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Abstract
Heavy metal contamination is a major trouble across the world. In India, there have been many reports of heavy metal pollu-
tion due to speedy industrialization and urbanization. The Indian brown mustard is an important oil yielding crop. However, 
the response of Indian mustard at germination and early seedlings stages to heavy metals like cadmium (Cd) stress is not clear. 
Current work renders a perceptivity into the part played by enzymatic and non-enzymatic antioxidants towards differential 
response of Cd (0, 0.5, and 1.0 mM doses) stress in mustard cultivars (Pusa bold, Pusa bahar, and Pusa agrani). The results 
show that irrespective of dose, Cd severely hamper germination and retard the early seedling growth in mustard cultivars. 
Pusa bold showed comparatively less reduction in seedling growth as compared to Pusa bahar and Pusa argani. Oxidative 
stress as measured by lipid peroxidation (MDA), hydrogen peroxide  (H2O2), lipoxygenase (LOX), and cell death was sig-
nificantly less in Pusa bold than Pusa agrani. Chlorophyll and carotenoids’ content was significantly reduced in Pusa agrani 
compared to Pusa bold. On the other hand, antioxidant metabolites (proline, ascorbate, and glutathione) showed increased 
accumulation under Cd stress in Indian mustard; also was the case with antioxidant enzymes (superoxide dismutase, cata-
lase, glutathione-s-transferase, glutathione reductase, ascorbate peroxidase, and peroxidase), which significantly (p < 0.001) 
increased in Pusa bold when compared to other two. This work brings into limelight the significant role of enzymatic and 
non-enzymatic antioxidants in three varieties of Indian mustard under Cd stress during germination and early seedling growth. 
The three cultivars in order of decreasing sensitivity to Cd: Pusa agrani > Pusa bahar > Pusa bold
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Introduction

Heavy metal pollution in soil is a very serious concern for 
the living world. Speedy industrialization and urbanization 
have contributed to exponential increase of heavy metal 

concentrations in the soil which is ultimately affecting liv-
ing organisms. It directly poses a negative impact on plant 
growth, mineral balance, metabolic processes, and yield. Cd 
is a non-essential heavy metal and is also considered as one 
of the most potent among top ten toxic heavy metals. Cd is 
normally noticed in the earth’s crust along with zinc, lead, 
and copper ores. The chief source of Cd contamination in 
soil is excess use of fertilizer and pesticides (Cheng et al. 
2014; Fagerberg et al. 2015), mining, metallurgy, electro-
plating, etc. When crops are cultivated in Cd contaminated 
soil, it easily gets absorbed due to its high mobility features 
and gets accumulated in different parts of plants (Aery and 
Rana 2003; Lux et al. 2010). Once Cd enter into plant, it 
reduces growth, and causes mineral nutrition imbalance and 
photosynthesis inhibition.

Seed germination is a crucial stage in the life cycle of 
plants. Cd surplus in the soil, which induces diminution in 
germination rate and seedling growth (Heidari and Sarani 
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2011; Shanmugaraj et al. 2013; Bohra and Sanadhya 2015; 
He et al. 2014; Chen et al. 2011). Cd toxicity stimulates 
different repercussions at physiological, biochemical, mor-
phological, and molecular levels (Shanmugraj et al. 2013; 
Daud et al. 2013; Fojtová and Kovãrik 2000; Kapoor et al. 
2014). Cd toxicity hastens ROS synthesis in plants. In 
response to this oxidative burst, many non-enzymatic (pro-
line, ascorbate, and glutathione) and enzymatic (superoxi-
dase dismutase, catalase, peroxidase, glutathione reductase, 
glutathione-s-transferase, and ascorbate peroxidase) systems 
are induced in plants, for scavenging of these ROS moie-
ties (Mobin and Khan 2007; Li et al. 2013). Previous works 
have mentioned that the activities of antioxidant enzymes 
are directly involved with plant’s resistance against Cd stress 
(Ekmekci et al. 2008; Shah et al. 2001; Lannelli et al. 2002). 
Superoxide anion  (O2

−) is converted into hydrogen peroxide 
 (H2O2) with the help of SOD, whereas POD acts to convert 
 H2O2 into water  (H2O), and CAT breaks  H2O2 into oxygen 
 (O2) and water  (H2O) molecules. On the other hand, metabo-
lites, viz., proline, ascorbate, and glutathione, accumulate in 
plants in response to stressors not only to regulate osmolar-
ity, but also assist in ROS scavenging activities (Apel and 
Hirt 2004; Guo et al. 2019; Murtaza et al. 2019).

