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Abstract
Leaf rolling observed in some crops such as maize, rice, wheat and sorghum is an indicator of decreased water status. 
Moderate leaf rolling not tightly or early increases the photosynthesis and grain yield of crop cultivars under environmental 
stresses. Moreover, the effects of exogenous abscisic acid (ABA) on stomatal conductance, water status and synthesis of 
osmotic compounds are a well-known issue in plants subjected to water deficit. However, it is not clear how the cross-talk 
of ABA with  H2O2 and osmolyte compounds affects the leaf rolling mechanism. Regulation mechanism of leaf rolling by 
ABA has been first studied in maize seedlings under drought stress induced by polyethylene glycol 6000 (PEG 6000) in 
this study. ABA treatment under drought stress reduced hydrogen peroxide  (H2O2) content and the degree of leaf rolling 
(%) while the treatment-induced ABA synthesis, osmolyte levels (proline, polyamine and total soluble sugars) and some 
antioxidant enzyme activities in comparison to the plants that were not treated with ABA. Furthermore, exogenous ABA 
up-regulated the expression levels of arginine decarboxylase (ADC) and pyrroline-5-carboxylate synthase (P5CS) genes and 
down-regulated polyamine oxidase (PAO), diamine oxidase (DAO) and proline dehydrogenase (ProDH) gene expressions. 
When endogenous ABA content was decreased by the treatment of fluoridone (FLU) that is an ABA inhibitor, leaf rolling 
degree (%),  H2O2 content and antioxidant enzyme activities increased, but osmolyte levels, ADC and P5CS gene expres-
sions decreased. Finally, the treatment of ABA to maize seedlings exposed to drought stress resulted in the stimulation of 
the antioxidant system, osmotic adjustment and reduction of leaf rolling. We concluded that ABA can be a signal compound 
cross-talking  H2O2, proline and polyamines and thus involved in the leaf rolling mechanism by providing osmotic adjust-
ment. The results of this study can be used to provide data for the molecular breeding of maize hybrids with high grain yield 
by means of moderately rolled leaves.
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BR  Brassinosteroid
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DAB  3,3′-Diaminobenzidine
ROS  Reactive oxygen species

Introduction

Being one of the important limiters for maize crops, drought 
is a major topic that attracts attention all over the world. 
Effects of drought stress on plants vary depending on plant 
type, ability of tolerance and adaptability (Madhova Rao 
et al. 2005; Kadioglu et al. 2011). Plants which are ses-
sile organisms have developed defense mechanisms such 
as physiological, biochemical and molecular changes in 
response to drought. Some symptoms of tolerance to drought 
include stomatal closing, osmotic adjustment, higher water 
use efficiency (WUE), deposition of wax, increased root 
length, and leaf rolling (Kadioglu et al. 2012; Khazaei et al. 
2013). Leaf rolling is indeed a response of maize plants to 
insufficient plant moisture content. When plant moisture 
content decreases, to protect itself from excessive plant 
moisture loss, maize plants frequently rolls its leaves (Kadio-
glu et al. 2012). However, moderate leaf rolling not tightly 
or early increases the photosynthesis and grain yield of rice 
cultivars (Zhang et al. 2009). Therefore, knowing how the 
leaf rolling phenomenon is regulated under drought stress is 
important. There are many different studies that were con-
ducted to find out the possible signals and the effective genes 
regarding the leaf rolling phenomenon. For instance, maize 
ROLLED LEAF1 (RLD1) gene encoded a class III homeo-
domain-leucine zipper protein and controlled upward rolling 
of the leaf blade (Juarez et al. 2004a). Some microRNAs 
such as miRNA166 may form a movable signal to define 
the expression domain of RLD1 (Juarez et al. 2004b). Addi-
tionally, the phytohormones are well-known regulators of 
the rolling. One of these regulators, brassinosteroids (BRs) 
about which an accumulating evidence illustrated that BRs 
play a pivotal role in leaf unrolling (Chono et al. 2003; Asa-
hina et al. 2014). Exogenous polyamines and ascorbic acid 
also decrease the rolling of the leaves (Kadioglu et al. 2002; 
Terzi et al. 2015). Decreased leaf rolling by salicylic acid has 
been reported (Kadioglu et al. 2011; Saruhan et al. 2012). 
Moreover,  H2O2 applied at low concentration delayed leaf 
rolling as a signal compound by inducing the level of pro-
line, polyamine and total soluble sugars (Terzi et al. 2013). 
However, the signal or regulator role of abscisic acid (ABA) 
on leaf rolling under drought stress conditions is not known.

