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Abstract
The physiological and antioxidant response to salinity was studied in pomegranate (Punica granatum L.) by exposing 
in vitro growing shoots of the Italian variety Profeta Partanna to 125 or 250 mM NaCl for 10 and 20 days. 250 mM NaCl 
significantly reduced shoot length, leaf area and water content of the shoots, regardless the length of the salt treatment,with 
respect to the control and to the 125 mM NaCl treatment. After 20 days the shoots treated with 250 mM NaCl also showed 
a significant reduction in relative growth rate (RGR) together with marked necroses and abscission of the oldest leaves. Salt 
treatments significantly decreased the contents of chlorophylls and carotenoids in both exposure times, depending on NaCl 
concentration. Proline, total phenolic compounds and ellagic acid did not increase or even decrease with the salt treatments. 
The levels of lipid peroxidation decreased, ascorbate peroxidase (APX) activity significantly increased in both treatment 
times and concentrations, while guaiacol peroxidase (G-POD) activity significantly increased in shoots treated with 250 mM 
NaCl for 20 days suggesting the rapid involvement of APX in controlling the oxidative stress in this species, even at low salt 
concentrations, and a delayed complementary role of G-POD.

Keywords Ascorbate peroxidase (APX) · Guaiacol peroxidase (G-POD) · Lipid peroxidation · Morphological parameters · 
Soil salinization

Abbreviations
APX  Ascorbate peroxidase
d.w.  Dry weight
f.w.  Fresh weight
G-POD  Guaiacol peroxidase
MDA  Malondialdehyde
MKI  McKinney index
RGR   Relative growth rate
ROS  Reactive oxygen species
TBARS  Thiobarbituric acid reactive substances

Introduction

The worldwide extension of salt-affected soils is estimated 
at about 1 billion hectares and it is a consequence of both 
natural (primary) and human-induced (secondary) processes 
(FAO 2015). Soil salinization causes stress conditions to 
crops by altering the osmotic potential of the soil and limit-
ing water uptake and consequently nutrient availability of 
the plants (Mahajan and Tuteja 2005). As a consequence, 
plant growth is highly reduced with severe damage to bio-
diversity and to yield and food production.

Salt induces alteration in cell metabolism (i.e., inhibition 
of photosynthetic processes and protein synthesis) and an 
imbalance of reactive oxygen species (ROS) which deeply 
affects plant growth (Mittler 2002; Miller et al. 2010; Hos-
sain and Dietz 2016; Forni et al. 2017). Indeed, one of the 
main detrimental impact of salinity is alteration of redox 
homeostasis with over production of ROS (Mahajan and 
Tuteja 2005). ROS detoxification systems include enzymatic 
and non-enzymatic antioxidant components (Gill and Tuteja 
2010). The main hydrogen peroxide-detoxification system 
in plant chloroplasts is the ascorbate–glutathione cycle, in 
which ascorbate peroxidase (APX) is the key enzyme, which 
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utilizes ascorbate as electron donor to reduce  H2O2 to water 
(Caverzan et al. 2012). Guaiacol peroxidase (G-POD) is a 
class III plant peroxidase using guaiacol as electron donor 
to reduce  H2O2 (Hiraga et al. 2001). Many reports evidenced 
the important role of these antioxidant enzymes in preserv-
ing the salt-tolerant species from the oxidative damage by 
ROS detoxification (Gill and Tuteja 2010; Gupta and Huang 
2014).

Non-enzymatic antioxidants include carotenoids, which 
act as oxidative stress signals, photoprotectants and antioxi-
dants (Nisar et al. 2015), and phenolic compounds, that can 
play a role in controlling oxidative damage under prolonged 
salt stress conditions (Rossi et al. 2016). In response to salt 
stress, to maintain osmotic balance, plants can also accu-
mulate soluble organic compounds, such as proline (Hayat 
et al. 2012).

In vitro cultures represent a rapid and low-cost approach 
to study plant stress response, under controlled conditions, 
in particular for precocious screening of shrubs and tree spe-
cies (Watanabe et al. 2000; Di Cori et al. 2013).

Pomegranate (Punica granatum L.) is a species, native 
to semitropical Asia, cultivated in the Mediterranean basin, 
in Southern Asia, in India and in North and South America 
(Syed et al. 2007; Ferrara et al. 2014). In the last years there 
has been an increasing market demand for pomegranate, 
either for fresh minimally processed arils (Sepulveda et al. 
2000), or for jams, juices, wine, jellies and snacks (Gum-
ienna et al. 2016), that is supported by the interest of con-
sumers towards the nutritional and the antioxidant properties 
of the fruit (Teixeira da Silva et al. 2013). Health beneficial 
effects depend on the presence of different compounds, in 
particular flavonoids (anthocyanins, catechins, ellagitan-
nins), synthesized in the fruit and in other plant organs (Syed 
et al. 2007; Adhami et al. 2009; Zarfeshany et al. 2014).