Most of the work, reaction of mustard to toxicity of heavy 
metal has been done on late seedling stages (Vatehova et al. 
2012; Gill et al. 2011a, b; Nouairi et al. 2009). A few studies 
were done at seed germination and early seedling growth, 
but no detailed studies in Indian mustard are present (Bohra 
and Sanadhya 2015; Marchiol et al. 2006; Bauddh and Singh 
2011). Our studies provide a detailed knowledge of physi-
ological, morphological, and biochemical changes due to 
Cd toxicity in three cultivated genotypes during germination 
and early seedling stage.

Materials and methods

Three popular varieties of Indian brown mustard (Brassica 
juncea), viz., Pusa bold, Pusa bahar, and Pusa agrani, were 
acquired from IARI (Indian Agricultural Research Institute) 
Regional station, Karanal, India. Surface sterilized seeds (in 
1% (w/v) NaOCl solution for 15 min followed by washing 
with distilled water) were put to germination in petri-plate 
(Borosil, 9.0 cm in diameter) with cotton embedding and 
treated with solution of Cd  (CdCl2 salt, Sigma-Aldrich, 
molecular weight—183.32 and purity of 99.99%). In this 
experiment, four concentrations of Cd; 0.5 mM, 1.0 mM, 
2.0 mM, and 4.0 mM excluding control and three varie-
ties were selected. During the course of the experiment, 
25 seeds were placed in each plate and 10.0 ml of solution 
was introduced into the petri-plates. Plants were grown in 
a growth chamber below white light with photon flux den-
sity of 52 µmol m−2 s−1 (PAR) along with a mean day and 

night temperature of 22/14 ± 3 °C and relative humidity of 
62° ± 5%. In this experiment, total fifteen treatment combi-
nations were repeated thrice in 45 petri-plates in a stochastic 
fashion.

Morphometric attributes

7 DAS (days after sowing) petri-plates were evaluated to 
assess the final germination percentage (FGP), germination 
index (GI), seedling vigor index (SVI), and moisture con-
tent percentage (MCP) along with seedling length were also 
measured by adopting the protocols given by Li (2008), Baki 
and Anderson (1973), and Moulick et al. (2016) respectively, 
all in triplicates.

Biochemical attributes

During the course of biochemical and thereafter for metal 
content analysis, doses of 2.0 and 4.0 mM Cd were not con-
sidered, for being extremely lethal to all the chosen three 
varieties (Chowardhara et al. 2019). At 7DAS, intact seed-
lings from each treatment were evaluated for chlorophyll a, 
chlorophyll b, total chlorophyll, and carotenoids following 
Arnon (1949). Lipid peroxidation/malondialdehyde (MDA), 
lipoxygenase (LOX), and hydrogen peroxide content  (H2O2) 
complying with Heath and Packer (1968), Williams et al. 
(2000), and Alexiva et  al. (2001) respectively, whereas 
proline, glutathione, and ascorbate estimation were done 
according to Bates et al. (1973), Oser and Hawks (1985) 
and Anderson (1985), respectively.