ABA accumulation can initiate some response mecha-
nisms, ultimately physiological changes such as the closure 
of stomata, synthesis of osmoprotectants and the induction 
of the antioxidant system (Akpinar et al. 2012). Induced 
antioxidant enzyme activity with ABA treatment was 
reported in maize under drought stress (Jiang and Zhang 
2002). Exogenous ABA decreased reactive oxygen species 

(ROS) accumulation by inducing activities or increasing 
the expression levels of several antioxidant enzymes. For 
instance, exogenous ABA treatment under drought stress 
significantly increased the superoxide dismutase and peroxi-
dase activities in wheat cultivars (Wei et al. 2015; Bano et al. 
2012). Furthermore, exogenous ABA application remark-
ably increased the activities: guaiacol peroxidase, catalase, 
superoxide dismutase and ascorbate peroxidase (Wang et al. 
2011). Moreover, accumulation of proline in wheat seed-
lings induced by ABA treatment (Marcińska et al. 2013) 
and up-regulated ADC2 expression in Arabidopsis under 
drought stress result in enhanced abiotic tolerance (Perez-
Amador et al. 2002). However, to our knowledge, the role of 
exogenous ABA application in regulation of osmolyte levels 
and in stimulation of antioxidant enzymes is still unclear in 
plants, especially in crop cultivars.

We aimed, therefore, to measure the changes in some 
antioxidant enzyme activities, sugar contents, levels of pro-
line and polyamines and relative expression levels of their 
biosynthesis genes, stomatal conductance, leaf water poten-
tial, membrane damage, internal  H2O2 and ABA contents to 
reveal the mechanism by which ABA reduces leaf rolling. 
Here, we hypothesized that ABA may cross-talk with  H2O2 
and osmolyte compounds, stimulate antioxidant enzymes 
and function as a signal in regulation of the leaf rolling.

Materials and methods

Plant material, growth conditions, and ABA/stress 
treatments

Zea mays L. seeds (cv. Akpınar) were obtained from 
the Black Sea Agricultural Research Institute, Tur-
key for this study. The seeds were planted in plastic pots 
(25 × 18 × 12 cm) filled with soil, and six seedlings were 
maintained in each pot. The seedlings were grown at 
22/18 °C (day/night) under a photoperiodic cycle of 16 h 
light and 8  h dark with 60 ± 5% relative humidity and 
about 400 µmol m−2 s−1 supplied with fluorescent lamps 
in a plant growth chamber. When the seedlings had four 
fully developed leaves (after 3 weeks), they were cut from 
2 cm above the ground level and kept in distilled water for 
1 h to minimize the damage of water deficit. To determine 
the effect of ABA concentration on leaf rolling, the excised 
seedlings were kept in different ABA concentrations ranging 
from 0 to 350 µM under drought stress (− 0.3 MPa) created 
by the addition of polyethylene glycol 6000 (PEG 6000). 
Additionally, different fluoridone (FLU) concentrations 
(0–40 µM) were applied to the seedlings and determined 
FLU concentration decreasing endogenous ABA levels in 
the leaves under the stress conditions. After ABA and FLU 
concentrations’ decreasing leaf rolling and ABA levels 
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were determined respectively, the seedlings were exposed 
to four different treatments for 12 h: (1) only distilled water 
(mock), (2) drought stress treatment (− 0.3 MPa) created 
by PEG 6000 treatment (control) (3) 250 µM ABA with by 
PEG 6000, and (4) 30 µM FLU with by PEG 6000.

The leaves were used for the following experiments 
immediately after 12 h of treatments.

Leaf rolling degree (%)

The degree of leaf rolling was estimated according to the 
method described by Premachandra et al. (1993) as a per-
centage reduction in the width of the middle part of the leaf.

Determination of ABA content

Plant tissues (0.1 g) were powdered in liquid nitrogen, 
extracted in distilled water, and the samples were stored at 
4 °C in the dark. Then, the extracted samples were centri-
fuged at 15,000g for 15 min at 4 °C. The ABA content was 
determined using a Phytodetek ABA ELISA kit (Agdia/Lin-
aris) according to the manufacturer’s instructions.

Leaf water potential (Ψleaf),

To measure Ψleaf, a thermocouple psychrometer (PSYPRO 
C-52, Wescor) was used. 6-mm-diameter discs were taken 
from the leaves of five plants. The samples were balanced 
for 1 h then the data were recorded.

Stomatal conductance (gs)

The gs values were taken by an AP4 dynamic diffusion 
porometer (Delta T Devices, UK). Calibration of device was 
performed with a standard calibration plate according to the 
manufacturer’s instructions.