Some recent studies are available on the effects of increas-
ing soil salinity on growth, photosynthetic activity and plant 
mineral constituents in pomegranate plants growing in vivo 
in greenhouse or in field (Khayyat et al. 2014; Hasanpour 
et al. 2015; Mastrogiannidou et al. 2016), and only limited 
in vitro (El-Agamy et al. 2010). There is an increasing inter-
est towards ancient varieties of pomegranate and the studies 
on their response to climate-related changes, including also 
salinity and drought, are fundamental for their preservation, 
valorization and use in breeding programs (Hummer et al. 
2012).

The aim of the research was to improve the understanding 
of effect of NaCl on growth, chlorophylls and proline content 
and to determine the role of the antioxidant mechanism to 
counteract the salinity effect in this species.

Materials and methods

Plant material and culture conditions

In vitro shoot cultures of the ancient Italian pomegranate 
variety Profeta Partanna were established from axillary 
buds collected from adult plants growing in the field germ-
plasm collection at CREA-OFA in Rome.

Plant material was sterilized by the following proto-
col: branch segments with at least an axillary bud were 
placed in 1% benzalkonium chloride for 30 min to remove 
surface contamination. Then, explants were rinsed and 
disinfected in three different steps: by immersion in 70% 
ethanol for 10 min, in sodium hypochlorite solution (1% 
active chlorine) for 20 min and, finally, in 0.1% sodium 
merthiolate for 20 min. Explants were rinsed after each 
step with sterile water. Buds were then dissected under a 
stereoscope and shoot meristems were taken for in vitro 
culture initiation.

The shoots obtained were sub-cultured every 20 days 
in Magenta (Sigma) vessels containing 50 ml of a growth 
medium (GM) consisting in salts as previously used for 
hazelnut multiplication phase (Gentile et al. 2016), organic 
compounds (1.0 mg L− 1 nicotinic acid, 2.0 mg L−1 gly-
cine, 2.0 mg  L−1 thiamine–HCl and 100.0 mg L− 1 myo-
inositol) 30 g L−1 sucrose and 5.7 g  L−1 agar (B&V). GM 
was also supplied with 0.01 mg L−1 indole-3-butyric acid 
and 0.04 mg L−1 6-benzylaminopurine. The pH of the 
medium was adjusted to 5.7 ± 0.01 before autoclaving. All 
reagents were purchased from Sigma-Aldrich.

The cultures were maintained at 24 ± 1 °C, under 16 h 
photoperiod and light intensity of 37.5 µmol  m−2 s−1.

For the salt treatments in vitro growing shoots were 
transferred to Magenta (Sigma) vessels containing GM 
supplied with 0 (control cultures), 125 and 250 mM NaCl. 
These treatments were selected as medium and high induc-
ing stress according to unpublished in vitro preliminary 
studies on this species. Six vessels containing 15 morpho-
logically uniform shoots were used for each treatment and 
salt exposition time.

Sampling for both morphological observations and 
physiological analyses was performed 10 and 20 days after 
transferring to NaCl supplied media. Samples collected for 
analyses were placed in liquid  N2 and stored at − 80 °C 
until used.

Morphological observations and evaluation 
of chloroses and necroses

Shoots were disposed on a surface and photographs 
were taken at the beginning of the experiments and after 
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exposure to NaCl. A software for metric measurement 
(ImageJ) was used to measure shoot length and leaf size. 
Leaf area was estimated as media of upper and lower 
leaves of single shoots. Three samples consisting in 10 
shoots were measured.

Water content (Wco) was calculated according to Zeng 
et al. (2013): Wco(%) = ((f.w. – d.w.)/f.w.) × 100, where f.w. 
is fresh weight and d.w. is dry weight of 8 shoots measured 
after 48 h at 70 °C. Relative Growth Rate (RGR) was cal-
culated according to the formula of Hoffmann and Poorter 
(2002) with slight modification: RGR = (ln f.w.f – ln f.w.i) 
× 100/t, where t is the application time of the treatment (10 
or 20 days) and f.w.f and f.w.i represent f. w. taken at the 
end and at the beginning of application of the treatment, 
respectively.