Besides these, antioxidant enzyme profiles of seedlings 
germinated under Cd stress were also elucidated. To pre-
pare enzyme extract for the same, tissue samples were 
grounded in 0.1 M phosphate buffer supplemented with 
1 mM EDTA and 1% PVP. The grounded product was centri-
fuged at 13,000 rpm for 20 min at 4 °C. The supernatant was 
employed to determine enzyme activity. For ascorbate perox-
idase (APX) extraction, buffer additionally contained 2 mM 
ascorbic acid. Enzyme activity was estimated for superoxide 
dismutase (SOD; EC.1.15.1.1), guaiacol peroxidase (POX; 
EC.1.11.1.7), catalase (CAT; EC.1.11.1.6), glutathione S 
transferase (GST; EC.2.5.1.18), glutathione reductase (GR; 
EC.1.8.1.7), polyphenol oxidase (PPO; EC.1.14.18.1), and 
ascorbate peroxidase (APX; EC.1.11.1.11) following the 
protocols of Gupta et al. 1993; Chance and Maehly 1955; 
Habig and Jakoby, 1981; Smith et al. 1988; Mayer et al. 
1966; Nakano and Asada 1981, respectively.

Estimation of membrane injury index/cell death

Cell viability was estimated spectrophotometrically by 
measuring Evan’s blue uptake following Yamamoto et al. 
(2001) protocol. The intact seedling was infiltrated with 
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0.25% Evan’s blue solution for 30 min. After that, seed-
lings were rinsed with 100 µM  CaCl2 three times to remove 
excess stain. The stained seedling was homogenized in 1% 
SDS solution and centrifuged at 12,000 rpm for 20 min. The 
supernatant was quantitated for OD at 600 nm.

Elemental profile of intact Brassica seedlings

By complying with the protocol depicted by Gill et  al. 
(2011a, b), Cd contents of intact seedlings of three tested 
varieties were analyzed. At 7 DAS, intact seedlings were col-
lected from each treatment and washed with tap water suc-
ceeded by distilled water to assure the absence of any kind 
of metal deposition. Intact seedlings were then oven-dried at 
72 °C for 48 h and then grounded to fine powder. Before acid 
digestion, all apparatus (glass-wares and stainless spatulas) 
were dipped in freshly prepared chromic acid solution for 
24 h and again oven-dried. Accurately 0.1 g of plant material 
from each treatment were acid digested by adding 5.0 ml of 
a di-acid mixture (containing perchloric acid and nitric acid) 
in 1:3 ratios along with reagent blank (5.0 ml of acid mixture 
only) replicated thrice by adopting block digestion method 
and then quantified the elements using atomic absorption 
spectrophotometer (AAS-ICE 3500).

Statistical analysis

All the obtained information was evinced as mean (n = 3) 
followed by standard error (mean ± SE) format using SPSS 
21 (Windows version) software. Furthermore, difference 
among the various treatments was determined by employ-
ing two-way ANOVA (analysis of variance) and post hoc 
Tukey’s HSD (honest significant difference) test at 0.05 level 
of significance. Origin Pro 8.5 software was employed for 
plotting graphs.

Results

Consequence of cadmium on germination 
and seedling growth

Cd stress exposure led to reduction in the final germination 
% (significant at p < 0.001 and 0.01 levels respectively) was 
observed, in the examined varieties in accordance with the 
strength of Cd. Within the three tested cultivars, Pusa bold 
had the highest rate of germination percentage (76%) even in 
the highest dose (4.0 mM) of Cd stress, as compared to the 
Pusa agrani and Pusa bahar varieties. Similarly, the germina-
tion index was significantly reduced (at p < 0.001 level) in 
all varieties under Cd. The seedling vigor index also showed 
gradual reduction dose-dependently. Pusa bold showed the 
highest seedling vigor index. The seedling length undergoes 

prominent (at p < 0.001 level) diminution with increase in 
Cd dose. Among the varieties, the growth of Pusa bold was 
found to be least affected (Table 1).