Lipid peroxidation

Lipid peroxidation was determined as the content of malon-
dialdehyde (MDA) according to the method by Heath and 
Packer (1968). The leaves (0.1 g) were homogenized in 
trichloroacetic acid (0.1%) and centrifuged at 14,000g for 
15 min. The supernatant (1 ml) was mixed with 20% TCA 
including 0.5% thiobarbituric acid (4 ml). The mixture 
which was heated at 95 °C for 30 min was cooled on ice. 
The concentration of MDA was measured at 532 and 600 nm 
spectrophotometrically.

Hydrogen peroxide  (H2O2)

The leaves (0.1 g) were homogenized TCA (0.1%) contain-
ing activated charcoal at 4 °C and centrifuged at 15,000g 

for 10 min. The reaction mixture comprised aliquot of the 
supernatant, 10 mM potassium phosphate buffer (pH 7.0) 
and 1 M KI. The  H2O2 content was estimated using standard 
curve prepared with a varying concentration range of  H2O2 
from 0 to 100 µmol at 390 nm (Velikova et al. 2000).

3,3′‑Diaminobenzidine (DAB) staining

For determination of  H2O2, a DAB staining protocol was 
modified from the method by Daudi et al. (2012). The plant 
leaves were subjected to DAB with 0.05% v/v Tween 20 
and 10 mM sodium phosphate buffer (pH 7.0). Then the 
leaves were placed in tubes and transferred into a standard 
laboratory shaker at 80–100 rpm for incubation. Follow-
ing incubation, the leaves were fixed and then boiled in a 
water bath at 90–95 °C for 15 ± 5 min in a bleaching solution 
including ethanol:acetic acid:glycerol (3:1:1). The leaves 
were incubated in fresh bleaching solution for 30 min. The 
leaves could be monitored for DAB staining.

Enzyme extractions and assays

For superoxide dismutase (SOD), catalase (CAT), guaiacol 
peroxidase (GPX) enzyme and protein extractions, 0.1 g of 
the leaf tissues were homogenized with a 50 mM sodium 
phosphate buffer (pH 7.8) with 1 mM ethylenediaminetet-
raacetic acid (EDTA) and polyvinylpolypyrrolidone (1%). 
For ascorbate peroxidase (APX) activity determination, 
2 mM of ascorbate was added into the sodium phosphate 
buffer. The samples were centrifuged at 15,000g for 15 min. 
The total soluble protein contents in enzyme extracts were 
determined using bovine serum albumin as a standard (Brad-
ford 1976).

Activity of SOD (EC 1.15.1.1) was determined according 
to the method of Beauchamp and Fridovich (1971). Reaction 
was initiated by the addition of 2 μM riboflavin to 1 ml reac-
tion medium containing 50 mM potassium phosphate buffer 
(pH 7.8), 0.1 mM EDTA, 13 Mm l-methionine, 75 μM nitro 
blue tetrazolium (NBT), and 50 μl extract the absorbance 
values at 560 nm were determined after the mixture was 
exposed to white light at 375 μmol m−2 s−1 for 10 min.

CAT (EC 1.11.1.6) activity was determined by measuring 
the decrease in reaction time of 1 ml at 240 nm for 5 min, 
containing 50 mM potassium phosphate buffer (pH 7.0), 
30 mM  H2O2 and 20 μl enzyme extract. Catalase activity 
was calculated using the 39.4 mM−1 cm−1 coefficient for 
 H2O2 (Bergmeyer 1970).

APX (EC 1.11.1.11) activity was determined with 
decrease at 290  nm (Nakano and Asada 1987). APX 
activity was determined by measuring a 1 ml reaction 
mixture containing 50 mM potassium phosphate buffer 
(pH 7.0), 250 μM ascorbate (ASC), 5 mM  H2O2 and 20 μl 
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enzyme extract. APX activity was calculated using the 
2.8 mM−1 cm−1 epsilon coefficient for ASC.

GPX (EC 1.11.1.7) activity was measured increase in 
absorbance at 470 nm in a 100 mM potassium phosphate 
buffer (pH 7.0) containing 0.1 mM EDTA, 5 mM guaiacol, 
15 mM  H2O2 and 50 µl of enzyme extract (Urbanek et al. 
1991).

