gibberellic acid (GA3) seed treatments 
on a final emergence percentage (FEP) and b energy of emergence 
(EE) under chilling stress using four replications. Means with the 
same letter are not significantly different (p < 0.05) and bars on the 
columns show standard error (± S.E) of the means. Whereas CTC​ 
chilling tolerant cultivar, CSC chilling sensitive cultivar
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Periodic shoot length (cm)

Shoot length (SL) was recorded five times each after 
5 days interval to observe the shoot growth pattern under 
chilling stress. Influence of GA3 on shoot length (SL) is 
presented in Fig. 4. Under low temperature stress, SL was 
suppressed but seed priming treatment has increased or 
maintained SL of both cultivars (Fig. 4). There was dis-
tinct difference between shoot elongation rate during chill-
ing period and after shifting the pots to the ambient growth 
conditions in the greenhouse. Maximum SL was noted in 
CTC with 10, 15 or 20 μM GA3 seed priming as compared 
with control treatment. Although, increasing trend of SL 
was observed in both but the growth rate of CSC was bit 
slower than that of CTC under chilling temperature. In 
CSC, during initial growth days, the rate of increasing SL 
was relatively high in 10 and 20 μM GA3 pre-sowing treat-
ments but after 07 March, it was preceded by the 15 μM 
GA3 seed treatment. SL of the CSC increased substantially 
with higher doses (10 or 20 μM GA3) of seed treatments 
as compared with control and other seed priming treat-
ments. CTC grow vigorously and performed better than 
that of CSC under chilling stress. Chilling tolerance was 

further increased by pre-sowing seed priming with GA3 
treatments.

Relative water content (RWC) and electrolyte 
leakage (EL%)

Chilling stress resulted decrease in relative water contents 
(RWC) in both cultivars irrespective to seed priming. 
The results showed that RWC of chilling tolerant culti-
var were less disturbed under chilling stress as compared 
to the chilling sensitive cultivar (Fig. 5a). Seed priming 
with GA3 effectively improved RWC than that of control 
treatment. Seed priming with 5 or 10 μM GA3 maintained 
higher RWC in CTC while in CSC seed priming with 15 or 
20 μM GA3 treatments were very effective in maintaining 
higher RWC (Fig. 5a). Chilling stress induced the EL (the 
solutes come out from the cells), and was recorded higher 
in control treatment. The extent of EL is an indicator of 
cell membrane damage. Cell membrane is known for one 
of the swift targets of many plant stressors. Application of 
GA3 proved very effective in reducing electrolyte leakage 
by stabilizing the cell membrane. Low EL was recorded 
in 20 μM GA3 followed by 10 μM GA3 seed treatments 
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gence time (MET) and b time taken to 50% emergence (E50) of chick-
pea cultivars under chilling stress using four replications. Means with 
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Fig. 3   Influence of pre-sowing GA3 seed treatments on a coefficient 
of uniformity of emergence (CUE) and b emergence index (EI) of 
chickpea cultivars under chilling stress using four replications. Means 
with the same letter are not significantly different (p < 0.05) and bars 
on the columns indicate standard error (± S.E) of the means. CTC​ 
chilling tolerant cultivar, CSC chilling sensitive cultivar
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indicates that seed priming can be effectively use for ame-
liorating cell membrane damage under low temperature 
stress. Similarly, our results were promising in reducing 
the effect of chilling stress in both cultivars either toler-
ance or sensitive (Fig. 5b).

Chlorophyll contents (μmol m−2)

Chilling stress disordered photosynthesis by lowering and 
disrupting chlorophyll pigments. However, the pretreated 
seeds with GA3 well-maintained chlorophyll contents as 
compared with the control treatment. Leaf chlorophyll con-
tents of CTC and CSC cultivars were recorded higher in 
15 μM and 5 μM GA3 seed treatments, respectively (Fig. 6a). 
Chlorophyll contents of the plants after 1 week of their shift-
ing to the greenhouse (ambient environment) revealed higher 
chlorophyll recovery in CSC as compared with CTC. In 
CTC, chlorophyll contents were already higher than CSC 
so less change was observed. Seed priming with 20 μM 
GA3 was the best treatment for CSC. In CTC, there was no 
significant difference in chlorophyll contents between seed 
priming and control treatment (Fig. 6b).