Measurement of Cd‑induced oxidative stress and its 
impact

Among the varieties considered here, when analysed with 
respect to controls (grown in absence of Cd), Pusa bold 
showed least MDA accumulation (by 48.36%) than Pusa 
bahar (53.31%) and Pusa agrani (52.26%), respectively, 
grown at 1.0 mM of Cd stress (Fig. 1a). The lipoxygenase 
content increased profoundly with time and dose of heavy 
metals. The lowest activity was found in Pusa bold and 
highest in Pusa agrani. It showed 5.37-, 4.79-, and 3.13-
fold increase in Pusa agrani, Pusa bahar, and Pusa bold at 
1.0 mM of Cd, respectively (Fig. 1b). Findings from the 
current experiment suggest that besides MDA, LOX con-
tent,  H2O2 was also found to increase in a linear fashion 
under Cd stress. At 7 DAS, the maximum level of  H2O2 was 
observed in Pusa agrani (67.11%) over control under 1.0 mM 
Cd stress (Fig. 1c). The ion leakage phenomenon was used 
as cell death marker. Pusa agrani showed highest ion leak-
age (210%) after Pusa bahar and Pusa bold, respectively, at 
1.0 mM Cd concentration (Fig. 1d).

Effect of cadmium on photosynthetic pigments

Pusa agrani showed the highest reduction (57.15%) of 
chlorophyll a, and then Pusa bahar (42.97%) and Pusa 
bold (33.74%), respectively, to 1.0 mM Cd stress at 7DAS 
(Fig. 2a). Similar phenomenon was observed in case of chlo-
rophyll b, total chlorophyll, and carotenoids on exposure to 
Cd stress (Fig. 2b–d).

Effect of Cd on proline accumulation

The proline content significantly increased in all the three 
varieties of Indian mustard compared to respective con-
trols on Cd treatment. Here, Pusa bold (4.62 fold) showed 
the highest accumulation, whereas Pusa agrani (2.54-fold) 
less amount of proline under 1.0 mM Cd stress at 7DAS 
(Fig. 3a).

Effects on ascorbate and glutathione accumulation

Ascorbate content heightened with the enhancement in Cd 
dose in all the studied varieties. Among the varieties con-
sidered here, Pusa bold experienced the highest increase in 
ascorbate content in a dose-dependent manner whereas, Pusa 
agrani showed the least ascorbate concentration (Fig. 3b). 
Reduced and oxidized glutathione showed significant 
increase with increase in concentration of Cd. Pusa agrani, 
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Pusa bahar, and Pusa bold showed 4.68-, 7.36-, and 7.95-
fold increase in reduced glutathione, respectively, under 
1.0 mM of Cd treatment with respect to control (Fig. 3c, 
d). The results of oxidized glutathione and total glutathione 
showed similar trend as of reduced glutathione. GSH/GSSG 
ratio under 1.0 mM of cadmium stress did not show much 
deviation from what observed in control condition (Fig. 3f).

Effects of cadmium stress on antioxidant enzymes 
activities

The antioxidant enzymes have crucial roles to play in pre-
cluding oxidative stress by detoxification of free radicals. 
Higher activity denotes better ROS scavenging and, hence, 
better survival instincts. SOD activity increased by 1.59-, 
2.02-, and 2.34-fold in Pusa agrani, Pusa bahar, and Pusa 
bold, respectively, at 1.0 mM Cd stress, with respect to 
controls (Fig. 4a). POX activity was also found to increase 
in a dose-dependent and variety irrespective manner in a 
highly significant way (at p < 0.001 level) for Pusa bold. 
Among the varieties, an enhancement by 78.34%, 69.49%, 
and 42.02% in Pusa bold, Pusa bahar, and Pusa agrani can 
be seen under 1.0 mM Cd stress, respectively, at 7 DAS 
(Fig. 4b). Similar to previous trend, a moderate-to-high 