Proline and total soluble sugar contents

Proline content was determined using the spectropho-
tometric method described by Bates et al. (1973). Dry 
leaves (0.1 g) were extracted in sulfosalicylic acid [5 ml, 
3% (w/v)] and centrifuged at 10,000 rpm for 10 min. The 
supernatant (1 ml) was added into the glacial acetic acid 
(1 ml) and ninhydrin (1 ml) mixture and incubated in an 
oven at 100 °C for 1 h. To stop the reaction, samples were 
incubated in an ice bath, then, toluene was added into 
the reaction mixture. The toluene phase was measured at 
520 nm. To determinate proline concentration, the calibra-
tion curve was prepared using standards of proline and 
expressed as µg g−1 dry weight.

For determination of total soluble sugar content, dried 
leaves (0.1 g) were homogenized in 5 ml 70% ethanol and 
boiled at 95 °C water bath for 10 min, the homogenized 
leaves were centrifuged at 5000g for 5 min. Phenol (5%), and 
 H2SO4 (5 ml) were added to sample (1 ml). The absorbance 
of the sample was recorded at 490 nm (Dubois et al. 1956). 
The results were expressed as mg per 100 g of dry weight.

Polyamine content

Polyamines’ extraction and detection were performed by 
high performance liquid chromatography (HPLC) the 
method according to described by Ben-Gigirey et al. (1998). 
The leaf tissues (5 g) were extracted with 0.4 M perchloric 
acid (10 ml). The extract was centrifuged at 3000g at 4 °C 
for 12 min. The collected supernatants were adjusted with 
25 ml of perchloric acid.

The extract samples (1 ml) were used for the HPLC anal-
ysis and derivatized with dansyl chloride. After derivati-
zation, the samples were filtered through a 0.45 μm-pore-
size syringe filter. The polyamine contents were assayed 
using a HPLC (Shimadzu, LC 20 AT/Prominence, Japan) 
which consisted of two pumps and a UV–VIS detector. 
Separation was achieved using a C18 Supelco column 5 μm 
(250 mm × 4.6 mm). Ammonium acetate was used as the 
mobile phase and acetonitrile at a flow rate of 1 ml min−1 
with a gradient elution program for 35 min. The injected 
sample volumes were 10 μl. The samples were monitored 
at 254 nm.

RNA isolation and cDNA synthesis

The leaves that were kept at − 80 °C were used for total RNA 
isolation. Frozen leaf tissues (0.1 g) were powdered in a 
homogenizer with liquid nitrogen. Total RNA isolation was 
carried out using a total RNA isolation kit [Quiagen RNeasy 
Plant Mini Kit (Cat. No: 74904)]. The amount and purity 
of RNA samples were measured with a nanodrop spectro-
photometer (Thermo Scientific, Nanodrop 2000, USA). The 
synthesis of cDNA was created using a high-capacity cDNA 
Reverse Transcription Kit 4368814, (Applied Biosystems) 
from the isolated total RNA samples (2000 ng RNA).

Quantitative real‑time (qRT) PCR analysis

For each qPCR, 20 µl of total volume with gene specific 
primers was used, with 4 µl Supermix [5× HOT FIREPol 
Eva Green qPCR Supermix (08-36-00008, Solis Biodyne)], 
1 µl of primers, 1 µl cDNA sample and added nuclease-free 
water by 20 µl. The analysis was performed on CFX Connect 
Real Time PCR System (BioRad). qRT PCR protocol was 
modified according to Solis Biodyne’s instructions; 95 °C 
for 12 min, 45 cycles of 95 °C for 15 s, 60 °C for 30 s, and 
72 °C for 30 s, and the melt curve was held in 0.5 °C incre-
ments from 60 to 95 °C. Each biological repeat was analyzed 
as three technical repeats and the average technical error 
was considered to be in the form of 0.5 (± 1) Cq values. The 
findings were normalized according to the Actin gene and 
relative gene expression was presented. The primers that 
were used in this study are listed in Table 1.

Statistical analysis

All experiments were repeated three times. Ten samples 
were used for each treatment group. Variance analysis of 
mean values was performed by Duncan multiple compari-
son test (one-way ANOVA) using the SPSS software for 
Microsoft Windows (Ver. 15.0, SPSS Inc., USA) and the 
significance level was determined as 5% (P < 0.05).

For qRT PCR analysis, the relative gene expression level 
was analyzed by assaying the Bio-Rad CFX Manager 3.1. 
Expression levels were assayed by SPSS software. Variance 
analysis of mean values was carried out by one-way ANOVA 
(P < 0.05).