Evaluation of the severity of visible symptoms (chlorosis 
and necrosis diffusion) induced by salinity was based on a 
rating scale, ranking each shoot into ten classes (Table 1) 
using a modified McKinney index (MKI, McKinney 1923). 
MKI was calculated according to the following formula: 
MKI = Σ(ni×i)/N, where ni is the number of shoots assigned 
to the class, i is the numeric value of the class, N is the 
total number of examined shoots at each salt concentration. 
Data are the medium average value of 15 shoots grown in 3 
Magenta vessels.

Chlorophylls and carotenoids

For each sample 5 shoots were ground in liquid  N2 and 
200 mg f.w. were suspended in 4 ml of 90% methanol in 
15 ml darkened test tubes (Falcon-Italy). The extract was 
shaken and incubated at 5 °C for 1 h and then centrifuged 
at 1050 g for 10 min. The absorbance of the supernatant 
was determined using a spectrophotometer (Varian  Cary® 50 
UV–vis Spectrophotometer) at 665.2, 652.4 and 470 nm for 
chlorophyll a, chlorophyll b and carotenoids, respectively. 
The pigment contents were estimated by Lichtenthaler 
(1987) formulas and expressed as µg mg−1 f.w.

Proline

Proline was determined by ninhydrin reaction method, 
according to Bates et al. (1973). Briefly, 5 shoots were 
ground in liquid  N2 and 200 mg f.w. was extracted in 2 ml 
of 3% sulfosalicylic acid. After centrifugation at 3870 g for 
5 min at 4 °C, one milliliter of supernatant was added to 1 ml 
of 1% acid ninhydrin, e.g., 1% ninhydrin in a solution of gla-
cial acetic acid:6N phosphoric acid (3:2), and 1 ml of glacial 
acetic acid. Mixture was vigorously shaken and incubated 
in a water bath at 100 °C for 1 h, then quickly cooled in ice. 
Proline was extracted with 3 ml of toluene and the absorb-
ance was spectrophotometrically detected at 520 nm. Proline 
amount was estimated by a calibration curve using proline 
as standard (R2 = 0.998). Results were expressed as µg/g f.w.

Lipid peroxidation, ascorbate peroxidase (APX) 
and guaiacol peroxidase (G‑POD)

The degree of lipid peroxidation was evaluated by measur-
ing the amount of thiobarbituric acid reactive substances 
(TBARS), i.e., malondialdehyde (MDA), in plant tissues, 
according to the method described by Dhindsa and Matowe 
(1981), modified by Hodges et al. (1999). Briefly, 5 shoots 
were placed in a pre-cooled mortar, ground to fine powder 
in liquid  N2 and 200 mg f.w. were extracted in 4 ml of 10% 
trichloroacetic acid (TCA). The homogenates were centri-
fuged at 1050 g for 5 min and the supernatant was collected 
and divided into two parts: 2 ml of 20% TCA containing 
0.5% thiobarbituric acid was added to 1.67 ml of the super-
natant (mixture A), while 1.67 ml of the other extract frac-
tion was added to 2 ml of 20% TCA (mixture B). The two 
mixtures were heated at 95 °C for 30 min and then quickly 
cooled in ice. After centrifugation at 1050 g for 10 min, 
the absorbance of the supernatant was determined at 400, 
532 and 600 nm. MDA equivalents was calculated by MDA 
extinction coefficient (1.57 ×  105  M− 1 cm− 1) and expressed 
as nmol of MDA equivalents per g of f.w., according to the 
formulas of Hodges et al. (1999).

APX activity was determined according to the method 
of Nakano and Asada (1981), with slight modifications. 
Briefly, 8 shoots were ground to fine powder in liquid  N2 
and 300 mg f.w. were extracted in 2 ml of cold extraction 
buffer (0.2 M  NaH2PO4/Na2HPO4, pH 7.0) added with 3 mM 
EDTA, 0.5 mM ascorbic acid (AA), 1% Triton X-100 and 
1% polyvinylpyrrolidone (PVPP). The extracts were centri-
fuged at 1050 g for 10 min and the supernatants were col-
lected. Enzyme reaction solution contained 1 mM EDTA, 
0.5 mM AA, 10 mM  H2O2 and 0.1 ml of enzyme extract, in a 
final volume of 1.5 ml in distilled water. Changes in absorb-
ance of the reaction solution were determined at 290 nm at 
25 °C for 100 s. The enzymatic activity was measured by the 
coefficient of ascorbic acid (2.8 mM−1 cm−1). The data were 