significant (at p < 0.01–0.001 level) enhancement in CAT 
activity can be seen in all the studied varieties in a concen-
tration-dependent mode under Cd stress. At 7 DAS, high-
est activity of CAT was recorded in Pusa bold (2.04 fold) 
and least in Pusa agrani (1.38 fold) at 1.0 mM Cd stress 
(Fig. 4c). The Cd stress on mustard seedlings increased 
GST activities at early seedling stage. The highest activi-
ties were recorded in Pusa bold and Pusa bahar varieties. 
At 7 DAS, the relative activity of GST was recorded as 
69.91%, 74.83%, and 75.13% at 1.0 mM of Cd for Pusa 
agrani, Pusa bahar, and Pusa bold, respectively (Fig. 4d). 
GR activities in Pusa agrani, Pusa bahar, and Pusa bold 
increased by 1.6-, 1.69-, and 2.14-fold, respectively, at 
1.0 mM dose of Cd. Pusa agrani relatively showed lesser 
increase in GR activity (Fig. 5a). Exposure to heavy met-
als significantly enhanced the functioning of PPO in all 
tested cultivars. Among the three varieties, though Pusa 
bold experienced highest PPO activity in a dose-dependent 
manner, but it was not significant compared to other two. 
The APX activity significantly heightened with enhance-
ment in the concentrations of Cd. Among the three varie-
ties, Pusa bold showed the highest activity of APX on Cd 
treatment at 7 DAS (Fig. 5c).

Table 1  Consequences of Cd toxicity on germination, seedling growth, and metal content (in intact seedlings) at 7 DAS (days after sowing)

Values refer to the mean value (n = 3) followed by letter case; values with identical letter case in a column are not significantly different at 
p < 0.05
*, **, and *** indicate that values were significant at p < 0.05, 0.01, and 0.001 levels, respectively

Cultivar Cd dose (mM) Final ger-
mination % 
(FGP)

Germination index 
(GI)

Seedling vigor index 
(SVI)

Seedling length 
(cm)

Moisture 
content % 
(MCP)

Metal content 
(MC) (ppm)

Pusa agrani 0.0 98.66 ± 0.66bc 21.76 ± 0.18b 1353.96 ± 0.46d 13.85 ± 0.14d 91.85 ± 1.18c 0 ± 0a

0.5 89.66 ± 0.33b 20.22 ± 0.56ab 403.61 ± 1.80c 4.50 ± 0.16c 87.74 ± 0.70bc 3.31 ± 0.01cd

1.0 81.33 ± 0.66ab 18.47 ± 0.07ab 177.98 ± 2.86b 2.19 ± 0.23ab 80.06 ± 0.74bc 6.36 ± 0.07e

2.0 73.33 ± 0.33a 17.11 ± 0.74ab 73.38 ± 4.01ab 1.0 ± 0.05a 78.00 ± 0.55b –
4.0 37.33 ± 0.66a 12.23 ± 0.10a 29.45 ± 2.79a 0.79 ± 0.08a 69.78 ± 1.18ab –

Pusa bahar 0.0 91.33 ± 0.66bc 24.06 ± 0.91b 1251.50 ± 0.64cd 13.62 ± 0.31d 92.00 ± 1.18c 0 ± 0a

0.5 90.0 ± 0.0b 21.52 ± 0.18ab 480.02 ± 0.54c 5.33 ± 0.18c 89.03 ± 0.70c 2.41 ± 0.009c

1.0 86.33 ± 0.33b 19.53 ± 0.59ab 178.74 ± 1.01b 2.46 ± 0.17ab 86.99 ± 0.74bc 4.59 ± 0.03d

2.0 74.66 ± 0.66ab 17.28 ± 0.62ab 76.29 ± 2.85ab 1.04 ± 0.25a 78.03 ± 0.55b –
4.0 59.33 ± 0.33ab 12.37 ± 0.11a 44.43 ± 1.56a 0.93 ± 0.09a 68.64 ± 0.77ab –

Pusa bold 0.0 94.33 ± 0.33c 22.64 ± 0.59b 1245.35 ± 0.39cd 13.38 ± 0.35d 86.91 ± 0.46b 0 ± 0a

0.5 92.66 ± 0.66b 21.68 ± 0.16ab 583.56 ± 3.05c 6.30 ± 0.46c 85.88 ± 2.87b 0.90 ± 0.002b

1.0 88.33 ± 0.33b 19.72 ± 0.34ab 305.18 ± 3.40bc 3.45 ± 0.17b 84.70 ± 3.15b 3.01 ± 0.003cd