Plant growth parameters

Pre-sowing GA3 seed priming increased shoot dry weight 
significantly in CSC, while there was no significant differ-
ence in CTC was found as compared with control treatment. 
Seed priming with 5 μM GA3 was the most effective seed 
treatment in increasing plant dry weight (Fig. 7a). Seed 
priming has influenced root dry weight in both chickpea 
cultivars (Fig. 7b). Maximum root dry weight was recorded 
in the CTC sown after 20 μM GA3 seed treatment. Similarly, 
seed priming with 10 μM GA3 increased root dry weight of 
CSC cultivar (Fig. 7b), however, seed priming with 20 μM 
GA3 resulted lowest root dry weight in CSC (Fig. 7b).

Plant height and root length (cm)

Seed priming was helpful in improving plant height and root 
length (RL) of both chickpea cultivar. Maximum plant height 
was measured in CSC in seed priming with 10 μM GA3 

Fig. 4   Role of seed priming 
with GA3 on periodic shoot 
length (cm) of two chickpea cul-
tivars sown under chilling stress 
using four replications. Bars on 
the lines indicate standard error 
(± S.E) of the means
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Fig. 5   Role of seed priming with GA3 on a relative water content 
(RWC) and b electrolyte leakage (EL) of two chickpea cultivars sown 
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indicate standard error (± S.E) of the means. CTC​ chilling tolerant 
cultivar, CSC chilling sensitive cultivar
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and minimum plant height was in control treatment. Plant 
height of CTC varied between 53.66 and 60 cm (Fig. 8a). 
Root lengths of CSC and CTC were ranged between 6.33 
and 16.33 cm and 11.33–17.33 cm, respectively (Fig. 8b). 
Maximum root length was recorded in CTC in 10 μM GA3 
seed treatment (Fig. 8b) and the minimum RL was in control 
treatment. Overall CTC produced long roots as compared 
with CSC of all priming treatments except seed priming 
with 20 μM GA3 where CSC performed better than CTC 
(Fig. 8b).

Number of flowers and branches

Number of flowers were differed in primed and non-
primed seeds. Seed priming with higher GA3 concentration 
improved number of flowers in both cultivars (Fig. 9a). Seed 
priming with 10 or 15 μM GA3 doses produced higher num-
ber of flowers in both cultivars. Maximum number of flow-
ers were counted in CTC with 10 μM GA3 seed treatment. 
Number of branches were improved in CSC when seeds 
were sown after seed priming with GA3 as compared with 
untreated seeds. Overall number of branches were observed 
higher in CSC in priming treatments while under control 

treatments number of branches were higher in CTC. It means 
CSC was more responsive to GA3 seed priming in term of 
production of branches (Fig. 9a).

Discussion

Chilling temperature stress affected seed germination, 
stand establishment and early growth of both tested culti-
vars (Figs. 1, 2, 3). The present findings are in line with 
the Yusefi-Tanha et al. (2015). They reported poor seed-
ling emergence under-chilling temperature stress in peas, 
but seed priming improved final emergence percentage. The 
reasons behind low germination were might be the adverse 
effect of reactive oxygen species and poor enzymatic activi-
ties. Chilling stress can ramp up the production of reactive 
oxygen species (ROS) which disturbed electron flow during 
metabolism. ROS damage the cell membranes and caused 
electrolyte leakage and proscribe seed germination (Baal-
baki et al. 1999; Yusefi-Tanha et al. 2019). In seeds, GA3 
involves in physiological and metabolic processes to initiate 
seed germination (Pipinis et al. 2012), and also help up to 
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alleviate the adverse effect of stress as found in our study 
(Fig. 1a, b). Kirmizi et al. (2010) reported that application 
of 150 ppm GA3 under low temperature increases germina-
tion percentage in Pedicularis olympica (Scrophulariaceae). 
In the current research, seed priming with GA3 improved 
seedling emergence percentage and reduced E50 and MET 
(Fig. 2a, b). Gibberellic acid takes part in inducing hydro-
lytic enzyme activities such as hydrogenase and α-amylase 
(Gupta et al. 2013) to initiate germination process in the 
seed and speed up germination process. Seed priming with 
GA3 can hastens seed germination rate by stimulating and 
activating the food-digestive and food mobilizing enzymes 
(Hartmann et al. 1997). Taiz and Zeiger (2002) reported that 
embryo naturally releases GA3 that activate particular genes 
for mRNA transcription by α-amylase during seed germi-
nation. The activation of α-amylase and couple of other 
enzymes degrades the food reserves and makes available 
for embryo consumption. The other possible reason behind 
good stand establishment was that primed seeds had already 
completed the first two phases of seed germination; in other 
words, seeds were at the brink of germination. On the other 
hand, enzymes must have to digest food reserves first to 