Table 1  McKinney index of plant injury

Class Visible symptoms

0 No injury
1 Partial chlorosis on leaf (up to 50%)
2 Marked leaf rolling on whole shoot
3 Up to 10% brownish leaves
4 Up to 10% brownish on stem and marked leaf chlorosis
5 Up to 20% brownish on stem and up to 50% brownish leaves
6 Up to 20% brownish on stem and up to 90% brownish leaves
7 Up to 90% brownish on whole shoot
8 Necrosis on apical leaves
9 Necrosis on whole shoot
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expressed as enzymatic unit (UAPX) on total protein content, 
determined according to Bradford (1976).

For G-POD activity determination, 8 shoots were ground 
to fine powder in liquid  N2 and 300 mg f.w. were added to 
2 ml of 0.2 M phosphate buffer (pH 7.2) with 1% PVPP and 
then mixed and incubated at 5 °C for 1 h. After centrifuga-
tion at 1050 g for 25 min, the supernatant was collected 
and kept in ice. The G-POD enzymatic assay solution con-
tained 3 ml of 0.2 M phosphate buffer (pH 6.5), 4.6 mM 
guaiacol, 0.03  M  H2O2 and 0.2  ml of enzyme extract. 
Changes in absorbance of the reaction solution at 470 nm 
for 200 s were determined at 25 °C. The enzyme activity 
was calculated by the extinction coefficient of oxidized guai-
acol (26.6 mM−1 cm−1) and expressed as enzymatic unit 
(UG−POD) on total protein content, determined according to 
Bradford (1976).

Total phenolic compounds and ellagic acid

Phenolic compounds were extracted according to the method 
described by Legrand (1977) with slight modifications. 
Briefly, five shoots were ground in liquid  N2 and 200 mg 
f.w. added to 4 ml of 0.1 N HCl. Mixture was incubated 
at 5 °C for 1 h and then centrifuged at 1050 g for 10 min. 
Supernatant was collected and the residue was re-soaked in 
4 ml of 0.1 N HCl, to complete the extraction. After centrifu-
gation, supernatants were pooled and the phenolic content 
was estimated according to Booker and Miller (1998). Reac-
tion mixture contained 475 µl of 0.25 N Folin and Ciocal-
teu’s phenol reagent and 50 µl of sample extract, added with 
475 µl of 1 M  Na2CO3. The absorbance of the mixture was 
determined at 724 nm after 1 h at 25 °C in the dark. Total 
phenolic content was estimated by a calibration curve using 
chlorogenic acid as standard (R2 = 0.994) and expressed as 
µg of chlorogenic acid equivalents per g of f.w.

Ellagic acid content was assessed applying the method 
described by Özer et  al. (2007), modified as follows: 8 
shoots were dried at 70 °C for 48 h and 40 mg of d.w. were 
ground and extracted in 2 ml of 80% methanol. After cen-
trifugation at 1050 g for 3 min, supernatant was collected 
and the residue was re-soaked in 1 ml of 80% methanol and 
centrifuged as above. Supernatants were pooled and lyo-
philized. Sample was re-suspended in 2 ml of dimethyl sul-
foxide (DMSO) and centrifuged at 1050 g for 3 min. One 
millilitre of supernatant was added to 40 µl of 37% HCl 
and 40 µl of 10%  NaNO2. Ellagic acid amount was deter-
mined by absorbance at 512 nm, detected immediately (t0) 
and after 40 min at 30 °C. Non-specific absorbance at t0 was 
subtracted and the ellagic acid amount was calculated by a 
calibration curve using ellagic acid as standard (R2 = 0.992). 
Three samples were evaluated for each treatment. Data were 
expressed as µg of ellagic acid per g of f.w.

Statistical analysis

Results are expressed as means ± standard error (SE). 
A randomized block design was applied. Kruskal–Wal-
lis and Mann–Whitney pairwise comparisons test were 
applied to determine the effects of the salt treatments on 
morphological parameters and effect of length of the salt 
treatment (T), of salt concentration (SC) and their interac-
tion was evaluated applying a NP Manova test (Anderson 
2001). For physiological analyses were used three sam-
ples for each treatment and each exposition time. One-
way ANOVA was applied and significant differences were 
calculated at P < 0.05 with Tukey’s pairwise comparisons 
test. Two-way ANOVA was also applied to evaluate effect 
of T, SC and their interaction. “Past” program was used 
for all the statistical analyses.