2.0 84.66 ± 0.66ab 17.9 ± 0.62a 173.85 ± 1.15b 2.05 ± 0.13ab 82.57 ± 2.21b –
4.0 75.33 ± 0.66ab 13.69 ± 0.23a 100.59 ± 5.52ab 1.35 ± 0.20a 75.31 ± 2.55ab –

Source of variations F value

Variety 4.35* 0.18 10.49*** 7.45** 0.922 3.79***
Cd stress 24.68*** 22.86*** 704.86*** 667.08*** 39.91*** 2.232***
Cd stress × variety 3.86** 0.5 3.46** 2.23* 2.33* 1.042***



Acta Physiologiae Plantarum (2020) 42:105 

1 3

Page 5 of 12 105

Determination of cadmium content in plant tissue

The atomic absorption spectrometry data for all the varie-
ties showed an enhancement in Cd content when exposed 
to stress (Table 1). Accumulation of Cd was observed to be 
more in 1.0 mM Cd treatments. Whereas, among the varie-
ties considered here, the order of Cd content lies in the order 
Pusa bold < Pusa bahar < Pusa agrani.

Discussion

Germination of seed is a crucial phase in the life cycle of 
any plant which is highly dependent on variety of environ-
mental factors (Seneviratne et al. 2017; Anjum et al. 2015). 
Suppression of seed germination under Cd stress may be 
considered as the absence of necessary/sufficient protec-
tive arrangement during this particular stage (germination) 
of plants’ life cycle. At this junction (during germination), 

for the first time, plants come into contact with external 
environment. If any kind of stressor exists (biotic/abiotic 
such as Cd here), it makes germination and seedling growth 
(early developmental stage) more prone to inhibition (Liu 
et al. 2012a, b). Generally, heavy metals bear toxic effects 
on ecosystem, especially in agro-ecosystem. Cd had direct 
impression on germination, growth, and development of 
mustard plants. The consequences of Cd on germination 
were scored as FGP, GI, and SVI which had been earlier 
recorded in different plants, e.g., mulberry (Chen et al.2019), 
bread wheat (Bouziani et  al. 2019), Ocimum basilicum 
(Singh and Lal, 2018), Oryza sativa (He et al. 2014), Picea 
omorika (Prodanovic et al. 2016), and Suaeda salsa (Liu 
et al. 2012a, b) with similar responses. Current findings 
regarding a decline in FGP, GI, and SVI in all the tested 
varieties in accordance with stress indicate significant phy-
totoxicity due to Cd.

If ROS persists for longer duration within the plant cell, 
it results in undesired consequences like intensification in 

Fig. 1  Impact of Cd stress on a MDA, b LOX, c  H2O2, and d cell 
death at 7 DAS. Each vertical column represents mean ± SE (n = 3) 
value. Column-bearing same letter cases are not significantly different 

at p ˂  0.05 level. *, **, and *** indicate that the F values are signifi-
cant at 0.05, 0.01, and 0.001 levels, respectively
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MDA content (lipid peroxidation), and subsequent loss of 
ions from the cell which ultimately results in cell death. 
MDA,  H2O2, and LOX (associated with lipid peroxidation) 
content/activity has been employed as a reliable indicant of 
stress (Aravind et al. 2003; Zhou et al. 2008; Zhang et al. 
2016; Samma et al. 2017; Borgohain et al. 2019). The results 
show marked enhancement in MDA,  H2O2, and LOX con-
tent/activity irrespective of varietal and stressor (Cd) dif-
ferences in a linear fashion, indicating that Cd have the 
potential to significantly disrupt the ROS homeostasis in 
all the tested varieties. Results also show that, from varietal 
prospect, MDA,  H2O2, and LOX content/activity follows the 
order Pusa bold < Pusa bahar < Pusa agrani. Cell death due 
to loss of membrane integrity has been depicted through 
enhancement in uptake of EB staining here. EB staining 
is a commonly employed tool to measured cell death for 
membrane degradation in numerous crops like Oryza sativa 
(Choudhury and Panda 2004), Pisum sativum (Yamamoto 
et al., 2001), and Nicotiana tabacum when exposed to alu-
minum (Zhang et al. 2016). With respect to control, cell 

death was more prominent when exposed to Cd in all the 
cultivars. Among the varieties considered here, the effect 
was more striking in Pusa agrani whereas least in Pusa bold.