Results

Leaf rolling degree (%)

As compared to the control group (54.0%), 250 µM of 
ABA caused a significant decrease in the leaf rolling 
degree (23.7%) while 10, 50 and 100 µM of ABA did 



Acta Physiologiae Plantarum (2018) 40:141 

1 3

Page 5 of 12 141

not make any significant difference. However, 200, 300, 
350 µM of ABA concentrations increased the leaf rolling 
degree (Fig. 1a). On the other hand, FLU treatments at 10, 
20 and 30 µM concentrations increased the leaf rolling 
degree % as compared to the control (Fig. 1b). Addition-
ally, the highest degree of leaf rolling (77.3%) was deter-
mined after the 30 µM FLU treatment.

Leaf rolling degrees in mock, control, ABA and FLU 
were recorded as follows, respectively, 0, 54.4, 24.5 and 
77% (Fig. 1c).

ABA content

The maximum reduction in the ABA content was detected 
at the seedlings where 30  µM of FLU was applied 
(Fig. 1d). There was a 1.6-fold difference between the 
control and 30 µM of FLU treatment. It decreased from 
150 pmol g−1 DW to 96.1 pmol g−1 DW. The ABA con-
tents at 10, 20 and 40 µM of the FLU-treated seedling 
were 1.2-, 1.2-, and 1.3-fold lower than the content in the 
control seedlings (Fig. 1d).

The ABA contents in mock, control, FLU and ABA-
treated seedlings were also compared. A significantly 
high amount of ABA (733.3 pmol g−1 DW) was found 
in the ABA-treated seedlings as compared to the mock 
(61.64 pmol g−1 DW), control (154.06 pmol g−1 DW), and 
FLU-treated (96.0 pmol g−1 DW) seedlings (Fig. 1e).

Leaf water potential

Ψleaf decreased from − 0.5 MPa in mock to − 1.3 MPa in con-
trol under drought stress. Exogenously treated ABA caused a 
significant increase in leaf water potential of stressed plants 
(Ψleaf in ABA − 0.9 MPa). However, the Ψleaf value of the 
FLU-treated seedlings (− 1.4 MPa) was the lowest (Fig. 2a).

Stomatal conductance

Control seedlings displayed a significantly lower stomatal 
conductance than the mock groups. It was found that FLU 
treatment had the highest stomatal conductivity, but ABA 
treatment was the lowest under drought stress conditions 
(Fig. 2b).

MDA content

Among the treatments, the highest MDA content 
(2.1 nmol g−1 DW) was observed in the FLU-treated seed-
lings. On the other hand, it was determined that MDA con-
tent decreased in the ABA-treated seedlings (1.2 nmol g−1 
DW) in comparison with the controls (1.4 nmol g−1 DW) 
(Fig. 2c).

H2O2 content

The  H2O2 content in leaves of maize is given in Fig. 2d. 
The  H2O2 content was low in the ABA-treated seedlings 
(25.3 µmol g−1 DW) under drought stress conditions in 
comparison to the controls (51.5 µmol g−1 DW). How-
ever, the  H2O2 content was the highest in the FLU-treated 
seedlings (Fig. 2d).

DAB staining

As shown in Fig. 2e, brown spots represented the pres-
ence of  H2O2. The brown spots in the ABA-treated plants 
decreased in comparison to the control seedlings. How-
ever, the FLU-treated seedlings displayed higher numbers 
of brown spots in comparison to the controls.

Table 1  The sequences of specific primers used for qRT-PCR analysis

Target gene NCBI accession no. Primer names and their sequences

Actin 1 NM_001155179.1 ACT1Zm_F: “GAA GAT CAC CCT GTG CTG CT”
ACT1Zm_R: “ACC AGT TGT TCG CCC ACT AG”

Pyrroline 5-carboxylate synthase (P5CS) DQ864376.1 P5CSZm_F: “AAC ATC TTG CCC TCT GGG TG”
P5CSZm_R: “CCA TTG CCA CTT CGA ACT GC”

Proline dehydrogenase (ProDH) NM_001154105.1 PRODHZm_F: “TCA GCA AGT ACC TGC CGT AC”
PRODHZm_R: “ACC CTC CTC ACC AAC TCC TT”

Arginine decarboxylase (ADC) EU968980.1 ADCZm_F: “GAC ATC ACC TGC GAC AGT GA”
ADCZm_R: “GAA CAG GTT GTG CTT GCC AG”

Polyamine oxidase (PAO) NM_001111636.1 PAOZm_F: “CGC TAC GAA TAC GAC CAG CT”
PAOZm_R: “TGG GCG CAG TTG ATG AGA AT”

Diamine oxidase (DAO) NM_001152492.1 DAOZm_F: “ACA GCA AGT CCG AGA AGT GG”
DAOZm_R: “TGT ACC ACA GCA CGA TGT CC”
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Antioxidant enzyme activities

SOD activity

SOD activity was induced by drought stress (3.7 unit mg−1 
of protein) compared to mock (1.53 unit mg−1 of pro-
tein) Fig. 2f. Exogenous ABA increased the activity as 
compared to the control seedlings. The activity rose to 
7.8 unit mg−1 of protein in the ABA-treated seedlings. 
Whereas FLU treatment also increased the activity as 

compared to the controls, but the increase was the highest 
in the ABA-treated seedlings.