Results

Shoot growth and morphology

Shoot growth was determined after 10 and 20 days of treat-
ment. Shoots treated with 125 mM NaCl for 10 and 20 days 
did not show significant differences in length and number 
of leaves/shoot compared to the control, while a significant 
enhancement in number of nodes was detected at the end of 
the experiments (Table 2). On the other hand, 250 mM NaCl 
significantly reduced shoot length and number of leaves/
shoot after 20 days, with respect to the control and to the 
125 mM NaCl treatment (Table 2; Fig. 1). Similar trend 
was also observed for Wco (Fig. 2); moreover, since 10 days 
of treatment the leaves size was also reduced (Table 3). 
Concerning RGR (Fig. 3), after 10 days no significant dif-
ferences were observed between salt-treated shoots and 
control, while biomass production was significant differ-
ent between the two salt treatments. After 20 days, shoots 
treated with 250 mM NaCl showed a significant reduction in 
RGR, compared to the control and to the shoots treated with 
125 mM NaCl. SC and T significantly affected all the above 
described morphological parameters with the exception of 
Wco for which the effect of the length of the treatment was 
not significant.

Chlorosis and necrosis diffusion in shoots (Table 4) 
increased in relation with the exposure time and salt con-
centrations. In samples treated with 125 and 250 mM NaCl 
MKI value was 1.61 and 4.44 after 10 days, and 2.88 and 
5.43 after 20 days, respectively; no necrosis was detected in 
shoots treated with 125 mM NaCl. On the other hand, shoots 
treated with 250 mM NaCl for 20 days showed marked 
necrosis and abscission of the oldest leaves, while no evident 
injury was detected in the apical ones (Fig. 1).
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Chlorophylls, carotenoids and proline

Salt treatments significantly decreased contents in chloro-
phylls and carotenoids in both exposure times, depending on 
NaCl concentration (Table 5; Fig. 4). However, no signifi-
cant differences were observed in the chlorophyll a/b ratio 
between salt-treated samples and controls, except for shoots 
exposed to 250 mM NaCl for 10 days (Table 5). A significant 
reduction in proline content, compared to the control, was 
observed after 10 days of exposure in both salt treatments, 
while after 20 days no significant differences with respect 
to the control were observed (Fig. 5). SC, T and their inter-
action significantly affected chlorophylls, carotenoids and 
proline content.

Lipid peroxidation and antioxidant enzymes 
activities

Lipid peroxidation, evaluated by measuring MDA, showed 
a significant reduction after salt exposure in both treat-
ment times, while no significant differences were observed 
between the two salt concentrations (Fig. 6).

A significant increase of APX activity, with respect to the 
control shoots, after 10 and 20 days at both salt concentra-
tions without differences between the salt treatments was 
also observed (Fig. 7a). Compared to the controls, G-POD 
activity significantly increased only in shoots exposed to 
250 mM NaCl for 20 days (Fig. 7b). SC, T and their inter-
action significantly affected lipid peroxidation, APX and 
G-POD.

Phenolic compounds and ellagic acid

Shoots exposed to 250 mM NaCl for 20 days had a signifi-
cant reduction of total phenolic compounds respect to the 
control and to 125 mM NaCl-treated shoots (Fig. 8a).

Concerning ellagic acid (Fig. 8b), after 10 days, a signifi-
cant decrease of the content was found in shoots treated with 

250 mM NaCl as compared to those treated with 125 mM 
NaCl but not with respect to the control; after 20 days a sig-
nificant reduction in the ellagic acid content was observed 
in 250 mM NaCl-treated shoots with respect to the control. 
SC and T significantly affected total phenolic compounds 
and ellagic acid content.

Discussion

Accumulation of salts in the soil strongly reduces natural 
vegetation, biodiversity, and agricultural production, thus 
understanding the response of plants to salt stress is criti-
cal for a sustainable management of saline environments 
through selection and breeding of salt-tolerant crop varieties 
(Cuartero et al. 2006; Hanin et al. 2016). High salt amount in 
the soil hinders the plant uptake of water as well as of nutri-
ents and, therefore, salt stress results in a loss of intracellular 
water, in a general water-deficit condition of the plant and in 
reduction of leaf size and inhibition of shoot growth (Bartels 
and Sunkar 2005; Mahajan and Tuteja 2005; Munns and 
Tester 2008; Forni et al. 2017). Various physiological and 
biochemical mechanisms are adopted by plants to face high 
salt conditions, including growth reduction, biosynthesis of 
osmoprotectants and antioxidant compounds, enhancement 
of the activity of antioxidant enzymes (Gupta and Huang 
2014). Several in vivo studies have been performed to study 
the response in different species and in vitro cultures were 
also used to study salt effects, in controlled conditions, on 
ecophysiological parameters in woody species, such as myr-
tle and cherry (Di Cori et al. 2013; Erturk et al. 2007). In our 
study, we investigated the adaptive response of pomegranate 
to NaCl by evaluating the effect of application of 125 or 
250 mM NaCl on in vitro growing shoots for 10 or 20 days.