Plant pigments (Chl a, b and carotenoids) are stress sen-
sitive. Various reports have mentioned that pigments are 
highly sensitive to heavy metals (Lu and Zhang 2000; Ekme-
kci et al. 2008). Chlorophyll content has been considered 
as important stress stimulated biomarker to measure heavy 
metal phytotoxicity in various crops (Moulick et al. 2017, 
2018). Cd stress can lead to a decrease in chlorophyll con-
tent in a linear fashion in all the tested varieties, as earlier 
observed by Shi and Cai (2008).

The prominent diminution in chlorophyll capacity 
might be the consequence of aggregation of Cd in seed-
ling leaves, which later inhibit the chlorophyll biosynthesis 
process, stimulate chlorophyll reduction, and cause alter-
nation of magnesium bi-valent ion from chlorophyll with 
Cd, as it bears alike oxidation state or even by facilitating 
membrane (thylakoid) damage (Parmar et al. 2013; Kup-
per and Andresen 2016). The reduction of photochemical 

Fig. 2  Impact of Cd stress on a chlorophyll a, b chlorophyll b, c total 
chlorophyll, and d cartenoids at 7DAS. Each vertical column repre-
sents mean ± SE (n = 3) value. Column-bearing same letter cases are 

not significantly different at p ˂  0.05 level. *, **, and *** indicate that 
the F values are significant at 0.05, 0.01, and 0.001 levels, respec-
tively
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function ultimately leads to diminution in seedling growth 
in all cultivars due to the degradation of chlorophyll con-
tent. Besides these, a significant increment in the functioning 
of non-enzymatic antioxidants and carotenoids was found. 
Previous statement was supported by Dias et al. 2013; Jali 
et al. 2016; Nath et al. 2017 detecting that greater efforts of 
plants towards ROS quenching activity to withstand excess 
Cd-induced imbalance of cellular machinery in a significant 
manner, applicable to all the tested varieties.

Metabolites plays a crucial part in plant abiotic stress 
responses. Proline, ascorbate, and glutathione are three main 
metabolites which plays a crucial role during heavy metals 
stress in plants. Sun et al. (2007) mentioned that free proline 
combines with Cd to form a non-toxic Cd proline complex. 
Our results showed that enhancement in Cd dose causes a 
significant increase in proline content under Cd stress. Simi-
lar result was found in different plants under Cd stress, i.e., 
Solanum melongena (Sun et al. 2007), Malva parviflora 
(Zoufan et al. 2018), Arachis hypogsea (Dinakar et al. 2009), 
and Groenlandia densa (Yilmaz and Parlak 2011).

GSH-AsA cycle is a major antioxidant system in plants 
which is responsible for neutralization of ROS moieties 
(Khan et al. 2019). Our finding shows a significant enhance-
ment in AsA-GSH under Cd stress especially in Pusa bold, 
as compared to other two cultivated Indian mustard varieties.

Antioxidant enzymes also have a crucial part in ROS 
scavenging and quenching activities to mitigate oxidative 
damage caused by too heavy metals. A marked increase in 
antioxidant enzymes under Cd toxicity irrespective of vari-
etal differences suggests that the studied varieties employ 
a considerable effort to detoxify ROS induced upon expo-
sure to Cd stress. The present study detected enhancement 
in functioning of SOD under Cd stress, matches with the 
findings of Srivastava et al. (2014); Zayneb et al. (2015) 
who reported about similar observations in Oryza sativa 
(L.) and Trigonella foenumgraecum respectively. Irfan et al. 
(2014) also reported identical enhancement in SOD activ-
ity in Brassica juncea, but the stress was important at late 
seedling stage. CAT is generally situated in peroxisomes and 
mitochondria, while POX is located cytoplasm, membrane, 