convert complex food to simple available form in unprimed 
seeds for the embryo utilization. Therefore, embryo takes 
much longer time to grow in untreated seeds due to low and 
slow availability of soluble food.

Earlier research findings showed that chilling stress 
reduces plant growth but seed treatment with GA3 stimulates 
plant growth (Rehman and Park 2000). Thakare et al. (2011) 
also reported that seed priming with GA3 enhances chick-
pea height under low temperature stress. Higher plant height 
in GA3-treated seedlings, might be the result of higher cell 
division, cell elongation (Naylor 1984), in addition to high 
cell wall acid invertase activity (Kaur et al. 1998; Kaya et al. 
2006). Cell wall acid invertase enzymes catalyze the irre-
versible breakdown of sucrose to free glucose and fructose 
and are the fundamental enzymes take part in controlling 
cell differentiation and plant development (Koch 1996). GA3 
also trigger the metabolic consumption of soluble sugars to 
form new cell constituents which involves in growth process 
(Jasmine and Merina 2012). In short statured pea (Pisum 
sativum) plants, GA3 treatment triggered shoot length by 
activating cell-wall invertase enzyme (Wu et al. 1993). In 
beans (Phaseolus vulgaris), GA3-treated plants showed 
high invertase activity in elongating internodes (Morris and 
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Arthur 1985), and resulting stem elongation. GA3 has natu-
ral character that boost up impaired cell division and cell 
elongation under unfavorable conditions (Kaya et al. 2006). 
This might be the result of less water requirements or high 
water up take in the presence of plant growth hormones 
during seedling growth (Kaur et al. 1998). Chilling stress 
induces production of ROS, causes reduction in cell division 
and cell elongation (Kaya et al. 2006) and modify biochemi-
cal changes in cell wall during cell growth and restrict cell 
wall extension (VanVolkenburgh and Boyer 1985).

Relative water contents give the information about inter-
nal plant water status and all types of metabolic activities 
are directly linked with the presence of water in the plant 
tissues (Flower and Ludlow 1986). RWC is associated with 
leaf water potential and correlated with plant yield (Lafitte 
2002). Seed priming with 5 or 10 μM GA3 maintained 
higher RWC in CTC while in CSC seed priming with 15 
or 20 μM GA3 treatments were very effective in maintain-
ing high RWC (Fig. 5a). Under low temperature stress, low 
RWC were possibly due to the decrease of cell metabolites 
and solutes available to keep the water within the cells. The 
main effect of low temperature stress on developing seed-
lings were related to turgor loss, as a consequence of turgor 
loss, plant showed wilting as well as drought symptoms 
(Croser et al. 2003). So, in this regard, high RWC of plant 
leaf under low temperature could be used as an indicator of 
chilling tolerance (Singh et al. 2012; Ghosh et al. 2016). In 
20 μM GA3-treated seeds low electrolyte leakage occurred 
followed by 10 μM GA3 seed treatments indicates that seed 
priming can be effectively used for ameliorating cell mem-
brane damage under low temperature stress (Fig. 5b). Chill-
ing stress triggers the production of reactive oxygen species 
that disturbed the electron flow across the plasma membrane. 
Under chilling stress, membrane lipids usually transform 
from fluid to gel or semisolid or solid states, which limits 
membrane permeability (Leshem 2013). Under such condi-
tions, ROS may react with membrane’s polyunsaturated fatty 
acids and induce lipid peroxidation and damage cell mem-
brane. It might be thought that GA3 increases Ca2+ ion in the 
leaf cells which help to keep water balance. Likewise, Ali 
et al. (2012) reported that the role of GA3 is obvious in main-
taining high RWC of leaf. Kaya et al. (2006) also reported 
similar results that GA3 increase relative water contents by 
increasing root length and water uptake. In nutshell, seed 
priming with GA3 proved effective in decreasing EL and 
increasing RWC under low temperature stress (Fig. 5a, b).