The 250 mM NaCl treatment applied for 20 days signifi-
cantly reduced shoot length and RGR and development of 
necroses and abscission of the oldest leaves were observed. 
Reduced leaf size was observed after 10 days of treatment 

Table 2  Shoot length, number 
(n.) of leaves/shoot and nodes/
shoot in pomegranate in vitro 
shoots treated with 0, 125 or 
250 mM NaCl for 10 or 20 days

Different letters, within a column, for each treatment time, indicate significant differences at P ≤ 0.05 
(Kruskal–Wallis and Mann–Whitney post hoc test).
SC salt concentration, T time of application
*Significantly different at P ≤ 0.05 (NP MANOVA)

Shoot length (cm) n. leaves/shoot n. nodes/shoot

NaCl (mM) 10 days 20 days 10 days 20 days 10 days 20 days

0 4.3 ± 0.2a 5.2 ± 0.2a 11.1 ± 1.1a 14.9 ± 0.8a 4.9 ± 0.4a 5.7 ± 0.2b
125 4.4 ± 0.4a 5.9 ± 0.5a 10.9 ± 0.9a 14.7 ± 1.6a 4.9 ± 0.4a 6.7 ± 0.3a
250 3.1 ± 0.2b 3.0 ± 0.2b 8.8 ± 0.7a 8.4 ± 0.3b 3.7 ± 0.3b 5.3 ± 0.2b
T * * *
SC * * *
T × SC – – –
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only at 250 mM NaCl. These responses suggest, in agree-
ment with data on other species reviewed by Munns and 
Tester (2008), that “Profeta Partanna” is tolerant to salt-
induced osmotic stress.

NaCl has a detrimental effect on the photosynthetic 
activity, in terms of pigments stability, stomatal func-
tioning, thylakoid membranes integrity and gas exchange 

(Tavakkoli et al. 2011). Reductions of pigment content, 
as response to salinity, was already shown in in vivo stud-
ies on pomegranate (Mastrogiannidou et al. 2016) and 
in in vitro studies in myrtle (Di Cori et al. 2013). Our 
data confirmed this behavior, in fact chlorophyll a and 
b decreased in the presence of salt, in manner related to 
NaCl concentration and length of exposure. Although 
these observations could seem in contrast to the suggestion 
of salt tolerance response coming from the above-reported 
morphological results, it is noteworthy that Mastrogian-
nidou et al. (2016) detected in pomegranate cv. Wonderful 
a reduced chlorophyll concentration accompanied by an 
increase of activity of the existing chlorophyll amount. 
Further studies on rate of photosynthesis under salt stress 

Fig. 1  Pomegranate in vitro shoots exposed to 0 (a), 125 mM (b) or 
250 mM (c) NaCl for 20 days. Bar = 1 cm
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Fig. 2  Water content (Wco) of pomegranate in vitro shoots exposed to 
0, 125 or 250 mM NaCl for 10 and 20 days. Different letters within 
the same treatment time indicate significant differences at P ≤ 0.05 
(Kruskal–Wallis and Mann–Whitney test). Salt concentration (SC) 
effect was significant, while time of application (T) and SC × T did 
not significantly affect Wco (NP MANOVA)

Table 3  Leaf size in pomegranate in vitro shoots treated with 0, 125 
or 250 mM NaCl for 10 and 20 days

Different letters within a column indicate means significantly differ-
ent at P ≤ 0.05 (Kruskal–Wallis and Mann–Whitney post hoc test).
*Significantly different at P ≤ 0.05 (NP MANOVA)

Leaf area  (cm2)

NaCl (mM) 10 days 20 days

0 0.1121 ± 0.0154a 0.1189 ± 0.0258a
125 0.0808 ± 0.0119a 0.0758 ± 0.0265a
250 0.0463 ± 0.0132b 0.0163 ± 0.0025b
T *
SC *
T × SC –
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are planned to confirm this behavior also for “Profeta 
Partanna”.