Fig. 3  Impact of Cd stress on a proline, b ascorbate, c reduced glu-
tathione, d oxidized glutathione, e total glutathione, and f ration 
of GSH and GSSG at 7 DAS. Each vertical column represents 

mean ± SE (n = 3) value. Column-bearing same letter cases are not 
significantly different at p ˂  0.05 level. *, **, and *** indicate that the 
F values are significant at 0.05, 0.01, and 0.001 levels, respectively
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vacuole, apoplast, extracellular space, and cell wall. Wang 
et al. (2008) depicted that POX is activated by heavy metal 
hastened oxidative stress and is more efficient then CAT 
which was also observed in this study. Prodanovic et al. 
(2016) and Mohamed et al. (2012) also detected enhance-
ment in CAT activity when exposed to Cd stress in Picea 
omorika and Brassica juncea spp., respectively. Cd stress 
led to enhancement in APX functioning in the three culti-
vated varieties. Along with the above-mentioned antioxidant 
enzymes involved directly to combat ROS induced fluctua-
tion in various cellular domains, a considerable increase 
(compare to the control) in the activity of PPO was also 
observed. The enhancement in the functioning of PPO in 
all the studied cultivars exposed to Cd suggests that these 
varieties employ phenolic compound and metal chelators 
to withstand heavy metal-induced toxicity. PPO activity in 
all three varieties increased dose-dependently. Some plant 
species showed that the activity of PPO under heavy met-
als stress significantly increased when compared to control 

(Wang et al. 2008; D’souza and Devaraj 2012). PPO is not 
directly involved in stress response, but helps in the synthe-
sis of key phenolic compounds, which acts as ROS removers 
and metal chelators. GST catalyzes GSH binding to xeno-
biotic and thus plays a vital role in detoxification processes 
(Davis and Swanson 2001). Several endogenously produced 
reactive metabolites react with GSH in the presence of GST 
to produce a conjugate (Nagalakshmi et al. 2001). These 
conjugates are transported into vacuoles for further deg-
radation and thus protect the plants from oxidative injury 
(Mohanpuria et al. 2007). GST activity increased with incre-
ment in dose of Cd in a dose-dependent and variety inde-
pendent fashion. GST activity in Cd-induced stress has also 
been found to increase in Eichhornia crassipes and Salvinia 
auriculata (Vestena et al. 2011). Similar to GST, GR activity 
was also found to increase under Cd stressed condition in all 
the three varieties during germination and early stage seed-
lings as compared to control. Similar result was found by 
Panda et al. (2011) in Oryza sativa and Mishra et al. (2008) 

Fig. 4  Impact of Cd stress on a SOD, b POX, c CAT, and d GST at 7 
DAS. Each vertical column represents mean ± SE (n = 3) value. Col-
umn-bearing same letter cases are not significantly different at p ˂  0.05 

level. *, **, and *** indicate that the F values are significant at 0.05, 
0.01, and 0.001 levels, respectively
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in Ceratophyllum demersum L., but oppose the results of 
Mobin et al. (2007) who detected a decrease in the activity 
of GR in Brassica juncea (L.).

Conclusion

Our experiment demonstrated differential stress response in 
the three genotypes of Indian mustard under Cd exposure on 
the basis of morphological, physiological, and biochemical 
mechanisms at germination stage. The findings depicted that 
Cd toxicity led to heavy injury in Indian mustard seedlings 
and also that some defense mechanisms were activated to 
protect from damages. Pusa bold exhibited more tolerance 
among the three cultivated varieties. The main reason behind 
the Cd stress tolerance for Pusa bold was less oxidative stress 
due to increased enzymatic and non-enzymatic antioxidants. 
Our results finding give a broad range of implications of 
Cd stress on Indian mustard at germination as well as early 
seedling growth stage.
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