CAT activity

CAT activity increased under drought stress (control) as 
compared to mock treatment (Fig. 2g). The activity increased 
from 0.6 unit mg−1 of protein (mock) to 6.6 unit mg−1 of 
protein (control). The highest CAT activity was measured in 
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Fig. 1  Changes in degree of leaf rolling and ABA content. a Effect 
of different ABA concentrations on degree of leaf rolling. b Effect 
of different FLU concentrations on degree of leaf rolling. c Effect 
of different treatments on degree of leaf rolling (mock:  dH2O, con-
trol: PEG, ABA: 250 µM ABA in PEG, FLU: 30 µM FLU in PEG). 

d Effect of different FLU concentrations on ABA content. e Effect of 
different treatments on ABA content. Data are means ± SD of three 
replicates. Different letters indicate significant differences according 
to a Duncan’s multiple range test (P < 0.05)
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Fig. 2  Changes in main stress 
parameters and antioxidant 
enzymes. a Leaf water potential, 
b stomatal conductance, c MDA 
content, d  H2O2 content, e DAB 
staining, f SOD activity, g CAT 
activity, h APX activity, i GPX 
activity. Data are means ± SD of 
three replicates. Different letters 
indicate significant differences 
according to a Duncan’s multi-
ple range test (P < 0.05)
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the ABA-treated seedlings (10.8 unit mg−1 of protein). FLU 
treatment decreased the activity to 9.5 unit mg−1 of protein.

APX activity

APX activity was induced by drought stress compared 
to mock treatment (Fig. 2h). The activity increased from 
542 unit mg−1 of protein to 917 unit mg−1 of protein. The 
highest activity was determined in the ABA-treated seed-
lings (1019 unit mg −1 of protein). On the other hand, FLU 
reduced enzyme activity (866 unit mg −1 of protein) in com-
parison to the controls and the ABA treatments.

GPX activity

The enzyme activity was enhanced by drought stress (con-
trol) compared to mock treatment (Fig. 2i). It increased 
from 51.5 unit mg−1 of protein (mock) to 120 unit mg−1 of 
protein (control). ABA treatment induced the GPX activity 
more than control (Fig. 2i). FLU treatment also increased 
the enzyme activity as compared to the controls (Fig. 2i).

Proline, total soluble sugar and polyamine contents

There was an increase in the proline content of the ABA-
treated seedlings (1.7 µg g−1 DW) in comparison to the 
control seedlings (1.5 µg g−1 DW). However, the proline 
content in the FLU-treated seedlings decreased compared to 
the control (Fig. 3a). The  H2O2 content decreased from 1.5 
to 0.8 µg g−1 DW by FLU treatment.

There were significant differences among the treatments 
for total soluble sugar content (Fig. 3b). The seedlings 
treated with FLU under drought stress conditions showed 
the lowest levels of total soluble sugar. It was determined as 
79 mg 100 g−1 DW, whereas in contrast, the ABA-treated 
seedlings had the highest amount of total soluble sugar dur-
ing the drought stress. It was found as 153.2 mg 100 g−1 DW.

Under the drought stress conditions, ABA treatment sig-
nificantly increased the Put, Spd and Spm contents in com-
parison to the controls. The putrescine content rose from 
8.1 µg g−1 DW (control) to 15.3 µg g−1 DW (ABA) while 
FLU treatment decreased the Put content to 1.68 µg g−1 DW 
(Fig. 3c). The spermidine level in the control group was 
determined to be 1.1 µg g−1 DW. Following ABA treatment, 
this value was measured as 4.8 µg g−1 DW. FLU treatment 
reduced the Spd level to 0.3 µg g−1 DW. As to the Spm, it 
was also induced by the ABA treatment. The Spm content 
increased from 1.5 µg g−1 DW (control) to 1.9 µg g−1 DW 
(ABA). In similarity to Spd, the FLU treatment decreased 
the Spm content as well. It was decreased to 0.8 µg g−1 DW 
in comparison to the controls (1.48 ± 0.02 µg g−1 DW).