Water loss due to stress conditions can be counteracted 
by the accumulation of several compatible solutes, such as 
proline, sucrose, polyols, trehalose or glycine betaine that 
preserve cell turgor (Mansour 2000; Tuteja 2007; Chaves 
et al. 2009). Even though several studies reported the accu-
mulation of proline in response to salt stress (Verbruggen 
and Hermans 2008; Huang et al. 2013; Wang et al. 2015), 
the significance of such accumulation in response to saline 
condition is still debated and varies according to the species 
(Verbruggen and Hermans 2008). A study performed in vivo 
on Iranian pomegranate cultivars reported an increased 
proline accumulation related to the cultivar (Khayyat et al. 
2014). However, in the variety we studied, proline level did 
not increase in shoots exposed to salt and, considering the 
tolerant response to salinity in the morphological parameters 
above reported, we postulate that proline does not play a 
critical role in osmotic balancing of this genotype, as also 
previously observed in myrtle (Di Cori et al. 2013) and in 
some rice and wheat cultivars, where the level of proline was 
not found to be related to salt tolerance (Lutts et al. 1996; 
Poustini et al. 2007). The mechanism of proline accumula-
tion are not fully understood, and in some cases other mol-
ecules can contribute to the total osmotic potential in gly-
cophytes expose to saline environments (Cram 1976; Forni 
et al. 2017), thus the involvement and accumulation of other 
osmolytes, to be still investigated, cannot be excluded.

An increase of ROS in chloroplasts, mitochondria and 
peroxisomes is an essential step for plants to perceive and 
control salt stress; in fact, ROS act, at low concentrations, as 
secondary cell messengers for hormonal responses, but, at 
high concentrations, can induce oxidative damage to lipids, 
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Fig. 3  Relative growth rate (RGR) of the pomegranate in vitro shoots 
exposed to 0, 125 or 250 mM NaCl for 10 and 20 days. Different let-
ters within the same treatment time indicate significant differences 
at P ≤ 0.05 (Kruskal–Wallis and Mann–Whitney test). Salt concen-
tration (SC) and time of application (T) significantly affected RGR, 
while SC × T effect was not significant (NP MANOVA)

Table 4  Effects of salt on leaves 
determined by McKinney index 
of the pomegranate in vitro 
shoots exposed to 0, 125 or 
250 mM NaCl for 10 and 20 
days

McKinney index

NaCl (mM) 10 days 20 days

0 0.00 0.19
125 1.61 2.88
250 4.44 5.43

Table 5  Chlorophylls content 
and Chl a/Chl b ratio of 
pomegranate in vitro shoots 
treated with NaCl (0, 125 or 
250 mM) for 10 and 20 days

Different letters, within a column, for each treatment time, indicate means significantly different at P ≤ 0.05 
(One-way ANOVA and Tukey’s test).
SC salt concentration, T time of application
*Significantly different at P ≤ 0.05 (Two-way ANOVA)

Chlorophylls content (µg mg−1 f.w.)

NaCl (mM) Chl a Chl b Total chlorophyll Chl a/Chl b

10 days
0 0.440 ± 0.021a 1,0611 ± 0.0080a 0.5933 ± 0.0292a 2.8849 ± 0.0369a
125 0.269 ± 0.018b 0.1017 ± 0.0034b 0.3704 ± 0.0210b 2.6366 ± 0.1007a
250 0.155 ± 0.001c 0.0662 ± 0.0015c 0.2214 ± 0.0025c 2.3472 ± 0.0405b
20 days
0 0.514 ± 0.017a 0.178 ± 0.007a 0.692 ± 0.030a 2.893 ± 0.031a
125 0.233 ± 0.010b 0.078 ± 0.004b 0.312 ± 0.014b 2.977 ± 0.049a
250 0.106 ± 0.002c 0.045 ± 0.006c 0.151 ± 0.007c 2.741 ± 0.127a
T * * * *
SC * * * *
T × SC * * * *
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proteins and nucleic acids (Mittler 2002; Apel and Hirt 
2004; Mittova et al. 2004; Møller et al. 2007; Jaspers and 
Kangasjärvi 2010; Sharma et al. 2012; Golldack et al. 2014; 
You and Chan 2015; Choudhury et al. 2017). The level of 
MDA, a product of lipid peroxidation of polyunsaturated 
fatty acids of the membrane, is considered an indicator of 
oxidative damage and it has been utilized to characterize 
genotypes response to salinity in several species (Azevedo 

Neto et al. 2006; Niknam et al. 2011). To maintain ROS 
within safe levels plants use metabolites and antioxidant 
enzymes including superoxide dismutase, APX, G-POD, 
catalase and glutathione reductase (Sharma et al. 2012).