Chlorophyll contents of CTC and CSC cultivars were 
improved with 15 and 5 μM GA3 seed treatments, respec-
tively (Fig. 6a). Tatar et  al. (2013) noted that chilling 
stress inhibit chlorophyll contents, damage its structure 
and function in non-treated seeds. They also reported that 
Sarı-98 and VDI-5 cultivars differ in chlorophyll content 
under chilling conditions. Georgia et al. (2010) reported 

that externally applied GA3 increased quantum yield and 
the ratio of Fv/Fm in chilies. Another study report stated 
that GA3 increased chlorophyll content in grape (Lim 
et al. 2004). Seed priming with 200 ppm GA3 increased 
chlorophyll content in papaya seedlings by accelerating 
nitrogen uptake (Ramteke et al. 2016). Under low tempera-
ture stress, reduction in chlorophyll contents might be the 
result of proteolytic enzymes synthesis such as chlorophyl-
lase that involved in chlorophyll degradation (Sabater and 
Rodriquez 1978), and harm the photosynthetic apparatus 
(Yasseen 1983).

Seed priming with 5 μM GA3 was the most effective 
seed treatment in increasing plant dry weight (Fig. 7a). 
Maximum plant height and root length was measured in 
CSC in combination with seed priming with 10 μM GA3 
and minimum plant height was recorded in control treat-
ment (Fig. 8a, b). Many researchers reported that seed 
priming with GA3 accelerates root and shoot length, fresh 
and dry weight and increases leaf water content (Little 
and MacDonald 2003; Ghodrat and Rousta 2012; Shehzad 
et al. 2014). In another study, no significant change in dry 
matter accumulation was reported in indian grass under 
chilling stress when the seeds were sown after soaking in 
1000 ppm GA3 solution (Watkinson and Pill 1998). The 
contradictory results in dry matter accumulation in Indian 
grass might be the seeds required higher concentration of 
GA3 to stimulate dry matter accumulation in seedlings. In 
sum up, application of seed priming with gibberellic acid 
in chickpea has positive effect on plant shoot and root dry 
weight.

In our study, number of the flowers and branches were 
differed in plants grown from primed and non-primed seeds 
with GA3 treatment (Fig. 9a, b). Some previous research 
investigation showed that seed priming can increased the 
number of branches from 6.63 to 10.43 per plant (Chavan 
et al. 2014). But in another study, contradictory results 
were reported by Khan et al. (2005). GA3 involves in flower 
induction by increasing invertase enzyme activity in sugar 
cane (Sacher et al. 1963). In phalaenopsis plants, application 
of GA3 up to 1000 ppm increased flower numbers almost 
double without giving any harm to plants (Cardoso et al. 
2012). Some other studies revealed that GA3 plays a subsidi-
ary role in flower induction (Dong et al. 2017). Our findings 
are agreed with Zhang et al. (2016), they were reported that 
GA3 regulates flowering in wheat.

On the bases of above study, it is concluded that seed 
priming could help in maintaining stand establishment, 
increasing shoot length, root length, leaf relative water con-
tent, seedling dry weight, number of flowers and decreas-
ing electrolyte leakage in chickpea cultivars under chilling 
stress. Seed priming could be successfully used for grow-
ing chickpea in low temperature areas to improve the plant 
performance.
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