Expression levels of genes in proline metabolic 
pathway

Expression rates of the P5CS and ProDH genes were deter-
mined. The expression of these genes is summarized in 
Fig. 4. The expression of P5CS was up-regulated by water 
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loss. The expression level of P5CS in the controls was 1.1-
fold higher than that in the mock group. ABA also induced 
the expression (1.4) in comparison to the controls (1.1). 
P5CS expression was down-regulated by FLU treatment 
(Fig. 4a). The expression of the ProDH gene was signifi-
cantly decreased among the controls as compared to the 
mock group (Fig. 4b). ABA treatment reduced the expres-
sion level in comparison to the controls. ProDH gene expres-
sion was induced by the FLU treatment. The expression level 
in FLU-treated seedlings was higher than those of ABA and 
control.

Expression levels of genes in polyamine metabolic 
pathway

To fully understand the accumulation of polyamines, gene 
expressions that play a part in polyamines’ biosynthesis 
and degradation were investigated. As shown in Fig. 5a, 
expression of the ADC gene was up-regulated by ABA 
treatment in comparison to the controls. The expression 

level in ABA treatment was 1.8-fold higher than that of 
the controls. On the other hand, FLU treatment down-reg-
ulated the ADC expression in comparison to the controls. 
The expression levels of the PAO and DAO genes were 
also increased in the ABA-treated seedlings in compari-
son to the controls. The expression levels of the DAO and 
PAO genes in the ABA-treated seedlings were two- and 
1.6-fold higher than their controls. FLU treatment also 
up-regulated the DAO and PAO expressions. The expres-
sion levels were threefold higher than the control groups 
(Fig. 5b, c).
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Discussion

A decrease in the leaf area and transpiration due to leaf 
rolling is accepted as an effective drought avoidance 
mechanism. However, a long-term rolling may result in 
loss of yield. Therefore, a reduction in degree of leaf roll-
ing might be beneficial for plants under environmental 
stresses. Although there are some studies about how the 
application of certain substances such as brassinolides 
(Chen et al. 2015), salicylic acid (Kadioglu et al. 2011) 
and polyamines (Kadioglu et al. 2002) and ascorbic acid 
(Terzi et al. 2015) decreases leaf rolling, there is no study 
about the mechanism of exogenous ABA on leaf rolling so 
far. In this study, we tried to clarify how ABA decreased 
leaf rolling in Z. mays under drought stress conditions. 
We hypothesized that ABA may cross-talk with  H2O2 and 
osmolyte compounds, stimulate antioxidant enzymes, and 
it may be a signal associated with the regulation of leaf 
rolling. Exogenously applied ABA increased endogenous 
ABA content under the drought stress conditions, simi-
lar to the previous reports in maize and wheat cultivars 
(Bano and Yasmeen 2010; Bano et al. 2012). Here, we 
tested whether the reduced leaf rolling was related to the 
ABA contents of the leaves. Fluoridone, which inhibits 
ABA biosynthesis (Perales et al. 2005), was applied to 
the leaves under drought stress. Inhibition of ABA bio-
synthesis by fluoridone led to an increase in the degree 
of leaf rolling which pointed out that leaf ABA content 
might be related to regulation of leaf rolling. Importance 
of stomata in regulating the water content of plants and 
the role of ABA in the control of stoma movements were 
recorded in the plants. Leaf rolling is closely related to 
leaf water content, and therefore, leaf water potential was 
measured under drought stress conditions in this study. 
Similar to our results, Eamus (1986) recorded that ABA-
treated okra leaves had higher Ψleaf content than un-treated 
leaves under drought stress. Increased Ψleaf content was 
also determined in drought-stressed soybean plants that 
were treated with ABA in comparison to plants that were 
not (Hossain et al. 2015).

ABA is considered to be a major signal molecule 
involved in stomatal regulation (Akpinar et  al. 2012). 
Treatment of exogenous ABA-induced stomatal closure, 
thus water loss from leaves, was inhibited in this study, 
thereby helping retain higher leaf water potential. Fluori-
done treatment also supported ABA’s influence on water 
content. FLU treatment increased stomatal opening and 
alleviated water loss by reducing endogenous ABA content 
and the treatment caused an increase in leaf rolling. In 
similarity to this study, stomatal conductance was reported 
to decrease in ABA-treated wheat genotypes under drought 
stress (Saradadevi et al. 2017).