APX uses ascorbate as the electron donor in the first 
step of the ascorbate–glutathione cycle and is considered 
the most important plant peroxidase in  H2O2 detoxification 
(Azevedo Neto et al. 2006; Caverzan et al. 2012). G-POD 
removes  H2O2 by guaiacol as electron donor (Mehlhorn 
et al. 1996). Previous studies reported an important role 
of G-POD and APX in response to salinity in myrtle (Di 
Cori et al. 2013), rice (Khan and Panda 2008), wild salt-
tolerant tomato species (Mittova et al. 2004) and wheatgrass 
(Sheikh-Mohamadi et al. 2017).

In the present study at both treatment times and concen-
trations, MDA level showed a significant reduction and APX 
activity increased; shoots, when exposed to the highest NaCl 
concentration for 20 days, also showed a significant increase 
of G-POD activity. These results suggest the rapid involve-
ment of APX in the antioxidant response, even at low salt 
concentrations, as observed in other species (Di Cori et al. 
2013; Mittova et al. 2004), and a possible complementary 
delayed role of G-POD in controlling the oxidative stress 
induced by high salt concentrations. The detected reduc-
tion of MDA level is consistent with previous studies which 
found that increased activities of ROS scavenging enzymes, 
like APX and POD, maintain lipid peroxidation unchanged 
or even reduce it in salt-tolerant cultivars exposed to NaCl, 
e.g., tomato, rice and olive (Shalata et al. 2001; Mittova 
et  al. 2004; Khan and Panda 2008; Mishra et  al. 2013; 
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Sheikh-Mohamadi et al. 2017). Similar response was also 
reported in an in vitro study on shoots of the wild Mediter-
ranean evergreen Myrtus communis (Di Cori et al. 2013). 
However, the involvement of other antioxidant enzymes in 
alleviating oxidative damage, such as catalase and superox-
ide dismutase, cannot be excluded (Jbir-Koubaa et al. 2015; 
Sofo et al. 2015 and references therein) and further studies 
are in progress to improve this information.

Among not enzymatic antioxidant, carotenoids are 
reported to play an important role in scavenging the excess 
of ROS induced by salt stress (Parida and Das 2005) and 
polyphenols can also outperform as ROS scavengers under 
stress conditions (Agati et al. 2012; Brunetti et al. 2013). 

Carotenoids content decreased in “Profeta Partanna” salt-
treated shoots and this result, in agreement with those pre-
viously obtained in myrtle (Di Cori et al. 2013) and grass 
pea genotypes (Piwowarczyk et al. 2016), suggests that they 
are not involved in the antioxidant responses to salt stress 
in pomegranate. We did not detect any increase of total 
phenolic compounds or of ellagic acid content in shoots as 
response to salinity; however, M. communis, Pistacia len-
tiscus (Tattini et al. 2006) and Olea europaea (Rossi et al. 
2016) were shown to be able to utilize carbon sources for the 
synthesis of flavonoids involved in the antioxidant response 
to salt stress. Thus, the role of phenolic compounds as ROS 
scavengers cannot be excluded until further studies will have 
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been performed to characterize the role of class of polyphe-
nols or of single compounds.

All the physiological and antioxidant parameters were 
affected by SC, T as previously observed (Di Cori et al. 
2013).

In conclusion, we have reported the characterization of 
some mechanisms adopted by pomegranate to counteract the 
salinity using in vitro shoot cultures. A coordinated enhance-
ment of G-POD and APX activities, coupled with a reduc-
tion of lipid peroxidation, was highlighted indicating the 
triggering role of these enzymes in control of the oxidative 
stress induced by salinity in this species. We suggest that, at 
least in our experimental conditions, an important response 
to NaCl exposure in in vitro growing shoots of “Profeta Par-
tanna” pomegranate is the precocious activation of the anti-
oxidant enzymatic system, and that this activation is able not 
only to counteract (G-POD), but also to prevent (APX) the 
oxidative damage on the exposed shoots, indicating “Pro-
feta Partanna” as a variety quite tolerant to salt-induced 
osmotic stress. The use of the in vitro approach allowed a 
rapid characterization of the response to NaCl in controlled 
conditions without fluctuation of temperatures or watering, 
as previously underlined in other species (Watanabe et al. 
2000; Woodward and Bennett 2005) and provided a further 
insight into the mechanism of salt response in pomegranate.
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