When the balance between ROS production and their 
scavenging activity by the antioxidant system deteriorates 
towards the ROS production pathway due to water scarcity, 
protein, lipid, DNA and membrane damages occur in plants 
(Gill and Tuteja 2010). Rising biosynthesis of ABA hap-
pens in plants as a response to drought stress mediated by 
changes in the levels of  H2O2 (Phillips and Ludidi 2017). 
Similar to our study, Souza et al. (2014) showed the lowest 
 H2O2 content in ABA-treated maize seedlings in the early 
periods of drought stress in comparison to plants that were 
not treated with ABA. Wei et al. (2015) recorded that ABA 
application remarkably enhanced the tolerance of common 
wheat seedlings subjected to 15% PEG-stimulated stress and 
decreased  H2O2 and MDA. Our findings supported the result 
that the decrease of  H2O2 production may be related to the 
triggering of antioxidant responses by ABA, which protects 
the plant from hazardous effects of oxidative stress. Alscher 
et al. (2002) suggested that membrane damages decreased in 
ABA-treated plants because of the decline in ROS produc-
tion, which was indicated by lower levels of  H2O2. Here, we 
found a decrease in MDA content of ABA-treated seedlings 
during the drought stress period. This finding is in com-
pliance with lower leaf rolling degrees, and it supported 
other findings related to leaf water potential and stomatal 
conductance.

Moreover, Marcińska et  al. (2013) demonstrated in 
drought resistant wheat cultivar that exposure to ABA 
decreased MDA content by inducing the antioxidant system 
and improved tolerance to drought. As based on our find-
ings, we can suggest that the pretreatment of ABA-alleviated 
membrane damage thanks to scavenging of ROS by inducing 
the SOD, CAT, APX and GPX activities in maize seedlings 
and relieved oxidative stress. Indeed, in a similar study, 
FLU treatment enhanced MDA content in barley seedlings 
under drought stress (Popova 1998). Due to the idea that 
they are associated with water availability, changes in some 
osmolytes such as proline, soluble total sugar, and polyam-
ine content were determined. Additionally, ABA can induce 
change in the biosynthesis of stress proteins, proline, sugar 
alcohol, soluble carbohydrate, glycine, betaine (Bagniewska-
Zadworna et al. 2007). The accumulation of the osmolytes 
helps tolerance to dehydration by providing the continuity 
of the water balance (Chołuj et al. 2008; Costa et al. 2008). 
The accumulation of proline content after ABA treatment 
under drought stress conditions in our study was also similar 
to those found by Costa et al. (2011) and Marcińska et al. 
(2013) where ABA-induced biosynthesis of proline was 
reported. Genetic analyses of proline biosynthesis and deg-
radation in plants were closely associated with biochemical 
analysis. For better understanding of proline accumulation 
in maize seedlings, we studied the relative gene expressions 
involved in its biosynthesis and degradation. In general, our 
results suggested that synthesis of proline in the ABA-treated 
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seedlings increased as their degradation decreased under 
drought stress. Proline degradation by ProDH was reduced 
when the proline synthesis pathway was induced by ABA 
treatment in the plants. Thus, the proline content increased 
under drought stress conditions.

FLU-reverted biosynthesis of polyamines led this study 
to examine changes on the gene level. To obtain a better 
understanding of polyamine accumulation, the expression 
of genes, including in its biosynthesis and degradation were 
investigated. It was found that expressions of the PAO and 
DAO genes, responsible for degradation, and expression of 
ADC gene, responsible for polyamines biosynthesis was 
increased in ABA-treated seedlings as compared to control. 
However, ADC expression rate was higher than those of PAO 
and DAO. These results suggested that the synthesis rate of 
polyamines was higher than the degradation of them. As 
similar to our study, Alcazar et al. (2006) recorded that ABA 
up-regulated ADC2 expression in Arabidopsis thaliana and 
thus it regulated polyamine metabolism at transcriptional 
level in response to drought stress.

Conclusions

Here, we suggested for the first time that ABA treatment on 
maize seedlings under drought stress caused a reduction in 
leaf rolling by osmotic regulation orchestrated through the 
accumulation of proline, polyamine and total soluble sug-
ars. ABA may be a signal compound that cross-talks with 
osmolytes such as soluble sugar, proline and polyamines. 
Moreover, the cross-talk of ABA with  H2O2 may reduce 
the level of endogenous  H2O2 by stimulating antioxidant 
enzyme activities. The cross-talk may modulate the expres-
sions of metabolic genes of proline and polyamines, and 
antioxidant enzyme activities, and thus regulate the mecha-
nism of leaf rolling and mitigate damages of oxidative stress. 
We may recommend investigation of how ABA affects the 
expression of leaf rolling genes such as RLD1 and SHAL-
LOT-LIKE. Therefore, learning the signal compound and 
its cross-talking in the rolled leaves that occur by the effects 
of abiotic stress may supply researchers and farmers with 
an opportunity to improve crop cultivars with a high grain 
yield.
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